Effect of Potassium Permanganate, Ultraviolet Radiation and Titanium Oxide as Ethylene Scavengers on Preservation of Postharvest Quality and Sensory Attributes of Broccoli Stored with Tomatoes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Experimental Design
2.3. Physicochemical Variables
2.4. Descriptive Sensory Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Ethylene
3.2. Physicochemical Variables
3.3. Sensory Analysis
3.4. Principal Component Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hegnsholt, E.; Unnikrishnan, S.; Pollmann-Larsen, M.; Askelsdottir, B.; Gerard, M. Tackling the 1.6-Billion-Ton Food Loss and Waste Crisis. Boston Consult. Group 2018. Available online: https://www.bcg.com/publications/2018/tackling-1.6-billion-ton-food-loss-and-waste-crisis (accessed on 5 April 2023).
- Shabir, I.; Dash, K.K.; Dar, A.H.; Pandey, V.K.; Fayaz, U.; Srivastava, S.; Nisha, R. Carbon footprints evaluation for sustainable food processing system development: A comprehensive review. Future Foods 2023, 7, 100215. [Google Scholar] [CrossRef]
- Francisco, M.; Tortosa, M.; Martínez-Ballesta, M.C.; Velasco, P.; García-Viguera, C.; Moreno, D.A. Nutritional and phytochemical value of Brassica crops from the agri-food perspective. Ann. Appl. Biol. 2017, 170, 273–285. [Google Scholar] [CrossRef]
- Conversa, G.; Lazzizera, C.; Bonasia, A.; Elia, A. Harvest season and genotype affect head quality and shelf-life of ready-to-use broccoli. Agronomy 2020, 10, 527. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Salinas, R.; López-Miranda, S.; Pérez-López, A.J.; Noguera-Artiaga, L.; Carbonell-Barrachina, A.; Núnez-Delicado, E.; Acosta-Motos, J.R. Novel combination of ethylene oxidisers to delay losses on postharvest quality. volatile compounds and sensorial analysis of tomato fruit. LWT-Food Sci. Technol. 2022, 170, 114054. [Google Scholar] [CrossRef]
- Pereira-Lima, G.; Gómez-Gómez, H.; Seabra-Junior, S.; Maraschin, M.; Tecchio, M.A.; Vanz-Borges, C. Functional and nutraceutical compounds of tomatoes as affected by agronomic practices. Postharvest management and processing methods: A mini review. Front. Nutr. 2022, 9, 868492. [Google Scholar] [CrossRef]
- Asoda, T.; Terai, H.; Kato, M.; Suzuki, Y. Effects of postharvest ethanol vapor treatment on ethylene responsiveness in broccoli. Postharvest Biol. Technol. 2009, 52, 216–220. [Google Scholar] [CrossRef]
- Cai, J.; Cheng, S.; Luo, F.; Zhao, Y.; Wei, B.; Zhou, Q.; Zhou, X.; Ji, S. Influence of ethylene on morphology and pigment changes in harvested broccoli. Food Bioprocess Technol. 2019, 12, 883–897. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization). Faostat: Worldwide Tomato Production. 2020. Available online: https://www.fao.org/faostat/es/#data/QCL. (accessed on 5 April 2023).
- Jeffery, E.H.; Brown, A.F.; Kurilich, A.C.; Keck, A.S.; Matusheski, N.; Klein, B.P.; Juvik, J.A. Variation in content of bioactive components in broccoli. J. Food Compos. Anal. 2003, 16, 323–330. [Google Scholar] [CrossRef]
- Moreno, D.A.; Carvajal, M.; López-Berenguer, C.; García-Viguera, C. Chemical and biological characterisation of nutraceutical compounds of broccoli. J. Pharm. Biomed. Anal. 2006, 41, 1508–1522. [Google Scholar] [CrossRef]
- Latté, K.P.; Appel, K.E.; Lampen, A. Health benefits and possible risks of broccoli—An overview. Food Chem. Toxicol. 2011, 49, 3287–3309. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.F.; Hoffman, N.E. Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol. 1984, 35, 155–189. [Google Scholar] [CrossRef]
- Abeles, F.B.; Morgan, P.W.; Saltveit, M.E. Chapter 3—The biosynthesis of ethylene. In Ethylene in Plant Biology, 2nd ed.; Abeles, F.B., Morgan, P.W., Saltveit, M.E., Eds.; Academic Press: New York, NY, USA, 1992; pp. 26–55. [Google Scholar] [CrossRef]
- Zhao, T.; Nakano, A.; Iwasaki, Y. Differences between ethylene emission characteristics of tomato cultivars in tomato production at plant factory. J. Agric. Food Res. 2021, 5, 100181. [Google Scholar] [CrossRef]
- Ustun, H.; Dogan, A.; Peker, B.; Ural, C.; Cetin, M.; Ozyigit, Y.; Erkan, M. Determination of the relationship between respiration rate and ethylene production by fruit sizes of different tomato types. J. Sci. Food Agric. 2022, 103, 176–184. [Google Scholar] [CrossRef]
- Janjarasskul, T.; Suppakul, P. Active and intelligent packaging: The indication of quality and safety. Crit. Rev. Food Sci. Nutr. 2018, 58, 808–831. [Google Scholar] [CrossRef]
- Mansourbahmani, S.; Ghareyazie, B.; Zarinnia, V.; Kalatejari, S.; Mohammadi, R.S. Study on the efficiency of ethylene scavengers on the maintenance of postharvest quality of tomato fruit. J. Food Meas. Charact. 2018, 12, 691–701. [Google Scholar] [CrossRef]
- Alonso-Salinas, R.; Acosta-Motos, J.R.; Núnez-Delicado, E.; Gabaldón, J.A.; López-Miranda, S. Combined effect of potassium permanganate and ultraviolet light as ethylene scavengers on post-Harvest quality of peach at optimal and stressful temperatures. Agronomy 2022, 12, 616. [Google Scholar] [CrossRef]
- Bu, J.; Yu, Y.; Aisikaer, G.; Ying, T. Postharvest UV-C irradiation inhibits the production of ethylene and the activity of cell wall-degrading enzymes during softening of tomato (Lycopersicon esculentum L.) fruit. Postharvest Biol. Technol. 2013, 86, 337–345. [Google Scholar] [CrossRef]
- Mabusela, B.P.; Belay, Z.A.; Godongwana, B.; Pathak, N.; Mahajan, P.V.; Caleb, O.J. Advances in vacuum ultraviolet photolysis in the postharvest management of fruit and vegetables along the value chains: A review. Food Bioprocess Technol. 2022, 15, 28–46. [Google Scholar] [CrossRef]
- Li, W.; Liu, Z.; Li, X.; Li, X. Quality maintenance of 1-Methylcyclopropene combined with titanium dioxide photocatalytic reaction on postharvest cherry tomatoes. J. Food Process. Preserv. 2022, 46, e16500. [Google Scholar] [CrossRef]
- Alves, M.J.; Nobias, M.C.; Soares, L.S.; Coelho, D.S.; Maraschin, M.; Basso, A.; Moreira, R.F.; José, H.J.; Montero, A.R. Physiological changes in green and red cherry tomatoes after photocatalytic ethylene degradation using continuous air flux. Food Sci. Technol. Int. 2023, 29, 3–12. [Google Scholar] [CrossRef]
- Alonso-Salinas, R.; Acosta-Motos, J.R.; Pérez-López, A.J.; Noguera-Artiaga, L.; Núñez-Delicado, E.; Burló, F.; López-Miranda, S. Effect of combination of KMnO4 oxidation and UV-C radiation on postharvest quality of refrigerated pears cv. ‘Ercolini’. Horticulturae 2022, 8, 1078. [Google Scholar] [CrossRef]
- Wei, H.; Seidi, F.; Zhang, T.; Jin, Y.; Xiao, H. Ethylene scavengers for the preservation of fruits and vegetables: A review. Food Chem. 2021, 337, 127750. [Google Scholar] [CrossRef] [PubMed]
- Pathak, N.; Caleb, O.J.; Geyer, M.; Herppich, W.B.; Rauh, C.; Mahajan, P.V. Photocatalytic and photochemical oxidation of ethylene: Potential for storage of fresh produce—A review. Food Bioprocess Technol. 2017, 10, 982–1001. [Google Scholar] [CrossRef]
- Kaewklin, P.; Siripatrawan, U.; Suwanagul, A.; Lee, Y.S. Active packaging from chitosan-titanium dioxide nanocomposite film for prolonging storage life of tomato fruit. Int. J. Biol. Macromol. 2018, 112, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Jeong, G.H.; Kim, S.W. Ethylene gas decomposition using ZSM-5/WO3-Pt-nanorod composites for fruit freshness. ACS Sustain. Chem. Eng. 2019, 7, 11250–11257. [Google Scholar] [CrossRef]
- Álvarez-Hernández, M.H.; Artés-Hernández, F.; Ávalos-Belmontes, F.; Castillo-Campohermoso, M.A.; Contreras-Esquivel, J.C.; Ventura-Sobrevilla, J.M.; Martínez-Hernández, G.B. Current scenario of adsorbent materials used in ethylene scavenging systems to extend fruit and vegetable postharvest life. Food Bioprocess Technol. 2018, 11, 511–525. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, L.; Chen, Y.; Yun, L.; Liu, S.; Li, Y. Stalk length affects the mineral distribution and floret quality of broccoli (Brassica oleracea L. var. italica) heads during storage. Postharvest Biol. Technol. 2018, 145, 166–171. [Google Scholar] [CrossRef]
- Phuong, N.; Uchino, T.; Tanaka, F. Effect of packing films on the quality of broccoli. J. Fac. Agric. Kyushu Univ. 2018, 63, 339–346. [Google Scholar] [CrossRef]
- Zhang, B.; Peng, B.; Zhang, C.; Song, Z.; Ma, R. Determination of fruit maturity and its prediction model based on the pericarp index of absorbance difference (IAD) for peaches. PLoS ONE 2017, 12, e0177511. [Google Scholar] [CrossRef]
- Kidron, M.; Harel, E.; Mayer, A.M. Catechol oxidase activity in grapes and wine. Am. J. Enol. Vitic. 1978, 29, 30–35. [Google Scholar] [CrossRef]
- Noguera-Artiaga, L.; Salvador, M.D.; Fregapane, G.; Collado-González, J.; Wojdyło, A.; López-Lluch, D.; Carbonell-Barrachina, A. Functional and sensory properties of pistachio nuts as affected by cultivar. J. Sci. Food Agric. 2019, 99, 6696–6705. [Google Scholar] [CrossRef] [PubMed]
- Sammi, S.; Masud, T. Effect of different packaging systems on the quality of tomato (Lycopersicon esculentum Var. Rio Grande) fruits during storage. Int. J. Food Sci. Technol. 2009, 44, 918–926. [Google Scholar] [CrossRef]
- Pathak, N. Photocatalysis and Vacuum Ultraviolet Light Photolysis as Ethylene Removal Techniques for Potential Application in Fruit Storage; Technische Universität Berlin: Berlin, Germany, 2019. [Google Scholar]
- Gaikwad, K.K.; Singh, S.; Negi, Y.S. Ethylene scavengers for active packaging of fresh food produce. Environ. Chem. Lett. 2020, 18, 269–284. [Google Scholar] [CrossRef]
- Álvarez-Hernández, M.H.; Martínez-Hernández, G.B.; Ávalos-Belmontes, F.; Miranda-Molina, F.D.; Artés-Hernández, F. Postharvest quality retention of apricots by using a novel sepiolite–loaded potassium permanganate ethylene scavenger. Postharvest Biol. Technol. 2020, 160, 111061. [Google Scholar] [CrossRef]
- Fonseca, J.M.; Pabon, N.Y.L.; Nandi, L.G.; Valencia, G.A.; Moreira, R.F.P.M.; Monteiro, A.R. Gelatin-TiO2-coated expanded polyethylene foam nets as ethylene scavengers for fruit postharvest application. Postharvest Biol. Technol. 2021, 180, 111602. [Google Scholar] [CrossRef]
- de Chiara, M.L.; Pal, S.; Licciulli, A.; Amodio, M.L.; Colelli, G. Photocatalytic degradation of ethylene on mesoporous TiO2/SiO2 nanocomposites: Effects on the ripening of mature green tomatoes. Biosyst. Eng. 2015, 132, 61–70. [Google Scholar] [CrossRef]
- Li, X.; Meng, Z.; Malik, A.U.; Zhang, S.; Wang, Q. Maintaining the quality of postharvest broccoli by inhibiting ethylene accumulation using diacetyl. Front. Nutr. 2022, 9, 1055651. [Google Scholar] [CrossRef]
- Upadhyay, A.; Kumar, P.; Kardam, S.K.; Gaikwad, K.K. Ethylene scavenging film based on corn starch-gum acacia impregnated with sepiolite clay and its effect on quality of fresh broccoli florets. Food Biosci. 2022, 46, 101556. [Google Scholar] [CrossRef]
- Emadpour, M.; Ghareyazie, B.; Kalaj, Y.R.; Entesari, M.; Bouzari, N. Effect of the potassium permanganate coated zeolite nanoparticles on the quality characteristic and shelf life of peach and nectarine. Int. J. Agric. Technol. 2015, 11, 1411–1421. [Google Scholar]
- Tilahun, S.; Park, D.S.; Taye, A.M.; Jeong, C.S. Effect of ripening conditions on the physicochemical and antioxidant properties of tomato (Lycopersicon esculentum Mill.). Food Sci. Biotechnol. 2017, 26, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Saha, I.; Fujita, M.; Debnath, S.C.; Hazra, A.K.; Adak, M.K.; Hasanuzzaman, M. Photoactivated TiO2 nanocomposite delays the postharvest ripening phenomenon through ethylene metabolism and related physiological changes in Capsicum fruit. Plants 2022, 11, 513. [Google Scholar] [CrossRef] [PubMed]
- Willner, B.; Granvogl, M.; Schieberle, P. Characterization of the key aroma compounds in bartlett pear brandies by means of the sensomics concept. J. Agric. Food Chem. 2013, 61, 9583–9593. [Google Scholar] [CrossRef] [PubMed]
- Baky, M.H.; Shamma, S.N.; Xiao, J.; Farag, M.A. Comparative aroma and nutrients profiling in six edible versus nonedible cruciferous vegetables using MS based metabolomics. Food Chem. 2022, 383, 132374. [Google Scholar] [CrossRef] [PubMed]
Parameters | Weight (g) | SSC (%) | TA (%) | Colour |
---|---|---|---|---|
Broccoli | 468.71 ± 10 | 7.64 ± 0.7 | 1.01 ± 0.05 | a*: −4.3 ± 0.5 b*: 6.1 ± 0.8 L*: 24.3 ± 1.9 |
Tomato | 184.22 ± 4.11 | 5.06 ± 0.12 | 3.83 ± 0.10 | a*: 34.8 ± 3.1 b*: 24.2 ± 2.8 L*: 40.7 ± 4.0 |
Method | Navigator balance, Ohaus Europe Gmbh (Nänikon, Switzerland). | Pocket Brix–acidity meter, Atago (Tokyo, Japan). | Pocket Brix–acidity meter, Atago (Tokyo, Japan). | Colourpin II, Natural Color System (Stockholm, Sweden). |
Treatments | Broc-Control | Broc-Tomato | Broc-Tom + KMnO4 | Broc-Tom + KMnO4 + UV-C | Broc-Tom + KMnO4 + UV-C + TiO2 |
---|---|---|---|---|---|
Temperature | 1 °C | 1 °C | 1 °C | 1 °C | 1 °C |
Relative humidity | 90% | 90% | 90% | 90% | 90% |
Ethylene scavenger | None | None | Filter | Filter + UV-C | Filter + UV-C + TiO2 |
Treatments | Weight (%) | pH | SSC (%) | |||
Day 0 | Day 21 | Day 0 | Day 21 | Day 0 | Day 21 | |
Broc-Control | 100 | 56.01 ± 3.08 a | 6.39 ± 0.03 | 6.78 ± 0.04 c | 7.83 ± 0.33 | 9.58 ± 0.07 c |
Broc-Tomato | 39.38 ± 1.41 c | 7.12 ± 0.04 a | 11.66 ± 0.10 a | |||
Broc-Tom + KMnO4 | 45.56 ± 1.49 b | 6.95 ± 0.03 b | 10.33 ± 0.07 b | |||
Broc-Tom + KMnO4 + UV-C | 51.20 ± 2.38 a | 6.87 ± 0.01 b | 9.99 ± 0.09 b | |||
Broc-Tom + KMnO4 + UV-C + TiO2 | 64.98 ± 3.50 a | 6.82 ± 0.02 c | 10.01 ± 0.10 b | |||
F = 6.21 ** | F = 17.96 *** | F = 86.33 ** | ||||
Treatments | TA | MI | TPC | |||
Day 0 | Day 21 | Day 0 | Day 21 | Day 0 | Day 21 | |
Broc-Control | 0.93 ± 0.05 | 0.75 ± 0.02 a | 1.70 ± 0.09 | 2.58 ± 0.06 c | 36.41 ± 1.24 | 27.10 ± 0.29 a |
Broc-Tomato | 0.54 ± 0.01 b | 4.37 ± 0.08 a | 11.63 ± 1.02 c | |||
Broc-Tom + KMnO4 | 0.69 ± 0.02 a | 3.01 ± 0.10 b | 20.11 ± 1.57 b | |||
Broc-Tom + KMnO4 + UV-C | 0.71 ± 0.03 a | 2.86 ± 0.14 bc | 24.47 ± 0.78 ab | |||
Broc-Tom + KMnO4 + UV-C + TiO2 | 0.70 ± 0.02 a | 2.90 ± 0.10 bc | 27.25 ± 0.60 a | |||
F = 12.84 *** | F = 49.31 *** | F = 46.96 *** | ||||
Treatments | Chlorophyll a | Chlorophyll b | Total Chlorophyll | |||
Day 0 | Day 21 | Day 0 | Day 21 | Day 0 | Day 21 | |
Broc-Control | 2.19 ± 0.26 | 1.81 ± 0.24 a | 10.41 ± 1.13 | 11.37 ± 0.52 a | 18.62 ± 1.26 | 18.23 ± 0.38 a |
Broc-Tomato | 1.33 ± 0.21 b | 5.49 ± 0.68 d | 9.87 ± 0.62 d | |||
Broc-Tom + KMnO4 | 1.60 ± 0.13 ab | 7.22 ± 0.23 c | 12.68 ± 0.31 c | |||
Broc-Tom + KMnO4 + UV-C | 1.62 ± 0.09 ab | 8.13 ± 0.28 bc | 13.91 ± 0.36 bc | |||
Broc-Tom + KMnO4 + UV-C + TiO2 | 1.80 ± 0.12 a | 9.08 ± 0.29 b | 15.41 ± 0.22 b | |||
F = 4.84 * | F = 35.65 *** | F = 60.06 *** | ||||
Treatments | Colour a* | Colour b* | Colour L | |||
Day 0 | Day 21 | Day 0 | Day 21 | Day 0 | Day 21 | |
Broc-Control | −4.52 ± 0.23 | −8.17 ± 0.39 a | 6.26 ± 0.30 | 14.45 ± 0.52 b | 25.69 ± 0.68 | 25.63 ± 1.41 b |
Broc-Tomato | −15.26 ± 1.56 c | 24.86 ± 1.36 a | 49.63 ± 2.96 a | |||
Broc-Tom + KMnO4 | −12.69 ± 1.02 bc | 17.18 ± 0.69 b | 30.33 ± 1.22 b | |||
Broc-Tom + KMnO4 + UV-C | −10.80 ± 0.47 ab | 15.04 ± 0.94 b | 28.95 ± 0.86 b | |||
Broc-Tom + KMnO4 + UV-C + TiO2 | −8.48 ± 0.27 a | 14.61 ± 1.19 b | 26.11 ± 0.92 b | |||
F = 11.28 *** | F = 19.83 *** | F = 36.08 *** |
Parameters | F |
---|---|
MI | 320.83 *** |
SSC | 306.50 *** |
TPC | 215.00 *** |
Total chlorophyll | 132.27 *** |
TA | 70.90 *** |
Chlorophyll b | 63.29 *** |
L | 53.74 *** |
b* | 51.16 *** |
pH | 34.46 *** |
Weight | 20.29 ** |
a* | 19.43 ** |
Chlorophyll a | 2.31 n.s. |
Day 0 | Day 21 | ||||||
---|---|---|---|---|---|---|---|
Sensory Descriptor | ANOVA ‡ | Broc-Control | Broc-Control | Broc-Tomato | Broc-Tom + KMnO4 | Broc-Tom + KMnO4 + UV-C | Broc-Tom + KMnO4 + UV-C + TiO2 |
COLOR | |||||||
Green color | *** | 9.5 b | 5.5 a | 2.5 c | 8.5 b | 8.5 b | 8.5 b |
Yellow color | *** | 0.5 d | 1.5 c | 6.0 a | 2.5 b | 2.5 b | 1.5 c |
Colour homogeneity | *** | 8.6 a | 7.3 c | 5.0 d | 7.5 bc | 7.8 abc | 8.5 ab |
External broccoli ID | *** | 9.0 a | 2.7 c | 3.2 c | 6.7 b | 8.0 ab | 8.7 a |
Inflorescences (closed) | *** | 9.3 ab | 10.0 a | 6.0 d | 7.5 c | 8.7 b | 8.8 b |
ODOR | |||||||
Broccoli ID | *** | 10.0 a | 4.3 b | 1.8 b | 2.3 b | 2.8 b | 2.7 b |
Green vegetable | *** | 9.5 a | 2.6 b | 1.0 b | 2.1 b | 2.0 b | 2.0 b |
Ripe vegetable | *** | 0.3 d | 7.3 a | 5.3 b | 5.0 b | 5.8 b | 3.7 c |
Earthy | NS | 1.8 | 5.0 | 3.7 | 2.8 | 3.2 | 3.3 |
Fermented | NS | 0.0 | 1.3 | 2.0 | 0.8 | 0.7 | 1.0 |
Sulfurous | ** | 8.0 a | 4.3 ab | 3.3 b | 3.3 b | 4.0 b | 3.3 b |
FLAVOR | |||||||
Broccoli ID | *** | 9.3 a | 4.6 cd | 3.0 d | 6.5 bc | 8.0 ab | 5.8 c |
Green vegetable | *** | 9.5 a | 2.3 c | 1.5 c | 5.1 b | 6.3 b | 4.7 b |
Ripe vegetable | *** | 0.1 b | 7.6 a | 6.0 a | 4.8 ab | 3.7 ab | 4.3 ab |
Earthy | * | 0.7 b | 3.6 a | 3.5 a | 2.0 b | 1.3 b | 1.5 b |
Fermented | NS | 0.0 | 0.8 | 1.5 | 0.0 | 0.3 | 1.0 |
Sulfurous | *** | 8.0 a | 4.5 cd | 2.7 d | 5.8 bc | 6.5 ab | 5.5 bc |
Woody | NS | 0.0 | 0.8 | 1.0 | 0.0 | 0.5 | 0.0 |
Sweet | NS | 3.0 | 4.0 | 3.5 | 5.3 | 4.3 | 4.3 |
Sour | NS | 2.2 | 1.8 | 1.3 | 1.0 | 1.0 | 1.3 |
Bitter | NS | 4.0 | 3.5 | 4.1 | 2.5 | 3.0 | 3.5 |
Astringency | NS | 1.0 | 0.8 | 1.1 | 0.6 | 1.0 | 1.1 |
Aftertaste | ** | 8.3 a | 4.8 c | 4 c | 6.5 b | 5.8 b | 6.3 b |
TEXTURE | |||||||
Spicy | NS | 2.7 | 1.8 | 1.3 | 2.1 | 2.5 | 2.7 |
Hardness | ** | 9.0 a | 9.0 a | 6.7 b | 7.5 ab | 8.5 a | 9.5 a |
Crunchiness | *** | 7.1 a | 2.7 c | 2.5 c | 4.3 bc | 6.1 ab | 4.7 bc |
Chewiness | *** | 8.0 b | 9.3 a | 9.7 a | 8.1 b | 8.6 ab | 9.3 a |
Juiciness | *** | 3.0 a | 0.7 c | 0.8 bc | 2.0 abc | 2.7 ab | 1.7 abc |
Residual particles | NS | 5.0 | 6.0 | 6.5 | 6.3 | 5.5 | 6.5 |
Fibrousness | ** | 0.3 c | 2.3 b | 4.3 a | 1.8 b | 2.0 b | 2.3 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso-Salinas, R.; López-Miranda, S.; González-Báidez, A.; Pérez-López, A.J.; Noguera-Artiaga, L.; Núñez-Delicado, E.; Carbonell-Barrachina, Á.; Acosta-Motos, J.R. Effect of Potassium Permanganate, Ultraviolet Radiation and Titanium Oxide as Ethylene Scavengers on Preservation of Postharvest Quality and Sensory Attributes of Broccoli Stored with Tomatoes. Foods 2023, 12, 2418. https://doi.org/10.3390/foods12122418
Alonso-Salinas R, López-Miranda S, González-Báidez A, Pérez-López AJ, Noguera-Artiaga L, Núñez-Delicado E, Carbonell-Barrachina Á, Acosta-Motos JR. Effect of Potassium Permanganate, Ultraviolet Radiation and Titanium Oxide as Ethylene Scavengers on Preservation of Postharvest Quality and Sensory Attributes of Broccoli Stored with Tomatoes. Foods. 2023; 12(12):2418. https://doi.org/10.3390/foods12122418
Chicago/Turabian StyleAlonso-Salinas, Ramiro, Santiago López-Miranda, Ana González-Báidez, Antonio José Pérez-López, Luis Noguera-Artiaga, Estrella Núñez-Delicado, Ángel Carbonell-Barrachina, and José Ramón Acosta-Motos. 2023. "Effect of Potassium Permanganate, Ultraviolet Radiation and Titanium Oxide as Ethylene Scavengers on Preservation of Postharvest Quality and Sensory Attributes of Broccoli Stored with Tomatoes" Foods 12, no. 12: 2418. https://doi.org/10.3390/foods12122418
APA StyleAlonso-Salinas, R., López-Miranda, S., González-Báidez, A., Pérez-López, A. J., Noguera-Artiaga, L., Núñez-Delicado, E., Carbonell-Barrachina, Á., & Acosta-Motos, J. R. (2023). Effect of Potassium Permanganate, Ultraviolet Radiation and Titanium Oxide as Ethylene Scavengers on Preservation of Postharvest Quality and Sensory Attributes of Broccoli Stored with Tomatoes. Foods, 12(12), 2418. https://doi.org/10.3390/foods12122418