Black Queens of Fruits: Chemical Composition of Blackberry (Rubus subg. rubus Watson) and Black Currant (Ribes nigrum L.) Cultivars Selected in Serbia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Meteorological Data and Soil Characteristics
2.3. Determination of Productivity and Fruit Quality Parameters
2.4. Determination of Sugars and Organic Acids
2.5. Determination of Phenolic Compounds
2.6. Determinations of Sugars, Organic Acids, and Anthocyanins Content during Long-Term Frozen Storage
2.7. Statistical Analysis
3. Results and Discussion
3.1. Productivity and Basic Fruit Quality Parameters
3.2. Primary Metabolites: Sugars and Organic Acids
3.3. Secondary Metabolites: Phenolic Compounds
3.3.1. Phenolic Acids
3.3.2. Flavanols
3.3.3. Flavonols
3.3.4. Anthocyanins
3.4. Total Sugars, Organic Acids and Anthocyanins Content during Long-Term Frozen Storage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mikulic-Petkovsek, M.; Slatnar, A.; Stampar, F.; Veberic, R. HPLC-MSn identification and quantification of flavonol glycosides in 28 wild and cultivated berry species. Food Chem. 2012, 135, 2138–2146. [Google Scholar] [CrossRef] [PubMed]
- Nikolić, M.; Milivojević., J. Berry Fruit–Technology of Fruit Growing; Faculty of Agriculture: Belgrade, Serbia, 2015; pp. 313–470. [Google Scholar]
- Zuman, D.; Chun, C.; Xiong, F. Digestive Property and bioactivity of blackberry polysaccharides with different molecular weights. J. Agric. Food Chem. 2019, 67, 12428–12440. [Google Scholar] [CrossRef]
- Hirsch, G.E.; Facco, E.M.P.; Rodrigues, D.B.; Vizzotto, M.; Emanuelli, T. Physicochemical characterization of blackberry from the Southern Region of Brazil. Ciência Rural 2012, 42, 942–947. [Google Scholar] [CrossRef] [Green Version]
- Brennan, R.; Graham, J. Improving Fruit Quality in Rubus and Ribes through breeding. Funct. Plant Sci. Biotech. 2009, 3, 22–29. [Google Scholar]
- Karjalainen, R.; Anttonen, M.; Saviranta, N.; Stewart, D.; McDougall, G.; Hilz, H.; Mattila, P.; Törrönen, R. A Review on bioactive compounds in black currants (Ribes nigrum L.) and their potential health-promoting properties. In Proceedings of the II International Symposium on Biotechnology of Fruit Species: BIOTECHFRUIT, Nelson, New Zeland, 25–29 March 2012; International Society for Horticultural Sciences: Leuven, Belgium, 2014; Volume 839, pp. 301–307. [Google Scholar]
- Strik, B.C.; Clark, J.R.; Finn, C.E.; Banados, M.P. Blackberry cultivation in the world. Rev. Bras. Frutic. 2014, 6, 46–57. [Google Scholar] [CrossRef] [Green Version]
- Clark, J.R.; Finn, C.E. Blackberry breeding and genetics. Plant Breed. Rev. 2007, 29, 19. [Google Scholar]
- Stanisavljević, M.; Tešović, Ž.; Pavlović, K. New small fruit cultivars from Cacak: 2. The new black currant (Ribes nigrum L.) cultivar ‘Čačanska Crna’. Acta Hortic. 1999, 505, 297–302. [Google Scholar] [CrossRef]
- Djordjevic, B.; Savikin, K.; Zdunic, G.; Jankovic, T.; Vulic, T.; Oparnica, C.; Radivojevic, D. Biochemical properties of red currant varieties in relation to storage. Plant Foods Hum. Nutr. 2010, 65, 326–332. [Google Scholar] [CrossRef]
- Milivojevic, J.; Slatnar, A.; Mikulic-Petkovsek, M.; Stampar, F.; Nikolic, M.; Veberic, R. The influence of early yield on the accumulation of major taste and health-related compounds in black and red currant cultivars (Ribes spp.). J. Agric. Food Chem. 2012, 60, 2682–2691. [Google Scholar] [CrossRef]
- Tabart, J.; Kevers, C.; Pincemail, J.; Defraigne, J.O.; Dommes, J. Antioxidant capacity of black currant varies with organ, season, and cultivar. J. Agric. Food Chem. 2006, 54, 6271–6276. [Google Scholar] [CrossRef]
- Zhao, Y. Berry Fruit: Value-Added Products for Health Promotion; CRC Press: Boca Raton, FL, USA, 2007; pp. 1–464. [Google Scholar]
- Uddin, M.S.; Hawlader, M.N.A.; Ding, L.; Mujumdar, A.S. Degradation of ascorbic acid in dried guava during storage. J. Food Eng. 2002, 51, 21–26. [Google Scholar] [CrossRef]
- Milošević, T.; Milošević, N.; Mladenović, J. Soluble solids, acidity, phenolic content and antioxidant capacity of fruits and berries cultivated in Serbia. Fruits 2016, 71, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Stanisavljević, M. New small fruit cultivars from Čačak: 1. The new blackberry (Rubus sp.) cultivar ‘Čačanska Bestrna’. Acta Hortic. 1999, 505, 291–296. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Koron, D.; Zorenc, Z.; Veberic, R. Do optimally ripe blackberries contain the highest levels of metabolites? Food Chem. 2017, 215, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Mikulic-Petkovsek, M.; Hudina, M.; Zorenc, Z.; Koron, D.; Senica, M. Composition of fully ripe blackberries harvested at different times. Foods 2021, 10, 1581. [Google Scholar] [CrossRef]
- Zdunić, G.; Šavikin, K.; Pljevljakušić, D.; Djordjević, B. Black (Ribes nigrum L.) and red currant (Ribes rubrum L.) cultivars. In Nutritional Composition of Fruit Cultivars; Monique, S.J., Preedy, S., Preedy, V., Eds.; Academic Press Elsevier: Cambridge, MA, USA, 2016; pp. 101–126. [Google Scholar] [CrossRef] [Green Version]
- Karaklajić-Stajić, Ž.; Nikolić, M.; Tomić, J.; Miletić, R.; Pešaković, M. Influence of ripeness stage on the rate of pigment degradation in blackberry fruits during frozen storage. Eur. J. Hortic. Sci. 2017, 82, 198–203. [Google Scholar] [CrossRef]
- Laaksonen, O.; Knaapila, A.; Niva, T.; Deegan, K.C.; Sandell, M. Sensory properties and consumer characteristics contributing to liking of berries. Food Qual. Prefer. 2016, 53, 117–126. [Google Scholar] [CrossRef]
- Jakopic, J.; Zupan, A.; Schmitzer, V.; Štampar, F.; Veberič, R. Sugar and phenolics level dependent on the position of apple fruitlet in the cluster. Sci. Hortic. 2016, 201, 362–369. [Google Scholar] [CrossRef]
- Milivojević, J.; Maksimović, V.; Nikolić, M.; Bogdanović, J.; Maletić, R.; Milatović, D. Chemical and antioxidant properties of cultivated and wild Fragaria and Rubus berries. J. Food Qual. 2011, 34, 1–9. [Google Scholar] [CrossRef]
- Mišan, A.C.; Mimica-Dukic, N.M.; Mandic, A.I.; Sakac, M.B.; Milovanovic, I.L.; Sedej, I.J. Development of a rapid resolution HPLC method for the separation and determination of 17 phenolic compounds in crude plantextracts. Cent. Eur. J. Chem. 2011, 9, 133–142. [Google Scholar] [CrossRef]
- Milošević, T.; Milošević, N.; Glišić, I.; Mladenović, J. Fruit quality attributes of blackberry grown under limited envronmental conditions. Plant Soil Environ. 2012, 58, 322–327. [Google Scholar] [CrossRef] [Green Version]
- Crisosto, C.H.; Garner, D.; Crisosto, G.M.; Bowerman, E. Increasing ‘Blackamber’ plum (Prunus salicina Lindley) consumer acceptance. Postharvest Biol. Technol. 2004, 34, 237–244. [Google Scholar] [CrossRef]
- Milivojević, J. Pomological and Antioxidant Properties of Small Berry Fruits. Ph.D. Thesis, University of Belgrade, Belgrade, Serbia, 2008. [Google Scholar]
- Đordjević, S.B. Production, Nutritional and Anti-Oxidative Properties of Currant Cultivars (Ribes cv.). Ph.D. Thesis, University of Belgrade, Belgrade, Serbia, 2012. [Google Scholar]
- Stanisavljević, M.; Rakićević, M.; Mitrović, O.; Gavrilović-Damnjanović, J. Biological-pomological properties of some blackcurrant cultivars and selections. Acta Hortic. 2002, 585, 231–235. [Google Scholar] [CrossRef]
- Karaklajic-Stajic, Ž. Effect of Rain-Shield Cultivation System on Biological and Production Characteristics and Fruit Quality of Blackberry cv. Čačanska Bestrna (Rubus subg. Rubus Watson). Ph.D. Thesis, University of Belgrade, Belgrade, Serbia, 2015. [Google Scholar]
- Milivojević, J. Berry Fruits; Univerity of Belgrade: Beograd, Serbia, 2022; pp. 251–335. [Google Scholar]
- Ho, L.C. Fruit growth and sink strength. In Fruit and Seed Production; Marshall, C., Grace, J., Eds.; Syndicate of the University of Cambridge: Cambridge, UK, 1992; pp. 101–125. [Google Scholar]
- Shepherd, T. Flavour development in ripening fruit. In Fruit Development and Seed Dispersal; Herman, A.J., During, M., Maarten, J., Christenhusz, M., Joysey, K.S., Eds.; Springer: Dordrecht, The Netherlands, 1993; pp. 367–390. [Google Scholar]
- Talcott, S.T. Chemical components of berry fruits. In Berry Fruit: Value-Added Products for Health Promotion; Zhao, Y., Ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 51–68. [Google Scholar]
- Cordenunsi, B.R.; Oliveira do Nascimento, J.R.; Genovese, M.I.; Lajolo, F.M. Influence of cultivar on quality parameters and chemical composition of strawberry fruits grown in Brazil. J. Agric. Food Chem. 2002, 50, 2581–2586. [Google Scholar] [CrossRef]
- Veberic, R.; Stampar, F.; Schmitzer, V.; Cunja, V.; Zupan, A.; Koron, D.; Mikulic-Petkovsek, M. Changes in the contents of anthocyanins and other compounds in blackberry fruits due to freezing and long-term frozen storage. J. Agric. Food Chem. 2014, 62, 6926–6935. [Google Scholar] [CrossRef] [PubMed]
- Colaric, M.; Veberic, R.; Stampar, F.; Hudina, M. Evaluation of peach and nectarine fruit quality and correlations between sensory and chemical attributes. J. Sci. Food Agric. 2005, 85, 2611–2616. [Google Scholar] [CrossRef]
- Kaume, L.; Howard, L.R.; Devareddy, L. The blackberry fruit: A review on its composition and chemistry, metabolism and bioavailability, and health benefits. J. Agric. Food Chem. 2012, 60, 5716–5727. [Google Scholar] [CrossRef]
- Zheng, J.; Yang, B.; Tu, Y. Fruit bioactive phenolics and their roles in human health. In Bioactive Food as Dietary Interventions for Diabetes; Watson, A., Preedy, V.R., Patel, V.B., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 205–238. [Google Scholar]
- Kim, D.O.; Chum, O.K.; Kim, Y.J.; Moon, H.Y.; Lee, C.Y. Quantification of polyphenolics and their antioxidant capacity in fresh plums. J. Agric. Food Chem. 2003, 51, 6509–6515. [Google Scholar] [CrossRef]
- Olas, B. Berry phenolic antioxidants–implications for human health? Front. Pharmacol. 2018, 9, 78. [Google Scholar] [CrossRef] [PubMed]
- Thurow, T. Effect of Chlorogenic Acid and Neochlorogenic Acid on Human Colon Cancer Cells. Ph.D. Thesis, University of Arkansas, Fayetteville, AR, USA, 2012. [Google Scholar]
- Poledica, M.M.; Milivojevic, J.M.; Radivojevic, D.D.; Maksimovic, J.J.D. Prohexadione-Ca and young cane removal treatments control growth, productivity, and fruit quality of the Willamette raspberry. Turk. J. Agric. For. 2012, 36, 680–687. [Google Scholar] [CrossRef]
- Schuster, B.; Herrmann, K. Hydroxybenzoic and hydroxycinnamic acid derivatives in soft fruits. Phytochem. Anal. 1985, 24, 2761–2764. [Google Scholar] [CrossRef]
- Zhao, Z.; Mohammed, H.; Moghadasian, M.H. Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: A review. Food Chem. 2008, 109, 691–702. [Google Scholar] [CrossRef]
- Gavrilova, V.; Kajdžanoska, M.; Gjamovski, V.; Stefova, M. Separation, characterization and quantification of phenolic compounds in blueberries and red and black currants by HPLC-DAD-ESI-MSn. J. Agric. Food Chem. 2011, 59, 4009–4018. [Google Scholar] [CrossRef]
- Rai, D.K.; Tzima, K. A review on chromatography-mass spectrometry applications on anthocyanin and ellagitannin metabolites of blackberries and raspberries. Foods 2021, 10, 2150. [Google Scholar] [CrossRef] [PubMed]
- Ríos, J.L.; Giner, R.M.; Marin, M.; Carmen Recio, M.A. Pharmacological update of ellagic acid. Planta Medica 2018, 84, 1068–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrawal, O.D.; Kulkarni, Y. Mini-review of analytical methods used in quantification of ellagic acid. Rev. Anal. Chem. 2020, 39, 31–44. [Google Scholar] [CrossRef]
- Sellapan, S.; Akoh, C.C.; Krewer, G. Phenolic compounds and antioxidant capacity of Georgia-Grown blueberries and blackberries. J. Agric. Food Chem. 2002, 50, 2432–2438. [Google Scholar] [CrossRef]
- Crozier, A.; Yokota, T.; Jaganath, I.B.; Marks, S.; Saltmarsh, M.; Clifford, M.N. Secondary metabolites as dietary components in plant-based foods and beverages. In Blackwell in Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet; Crozier, A., Clifford, M.N., Ashihara, H., Eds.; Blackwell Publishing: Oxford, UK, 2006; pp. 208–302. [Google Scholar]
- Siriwoharn, T.; Wrolstad, R.E. Polyphenolic composition of Marion and Evergreen blackberries. J. Food Sci. 2004, 69, 233240. [Google Scholar] [CrossRef]
- Sultana, B.; Anwar, F. Flavonols (kaempeferol, quercetin, myricetin) contents of selected fruits, vegetables and medicinal plants. Food Chem. 2008, 108, 879–884. [Google Scholar] [CrossRef]
- Kolniak-Ostek, J.; Kucharska, A.Z.; Sokόl-Letowska, A.; Fecka, I. Characterization of phenolic compounds of thorny and thornless. J. Agric. Food Chem. 2015, 63, 3012–3021. [Google Scholar] [CrossRef]
- Karaagac, H.E.; Şahan, Y. Comparison of phenolics, antioxidant capacity and total phenol bioaccessibility of Ribes spp. Grown in Turkey. Food Sci. Technol. 2020, 40, 512–520. [Google Scholar] [CrossRef]
- Lavefve, L.; Howard, L.R.; Carbonero, F. Berry polyphenols metabolism and impact on human gut microbiota and health. Food Funct. 2020, 11, 45–65. [Google Scholar] [CrossRef] [PubMed]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, J.; Patel, J.D.; Mumper, R.J. Characterization of blackberry extract and its antiproliferative and anti-inflammatory properties. J. Med. Food 2007, 10, 258–265. [Google Scholar] [CrossRef]
- Tan, L.; Wang, J.; Tanizaki, Y.; Huang, Y.; Zhang, X.; Zhao, W.; Jiang, T. Frontotemporal dementia-related Nonsense mutation in the CHMP2B gene affects aggregation and trafficking of the endosomal sortin nexin 1 receptor. J. Biol. Chem. 2020, 295, 9530–9543. [Google Scholar]
- Rickman, J.C.; Barrett, D.M.; Bruhn, C.M. Nutritional comparison of fresh, frozen and canned fruits and vegetables. Part 1. Vitamins C and B and phenolic compounds. J. Sci. Food Agric. 2007, 87, 930–944. [Google Scholar] [CrossRef]
- Bhardwaj, R.L.; Pandey, S. Juice blends—A way of utilization of under-utilized fruits, vegetables, and spices: A review. Crit. Rev. Food Sci. Nutr. 2011, 51, 563–570. [Google Scholar] [CrossRef]
- Dawson, P.; Al-Jeddawi, W.; Rieck, J. The effect of different freezing rates and long-term storage temperatures on the stability of sliced peaches. Int. J. Food Sci. 2020, 9178583. [Google Scholar] [CrossRef]
- Hager, T.J.; Howard, L.R.; Liyanage, R.; Lay, J.O.; Prior, R.L. Ellagitannin composition of blackberry as determined by HPLC-ESI-MS and MALDI-TOF-MS. J. Agric. Food Chem. 2008, 56, 661–669. [Google Scholar] [CrossRef]
- Oancea, S.; Oprean, L. Anthocyanins, from biosynthesis in plants to human health benefits. Acta Univ. Cinbinesis Ser. E Food Technol. 2011, 15, 3–16. [Google Scholar]
- Asami, D.K.; Hong, Y.J.; Barrett, D.M.; Mitchell, A.E. Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. J. Agric. Food Chem. 2003, 51, 1237–1241. [Google Scholar] [CrossRef] [PubMed]
Blackberry ‘Čačanska Bestrna’ | Black Currant ‘Čačanska Crna’ | |
---|---|---|
Origin | ‘Dirksen Thornless’ × ‘Black Satin’ | Open fertilization of ‘Malling Jet’ |
Harvest time | Mid early (the second ten-day period of July to the third ten-day period of August) | Mid early (during the second and third ten-day period of June) |
Fruit size | Large | Medium |
Purpose | Combined traits (fresh consumption, freezing, and processing) |
Parameters | Blackberry ‘Čačanska Bestrna’ | Black Currant ‘Čačanska Crna’ | |
---|---|---|---|
Fruit weight (g) | 8.20 ± 1.29 | 1.05 ± 0.02 | * |
Soluble solids content (°Bx) | 9.40 ± 1.19 | 15.23 ± 0.13 | * |
Yield per bush (kg) | 8.01 ± 0.12 | 3.50 ± 0.35 | * |
Yield per unit area (t ha−1) | 17.80 ± 0.26 | 7.78 ± 0.77 | * |
Compound | ‘Čačanska Bestrna’ Blackberry | ‘Čačanska Crna’ Black Currant | |
---|---|---|---|
Fructose | 28.65 ± 8.80 | 49.95 ± 1.32 | * |
Glucose | 24.01 ± 7.49 | 38.86 ± 1.19 | * |
Sucrose | 1.05 ± 0.56 | 4.25 ± 1.46 | * |
Total sugars | 53.71 ± 16.82 | 93.06 ± 3.17 | * |
Citric acid | 6.39 ± 0.75 | 24.16 ± 1.10 | * |
Malic acid | 3.00 ± 0.27 | 3.68 ± 0.21 | * |
Quinic acid | 5.14 ± 0.33 | 6.26 ± 0.62 | * |
Shikimic acid | 0.03 ± 0.00 | 0.24 ± 0.01 | * |
Fumaric acid | 0.01 ± 0.00 | 0.01 ± 0.00 | * |
Total organic acids | 15.75 ± 0.83 | 34.35 ± 1.58 | * |
Sugars/acid ratio | 3.39 ± 0.95 | 2.77 ± 0.10 | ns |
Sweetness index | 91.32 ± 28.44 | 159.48 ± 4.79 | * |
Maturity index | 0.60 ± 0.17 | 0.44 ± 0.02 | ns |
Compounds | Blackberry ‘Čačanska Bestrna’ | Blackcurrant ‘Čačanska Crna’ | |
---|---|---|---|
I Phenolic acids | |||
Hydroxycinnamic acids | |||
1. 3-p-coumaroylquinic acid | 0.06 ± 0.02 | n.d. | |
2. neochlorogenic acid | 59.28 ± 23.81 | n.d. | |
3. caffeic acid hexoside 1 | 1.48 ± 0.60 | 6.21 ± 3.08 | |
4. caffeic acid hexoside 2 | 3.30 ± 1.37 | n.d. | |
5. p-coumaric acid hexoside 1 | 0.92 ± 0.37 | n.d. | |
6. p-coumaric acid hexoside 2 | 0.10 ± 0.04 | n.d. | |
7. cryptochlorogenic acid | 0.81 ± 0.26 | n.d. | |
8. ferulic acid hexoside | n.d. | 0.27 ± 0.18 | |
Hydroxybenzoic acids | |||
9. ellagic acid pentoside 1 | 0.17 ± 0.10 | n.d. | |
10. ellagic acid pentoside 2 | 0.14 ± 0.04 | n.d. | |
11. methylellagic acid pentoside 1 | 0.50 ± 0.06 | n.d. | |
12. methylellagic acid pentoside 2 | 0.09 ± 0.06 | n.d. | |
13. ellagic acid-deoxyhexoside | n.d. | 10.62 ± 4.64 | |
Total phenolic acids | 66.85 ± 2.68 | 17.10 ± 1.44 | * |
II Flavanols | |||
14. catechin | 2.91 ± 3.26 | n.d. | |
15. epicatechin | 2.72 ± 2.14 | n.d. | |
16. procyanidin dimer 1 | 26.52 ± 10.98 | n.d. | |
17. procyanidin trimer 1 | 6.85 ± 5.44 | n.d. | |
18. procyanidin trimer 2 | 7.05 ± 2.77 | n.d. | |
19. procyanidin trimer 3 | 7.94 ± 3.23 | n.d. | |
Total flavanols | 53.99 ± 3.52 | n.d. | |
III Flavonols | |||
20. quercetin-3-rutinoside | 0.20 ± 0.10 | 2.05 ± 0.84 | * |
21. isorhamnetin-3-glucuronide | 0.21 ± 0.11 | n.d. | |
22. quercetin-3-galactoside | 0.61 ± 0.30 | 0.23 ± 0.07 | * |
23. quercetin-3-glucoside | 0.23 ± 0.18 | 0.61 ± 0.28 | ns |
24. quercetin-3-xyloside | 0.06 ± 0.02 | n.d. | |
25.quercetin-3-(6″-(hydroxyl-3-methylglutaroyl)-hexoside | 1.47 ± 0.62 | n.d. | |
26. quercetin-3-malonyl-glucoside | n.d. | 0.17 ± 0.06 | |
27. quercetin-3-glucuronide | 0.24 ± 0.23 | n.d. | |
28. quercetin-3-arabinopyranoside | 0.02 ± 0.01 | n.d. | |
29. kaempferol hexoside | 0.06 ± 0.05 | n.d. | |
30. kaempferol-3-glucoside | n.d. | 0.53 ± 0.23 | |
31. kaempferol-3-rutinoside | n.d. | 0.09 ± 0.04 | |
32. quercetin-3-arabinofuranoside | 0.20 ± 0.17 | n.d. | |
33. quercetin-acetylhexoside | 0.64 ± 0.54 | n.d. | |
34. myricetin-3-rhamnoside | n.d. | 1.88 ± 0.81 | |
35. myricetin-3-glucoside | n.d. | 2.12 ± 1.01 | |
36. myricetin-3-rutinoside | n.d. | 0.89 ± 0.42 | |
Total flavonols | 3.94 ± 0.18 | 8.57 ± 0.40 | * |
IV Anthocyanins | |||
37. cyanidin-3-rutinoside | 4.89 ± 1.71 | 23.50 ± 12.09 | * |
38. cyanidin-3-glucoside | 81.50 ± 28.46 | 14.19 ± 7.24 | * |
39. cyanidin-3-arabinoside | 0.49 ± 0.19 | n.d. | |
40. pelargonidin-3-glucoside | 3.18 ± 1.42 | n.d. | |
41. pelargonidin-3-rutinoside | 0.23 ± 0.10 | n.d. | |
42. cyanidin-3-xyloside | 2.20 ± 2.79 | n.d. | |
43. cyanidin-3-(6″-malonylglucoside) | 1.64 ± 0.68 | n.d. | |
44. cyanidin-3-(6″-dioxalylglucoside) | 7.80 ± 3.25 | n.d. | |
45. delphinidin-3-glucoside | n.d. | 38.33 ± 24.72 | |
46. delphinidin-3-rutinoside | n.d. | 59.17 ± 28.30 | |
47. petunidin-3-rutinoside | n.d. | 3.92 ± 2.10 | |
Total anthocyanins | 101.93 ± 73.96 | 139.11 ± 32.93 | ns |
TOTAL PHENOLICS | 226.71 ± 20.09 | 164.78 ± 54.93 | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karaklajic-Stajic, Z.; Tomic, J.; Pesakovic, M.; Paunovic, S.M.; Stampar, F.; Mikulic-Petkovsek, M.; Grohar, M.C.; Hudina, M.; Jakopic, J. Black Queens of Fruits: Chemical Composition of Blackberry (Rubus subg. rubus Watson) and Black Currant (Ribes nigrum L.) Cultivars Selected in Serbia. Foods 2023, 12, 2775. https://doi.org/10.3390/foods12142775
Karaklajic-Stajic Z, Tomic J, Pesakovic M, Paunovic SM, Stampar F, Mikulic-Petkovsek M, Grohar MC, Hudina M, Jakopic J. Black Queens of Fruits: Chemical Composition of Blackberry (Rubus subg. rubus Watson) and Black Currant (Ribes nigrum L.) Cultivars Selected in Serbia. Foods. 2023; 12(14):2775. https://doi.org/10.3390/foods12142775
Chicago/Turabian StyleKaraklajic-Stajic, Zaklina, Jelena Tomic, Marijana Pesakovic, Svetlana M. Paunovic, Franci Stampar, Maja Mikulic-Petkovsek, Mariana C. Grohar, Metka Hudina, and Jerneja Jakopic. 2023. "Black Queens of Fruits: Chemical Composition of Blackberry (Rubus subg. rubus Watson) and Black Currant (Ribes nigrum L.) Cultivars Selected in Serbia" Foods 12, no. 14: 2775. https://doi.org/10.3390/foods12142775
APA StyleKaraklajic-Stajic, Z., Tomic, J., Pesakovic, M., Paunovic, S. M., Stampar, F., Mikulic-Petkovsek, M., Grohar, M. C., Hudina, M., & Jakopic, J. (2023). Black Queens of Fruits: Chemical Composition of Blackberry (Rubus subg. rubus Watson) and Black Currant (Ribes nigrum L.) Cultivars Selected in Serbia. Foods, 12(14), 2775. https://doi.org/10.3390/foods12142775