Evaluation of the Long-Lasting Flavour Perception after the Consumption of Wines Treated with Different Types of Oenological Additives Considering Individual 6-n-Propylthiouracil Taster Status
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wine Samples
2.2. Wine Aromatisation
2.3. Individual Panel
2.4. Taste PROP Phenotype
2.5. Dynamic Sensory Analyses
2.5.1. Training
2.5.2. Sensory Evaluation
2.5.3. TI Data Analyses
2.6. Statistical Analyses
3. Results
3.1. Effect of PROP Taste Phenotype on Flavour Perception in Red and White Wines
3.1.1. Effect of PROP Taster Status in Wine Astringency Perception over Time
3.1.2. Effect of PROP Taster Status on Wine Retronasal Aroma Perception over Time
3.2. Effect of the Oenological Additives on Flavour Perception in Red and White Wines
3.2.1. Effect of Oenological Additives in Wine Astringency
3.2.2. Effect of Oenological Additives on Retronasal Aroma
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bautista-Ortin, A.B.; Martinez-Cutillas, A.; Ros-Garcia, J.M.; Lopez-Roca, J.M.; Gomez-Plaza, E. Improving colour extraction and stability in red wines: The use of maceration enzymes and enological tannins. Int. J. Food Sci. Technol. 2005, 40, 867–878. [Google Scholar] [CrossRef]
- Harbertson, J.F.; Parpinello, G.P.; Heymann, H.; Downey, M.O. Impact of exogenous tannin additions on wine chemistry and wine sensory character. Food Chem. 2012, 131, 999–1008. [Google Scholar] [CrossRef]
- Larcher, R.; Tonidandel, L.; Villegas, T.R.; Nardin, T.; Fedrizzi, B.; Nicolini, G. Pre-fermentation addition of grape tannin increases the varietal thiols content in wine. Food Chem. 2015, 166, 56–61. [Google Scholar] [CrossRef]
- Chen, K.; Escott, C.; Loira, I.; Del Fresno, J.M.; Morata, A.; Tesfaye, W.; Calderon, F.; Benito, S.; Suárez-Lepe, J.A. The Effects of Pre-Fermentative Addition of Oenological Tannins on Wine Components and Sensorial Qualities of Red Wine. Molecules 2016, 21, 1445. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, Z.; Wei, Z.; Yu, W.; Cui, Y. Effect of tannin addition on chromatic characteristics, sensory qualities and antioxidant activities of red wines. RSC Adv. 2020, 10, 7108–7117. [Google Scholar] [CrossRef]
- Corona, O.; Bambina, P.; De Filippi, D.; Cinquanta, L. Influence of pre-fermentative addition of aqueous solution tannins extracted from oak wood (Quercus petraea) on the composition of Grillo wines. Eur. Food Res. Technol. 2021, 247, 1595–1608. [Google Scholar] [CrossRef]
- Ma, W.; Guo, A.; Zhang, Y.; Wang, H.; Liu, Y.; Li, H. A review on astringency and bitterness perception of tannins in wine. Trends Food Sci. Technol. 2014, 40, 6–19. [Google Scholar] [CrossRef]
- Paissoni, M.A.; Bitelli, G.; Vilanova, M.; Montanini, C.; Segade, S.R.; Rolle, L.; Giacosa, S. Relative impact of oenological tannins in model solutions and red wine according to phenolic, antioxidant, and sensory traits. Food Res. Int. 2022, 157, 111203. [Google Scholar] [CrossRef]
- Souquet, J.-M.; Cheynier, V.; Brossaud, F.; Moutounet, M. Polymeric proanthocyanidins from grape skins. Phytochemistry 1996, 43, 509–512. [Google Scholar] [CrossRef]
- Hagerman, A.E. Extraction of Phenolics from Plants, Sephadex LH 20 and Separation of Tannin from Non-Tannin Phenolics. In The Tannin Handbook; Miami University: Oxford, OH, USA, 2011. [Google Scholar]
- Pozo-Bayón, M.; Andújar-Ortiz, I.; Moreno-Arribas, M.V. Volatile profile and potential of inactive dry yeast-based winemaking additives to modify the volatile composition of wines. J. Sci. Food Agric. 2009, 89, 1665–1673. [Google Scholar] [CrossRef]
- Rigou, P.; Mekoue, J.; Sieczkowski, N.; Doco, T.; Vernhet, A. Impact of industrial yeast derivative products on the modification of wine aroma compounds and sensorial profile. A review. Food Chem. 2021, 358, 129760. [Google Scholar] [CrossRef] [PubMed]
- Andújar-Ortiz, I.; Chaya, C.; Martín-Álvarez, P.J.; Moreno-Arribas, M.V.; Pozo-Bayón, M. Impact of Using New Commercial Glutathione Enriched Inactive Dry Yeast Oenological Preparations on the Aroma and Sensory Properties of Wines. Int. J. Food Prop. 2014, 17, 987–1001. [Google Scholar] [CrossRef] [Green Version]
- Feuillat, M.; Charpentier, C. Autolysis of Yeasts in Champagne. Am. J. Enol. Vitic. 1982, 33, 6–13. [Google Scholar] [CrossRef]
- Lubbers, S.; Voilley, A.; Feuillat, M.; Charpentier, C. Influence of Mannaproteins from Yeast on the Aroma Intensity of a Model Wine. LWT 1994, 27, 108–114. [Google Scholar] [CrossRef]
- Lubbers, S.; Charpentier, C.; Feuillat, M.; Voilley, A. Influence of Yeast Walls on the Behavior of Aroma Compounds in a Model Wine. Am. J. Enol. Vitic. 1994, 45, 29–33. [Google Scholar] [CrossRef]
- Pozo-Bayón, M.; Andújar-Ortiz, I.; Moreno-Arribas, M.V. Scientific evidences beyond the application of inactive dry yeast preparations in winemaking. Food Res. Int. 2009, 42, 754–761. [Google Scholar] [CrossRef]
- Rodríguez-Bencomo, J.J.; Andújar-Ortiz, I.; Moreno-Arribas, M.V.; Simó, C.; González, J.; Chana, A.; Dávalos, J.; Pozo-Bayón, M. Impact of Glutathione-Enriched Inactive Dry Yeast Preparations on the Stability of Terpenes during Model Wine Aging. J. Agric. Food Chem. 2014, 62, 1373–1383. [Google Scholar] [CrossRef] [Green Version]
- Rinaldi, A.; Gonzalez, A.; Moio, L.; Gambuti, A. Commercial Mannoproteins Improve the Mouthfeel and Colour of Wines Obtained by Excessive Tannin Extraction. Molecules 2021, 26, 4133. [Google Scholar] [CrossRef]
- Ginsburg, I.; Koren, E.; Shalish, M.; Kanner, J.; Kohen, R. Saliva increases the availability of lipophilic polyphenols as antioxidants and enhances their retention in the oral cavity. Arch. Oral Biol. 2012, 57, 1327–1334. [Google Scholar] [CrossRef]
- Li, Y.; Gao, Z.; Guo, J.; Wang, J.; Yang, X. Modulating aroma release of flavour oil emulsion based on mucoadhesive property of tannic acid. Food Chem. 2022, 388, 132970. [Google Scholar] [CrossRef]
- Esteban-Fernández, A.; Muñoz-González, C.; Jiménez-Girón, A.; Pérez-Jiménez, M.; Pozo-Bayón, M. Aroma release in the oral cavity after wine intake is influenced by wine matrix composition. Food Chem. 2018, 243, 125–133. [Google Scholar] [CrossRef]
- Esteban-Fernández, A.; Rocha-Alcubilla, N.; Muñoz-González, C.; Moreno-Arribas, M.V.; Pozo-Bayón, M. Intra-oral adsorption and release of aroma compounds following in-mouth wine exposure. Food Chem. 2016, 205, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Pittari, E.; Piombino, P.; Andriot, I.; Cheynier, V.; Cordelle, S.; Feron, G.; Gourrat, K.; Le Quéré, J.-L.; Meudec, E.; Moio, L.; et al. Effects of oenological tannins on aroma release and perception of oxidized and non-oxidized red wine: A dynamic real-time in-vivo study coupling sensory evaluation and analytical chemistry. Food Chem. 2021, 372, 131229. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-González, C.; Criado, C.; Pérez-Jiménez, M.; Pozo-Bayón, M. Evaluation of the Effect of a Grape Seed Tannin Extract on Wine Ester Release and Perception Using In Vitro and In Vivo Instrumental and Sensory Approaches. Foods 2021, 10, 93. [Google Scholar] [CrossRef] [PubMed]
- Manjón, E.; Brás, N.F.; García-Estévez, I.; Escribano-Bailon, M.T. Cell Wall Mannoproteins from Yeast Affect Salivary Protein–Flavanol Interactions through Different Molecular Mechanisms. J. Agric. Food Chem. 2020, 68, 13459–13468. [Google Scholar] [CrossRef]
- Manjón, E.; Recio-Torrado, A.; Ramos-Pineda, A.M.; García-Estévez, I.; Escribano-Bailón, M.T. Effect of different yeast mannoproteins on the interaction between wine flavanols and salivary proteins. Food Res. Int. 2021, 143, 110279. [Google Scholar] [CrossRef]
- Ramos-Pineda, A.M.; Manjón, E.; Macías, R.I.R.; García-Estévez, I.; Escribano-Bailón, M.T. Role of Yeast Mannoproteins in the Interaction between Salivary Proteins and Flavan-3-ols in a Cell-Based Model of the Oral Epithelium. J. Agric. Food Chem. 2022, 70, 13027–13035. [Google Scholar] [CrossRef]
- Dufour, C.; Bayonove, C.L. Interactions between Wine Polyphenols and Aroma Substances. An Insight at the Molecular Level. J. Agric. Food Chem. 1999, 47, 678–684. [Google Scholar] [CrossRef]
- Muñoz-González, C.; Brule, M.; Martin, C.; Feron, G.; Canon, F. Molecular mechanisms of aroma persistence: From noncovalent interactions between aroma compounds and the oral mucosa to metabolization of aroma compounds by saliva and oral cells. Food Chem. 2021, 373, 131467. [Google Scholar] [CrossRef]
- Francis, I.; Williamson, P. Application of consumer sensory science in wine research. Aust. J. Grape Wine Res. 2015, 21, 554–567. [Google Scholar] [CrossRef]
- Yang, Q.; Hollowood, T.; Hort, J. Phenotypic variation in oronasal perception and the relative effects of PROP and Thermal Taster Status. Food Qual. Preference 2014, 38, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Hayes, J.E.; Keast, R.S.J. Two decades of supertasting: Where do we stand? Physiol. Behav. 2011, 104, 1072–1074. [Google Scholar] [CrossRef] [Green Version]
- Robino, A.; Concas, M.P.; Spinelli, S.; Pierguidi, L.; Tepper, B.J.; Gasparini, P.; Prescott, J.; Monteleone, E.; Toschi, T.G.; Torri, L.; et al. Combined influence of TAS2R38 genotype and PROP phenotype on the intensity of basic tastes, astringency and pungency in the Italian taste project. Food Qual. Preference 2021, 95, 104361. [Google Scholar] [CrossRef]
- Pickering, G.J.; Simunkova, K.; DiBattista, D. Intensity of taste and astringency sensations elicited by red wines is associated with sensitivity to PROP (6-n-propylthiouracil). Food Qual. Preference 2004, 15, 147–154. [Google Scholar] [CrossRef]
- Pickering, G.J.; Robert, G. Perception of mouthfeel sensations elicited by red wine are associated with sensitivity to 6-n-propylthiouracil. J. Sens. Stud. 2006, 21, 249–265. [Google Scholar] [CrossRef]
- Pickering, G.J.; Moyes, A.; Bajec, M.R.; DeCourville, N. Thermal taster status associates with oral sensations elicited by wine. Aust. J. Grape Wine Res. 2010, 16, 361–367. [Google Scholar] [CrossRef]
- Vitorino, G.; Mota, M.; Malfeito-Ferreira, M. Characterization of sensory perceptions elicited by white wine spiked with different aroma, taste and mouth-feel active molecules. Ciência E Técnica Vitivinícola 2021, 36, 139–150. [Google Scholar] [CrossRef]
- Bartoshuk, L.M.; Duffy, V.B.; Green, B.G.; Hoffman, H.J.; Ko, C.-W.; Lucchina, L.A.; Marks, L.E.; Snyder, D.J.; Weiffenbach, J.M. Valid across-group comparisons with labeled scales: The gLMS versus magnitude matching. Physiol. Behav. 2004, 82, 109–114. [Google Scholar] [CrossRef]
- Criado, C.; Chaya, C.; Fernández-Ruíz, V.; Álvarez, M.D.; Herranz, B.; Pozo-Bayón, M. Effect of saliva composition and flow on inter-individual differences in the temporal perception of retronasal aroma during wine tasting. Food Res. Int. 2019, 126, 108677. [Google Scholar] [CrossRef]
- Lawless, H.T.; Corrigan, C.J.; Lee, C.B. Interactions of astringent substances. Chem. Senses 1994, 19, 141–154. [Google Scholar] [CrossRef]
- Ayya, N.; Lawless, H.T. Quantitative and qualitative evaluation of high-intensity sweeteners and sweetener mixtures. Chem. Senses 1992, 17, 245–259. [Google Scholar] [CrossRef]
- Lshikawa, T.; Noble, A.C. Temporal perception of astringency and sweetnessin red wine. Food Qual. Prefer. 1995, 6, 27–33. [Google Scholar] [CrossRef]
- Ferrer-Gallego, R.; Hernández-Hierro, J.M.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Sensory evaluation of bitterness and astringency sub-qualities of wine phenolic compounds: Synergistic effect and modulation by aromas. Food Res. Int. 2014, 62, 1100–1107. [Google Scholar] [CrossRef] [Green Version]
- Sáenz-Navajas, M.-P.; Campo, E.; Fernández-Zurbano, P.; Valentin, D.; Ferreira, V. An assessment of the effects of wine volatiles on the perception of taste and astringency in wine. Food Chem. 2010, 121, 1139–1149. [Google Scholar] [CrossRef]
- Sáenz-Navajas, M.-P.; Campo, E.; Avizcuri, J.M.; Valentin, D.; Fernández-Zurbano, P.; Ferreira, V. Contribution of non-volatile and aroma fractions to in-mouth sensory properties of red wines: Wine reconstitution strategies and sensory sorting task. Anal. Chim. Acta 2012, 732, 64–72. [Google Scholar] [CrossRef] [PubMed]
- De-La-Fuente-Blanco, A.; Fernández-Zurbano, P.; Valentin, D.; Ferreira, V.; Sáenz-Navajas, M.-P. Cross-modal interactions and effects of the level of expertise on the perception of bitterness and astringency of red wines. Food Qual. Preference 2017, 62, 155–161. [Google Scholar] [CrossRef]
- Rinaldi, A.; Coppola, M.; Moio, L. Aging of Aglianico and Sangiovese wine on mannoproteins: Effect on astringency and colour. LWT 2019, 105, 233–241. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Zhao, P.; Ma, Z.; Zhao, Q.; Cao, X.; Cheng, C.; Liu, H.; Du, G. Mannoproteins interfering wine astringency by modulating the reaction between phenolic fractions and protein in a model wine system. LWT 2021, 152, 112217. [Google Scholar] [CrossRef]
- Li, S.; Bindon, K.; Bastian, S.; Wilkinson, K. Impact of Commercial Oenotannin and Mannoprotein Products on the Chemical and Sensory Properties of Shiraz Wines Made from Sequentially Harvested Fruit. Foods 2018, 7, 204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snyman, C.; Nguela, J.M.; Sieczkowski, N.; Marangon, M.; Divol, B. Optimised Extraction and Preliminary Characterisation of Mannoproteins from Non-Saccharomyces Wine Yeasts. Foods 2021, 10, 924. [Google Scholar] [CrossRef]
- Perez-Jiménez, M.; Chaya, C.; Pozo-Bayón, M. Individual differences and effect of phenolic compounds in the immediate and prolonged in-mouth aroma release and retronasal aroma intensity during wine tasting. Food Chem. 2019, 285, 147–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Muñoz, B.; Garrido-Vargas, F.; Pavez, C.; Osorio, F.; Chen, J.; Bordeu, E.; A O’Brien, J.; Brossard, N. Wine astringency: More than just tannin–protein interactions. J. Sci. Food Agric. 2021, 102, 1771–1781. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Jiménez, M.; Muñoz-González, C.; Pozo-Bayón, M.A. Oral Release Behavior of Wine Aroma Compounds by Using In-Mouth Headspace Sorptive Extraction (HSSE) Method. Foods 2021, 10, 415. [Google Scholar] [CrossRef] [PubMed]
Oenological Additive | White Wines a | Red Wines a | ||
---|---|---|---|---|
Wine Type (f/w) | Concentration | Wine Type (f/w) | Concentration | |
No additive (control) | CWW | -- | CRW | -- |
Gallotannin | GTWW | 300 mg/L | GTRW | 300 mg/L |
Ellagitannin | ETWW | 700 mg/L | ETRW | 700 mg/L |
Mannoprotein | MWW | 1.5 mL/L | MRW | 0.9 mL/L |
Aroma Mixture | Aroma Compounds | CAS Number | Concentration in Wine (µg/L) |
---|---|---|---|
Woody | Whiskylactone | 80041-00-5 | 165 |
Vainillin | 121-33-5 | 55 | |
Eugenol | 97-53-0 | 8 | |
Guaiacol | 90-05-1 | 8 | |
Furaneol | 3658-77-3 | 55 | |
Fruity | 2,3-butanedione | 431-03-08 | 1400 |
Isoamyl acetate | 123-92-2 | 550 | |
Ethyl acetate | 141-78-6 | 5000 | |
Ethyl cinnamate | 103-36-6 | 12 | |
B-damascenone | 23726-93-4 | 0.3 |
Wine Type | PROP Phenotype | Astringency in Red Wines | Astringency in White Wines | ||||||
---|---|---|---|---|---|---|---|---|---|
I max | T max | T ext | AUC | I max | T max | T ext | AUC | ||
Woody aromatised wine | T | 14.1 a | 4.4 a | 104.5 a | 34,560 a | 11.8 a | 5.0 a | 91.4 a | 22,299 a |
NT | 13.9 a | 1.8 a | 94.3 b | 28,326 b | 13.8 a | 4.2 a | 81.6 a | 19,765 a | |
Fruity aromatised wine | T | 13.7 a | 2.6 a | 103.4 a | 33,856 a | 10.9 b | 4.0 a | 90.9 a | 20,397 a |
NT | 13.7 a | 1.9 b | 93.5 b | 26,776 b | 13.1 a | 2.4 b | 80.6 a | 21,222 a |
Sensory Stimuli | PROP Phenotype | Time–Intensity Parameters in Red Wines | Time–Intensity Parameters in White Wines | ||||||
---|---|---|---|---|---|---|---|---|---|
I max | T max | T ext | AUC | I max | T max | T ext | AUC | ||
Woody aroma | T | 14.0 a | 4.6 a | 100.2 a | 28,396 a | 12.7 a | 3.1 a | 97.3 a | 24,039 a |
NT | 13.7 a | 3.5 a | 98.3 a | 28,310 a | 12.4 a | 4.7 a | 97.2 a | 24,544 a | |
Fruity aroma | T | 12.7 a | 2.4 a | 99.9 a | 18,863 a | 12.9 a | 2.5 a | 98.4 a | 24,905 a |
NT | 13.1 a | 2.3 a | 99.5 a | 26,328 a | 13.4 a | 2.0 a | 96.6 a | 29,358 a |
Astringency | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Wine | PROP Phenotype | Wine Type | Fruity Wine | Woody Wine | ||||||
I max | T max | T ext | AUC | I max | T max | T ext | AUC | |||
T | CRW | 13.3 a | 4.8 a | 100.9 a | 28,796 a | 15.4 a | 9.2 a | 105.6 a | 35,749 a | |
Red | GTRW | 13.6 a | 2.1 b | 99.0 a | 31,371 a | 13.4 a | 3.4 a | 104.1 a | 33,543 a | |
MRW | 13.9 a | 1.9 b | 107.0 a | 36,046 a | 13.8 a | 1.6 a | 104.3 a | 35,410 a | ||
ERW | 13.9 a | 1.9 b | 106.3 a | 38,261 a | 13.8 a | 2.9 a | 104.1 a | 33,643 a | ||
NT | CRW | 14.0 a | 2.6 a | 91.7 a | 24,492 a | 13.9 a | 1.8 a | 90.6 a | 28,702 a | |
GTRW | 14.0 a | 1.7 b | 101.3 a | 31,903 a | 14.0 a | 2.1 a | 95.9 a | 25,510 a | ||
MRW | 12.9 a | 1.6 b | 88.7 a | 21,175 a | 13.8 a | 1.8 a | 96.6 a | 30,489 a | ||
ERW | 13.8 a | 1.8 b | 91.6 a | 28,957 a | 14.0 a | 1.4 a | 93.9 a | 28,467 a | ||
T | CWW | 9.0 b | 4.8 a | 82.4 a | 16,442 a | 12.1 a | 5.8 a | 89.2 a | 20,387 a | |
White | GTWW | 10.4 ab | 6.5 a | 83.7 a | 18,909 a | 13.7 a | 2.2 a | 96.2 a | 25,089 a | |
MWW | 12.4 a | 2.7 a | 101.1 a | 23,279 a | 11.2 a | 5.8 a | 86.3 a | 19,368 a | ||
EWW | 11.7 ab | 2.3 a | 95.3 a | 22,635 a | 10.2 a | 6.9 a | 92.9 a | 23,854 a | ||
NT | CWW | 12.0 a | 3.5 a | 72.0 a | 17,265 a | 12.8 a | 4.9 a | 81.0 a | 18,607 a | |
GTWW | 11.7 a | 2.4 a | 77.7 a | 21,779 a | 16.6 a | 6.8 a | 93.6 a | 22,720 a | ||
MWW | 13.3 a | 1.9 a | 88.6 a | 22,720 a | 12.7 a | 2.3 a | 65.0 a | 14,221 a | ||
EWW | 15.2 a | 1.9 a | 83.2 a | 22,955 a | 12.7 a | 2.5 a | 82.8 a | 22,904 a |
Retronasal Aroma | |||||||||
---|---|---|---|---|---|---|---|---|---|
Wine | Wine Type | Fruity Aroma | Woody Aroma | ||||||
I max | T max | T ext | AUC | I max | T max | T ext | AUC | ||
CRW | 13.1 a | 2.5 a | 100.5a | 27,967 a | 13.3 a | 2.1 a | 99.6 a | 27,354 a | |
Red | GTRW | 13.4 a | 1.8 b | 101.0 a | 28,541 a | 13.1 a | 2.1 a | 100.2 a | 28,167 a |
MRW | 13.0 a | 1.7 b | 100 a | 2772 a | 13.6 a | 1.6 a | 97.8 a | 29,526 a | |
ERW | 12.1 a | 1.7 b | 100 a | 26,411 a | 13.4 a | 1.7 a | 100.7 a | 28,336 a | |
CWW | 13.1 a | 2.9 a | 90.5 a | 25,537 a | 12.9 a | 2.9 a | 102.3 a | 25,203 ab | |
White | GTWW | 13.2 a | 2.5 ab | 98.6a | 28,214 a | 13.4 a | 2.2 a | 103.8 a | 29,886 a |
MWW | 13.2 a | 1.5 c | 101.2 a | 26,889 a | 11.93 a | 2.9 a | 9.0 a | 20,467 b | |
EWW | 13.8 a | 1.8 bc | 99.3 a | 27,939 a | 12.0 a | 3.1 a | 91.9 a | 20,999 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velázquez-Martínez, R.I.; Criado, C.; Muñoz-González, C.; Crespo, J.; Pozo-Bayón, M.Á. Evaluation of the Long-Lasting Flavour Perception after the Consumption of Wines Treated with Different Types of Oenological Additives Considering Individual 6-n-Propylthiouracil Taster Status. Foods 2023, 12, 2835. https://doi.org/10.3390/foods12152835
Velázquez-Martínez RI, Criado C, Muñoz-González C, Crespo J, Pozo-Bayón MÁ. Evaluation of the Long-Lasting Flavour Perception after the Consumption of Wines Treated with Different Types of Oenological Additives Considering Individual 6-n-Propylthiouracil Taster Status. Foods. 2023; 12(15):2835. https://doi.org/10.3390/foods12152835
Chicago/Turabian StyleVelázquez-Martínez, Rafael I., Celia Criado, Carolina Muñoz-González, Julia Crespo, and María Ángeles Pozo-Bayón. 2023. "Evaluation of the Long-Lasting Flavour Perception after the Consumption of Wines Treated with Different Types of Oenological Additives Considering Individual 6-n-Propylthiouracil Taster Status" Foods 12, no. 15: 2835. https://doi.org/10.3390/foods12152835