Subcritical and Supercritical Fluids to Valorize Industrial Fruit and Vegetable Waste
Abstract
:1. Introduction
2. Wastes Generated by the Major Food Industries
3. Subcritical and Supercritical Fluid Technology in Food Processing
4. Recovery of Bioactive Compounds
5. Extraction of Unconventional Oils
6. Utilization of Spent Material in Biorefinery and Biorefining Process
7. Economic Evaluation/Estimations and Impediments in the Valorization Process
8. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, C.; Kumar, R.; Sehgal, H.; Bhati, S.; Singhal, T.; Gayacharan, M.; Yadav, R.; Gupta, S.K.; Abdallah, N.A.; Hamwieh, A. Unclasping potentials of genomics and gene editing in chickpea to fight climate change and global hunger threat. Front. Genet. 2023, 14, 568. [Google Scholar] [CrossRef]
- Chetrariu, A.; Dabija, A. Brewer’s Spent Grains: Possibilities of Valorization, a Review. Appl. Sci.-Basel 2020, 10, 5619. [Google Scholar] [CrossRef]
- Despoudi, S.; Bucatariu, C.; Otles, S.; Kartal, C. Food waste management, valorization, and sustainability in the food industry. In Food Waste Recovery; Elsevier: Amsterdam, The Netherlands, 2021; pp. 3–19. [Google Scholar] [CrossRef]
- Ahmad, T.; Aadil, R.M.; Ahmed, H.; Rahman, U.U.; Soares, B.C.V.; Souza, S.L.Q.; Pimentel, T.C.; Scudino, H.; Guimaraes, J.T.; Esmerino, E.A.; et al. Treatment and utilization of dairy industrial waste: A review. Trends Food Sci. Technol. 2019, 88, 361–372. [Google Scholar] [CrossRef]
- Arshad, R.N.; Abdul-Malek, Z.; Roobab, U.; Ranjha, M.; Rezek Jambrak, A.; Qureshi, M.I.; Khan, N.; Manuel Lorenzo, J.; Aadil, R.M. Nonthermal food processing: A step towards a circular economy to meet the sustainable development goals. Food Chem. X 2022, 16, 100516. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Pettinato, M.; Campardelli, R.; De Marco, I.; Perego, P. High-Pressure Technologies for the Recovery of Bioactive Molecules from Agro-Industrial Waste. Appl. Sci. 2022, 12, 3642. [Google Scholar] [CrossRef]
- Waheed, M.; Yousaf, M.; Shehzad, A.; Inam-Ur-Raheem, M.; Khan, M.K.I.; Khan, M.R.; Ahmad, N.; Abdullah; Aadil, R.M. Channelling eggshell waste to valuable and utilizable products: A comprehensive review. Trends Food Sci. Technol. 2020, 106, 78–90. [Google Scholar] [CrossRef]
- Kowalska, H.; Czajkowska, K.; Cichowska, J.; Lenart, A. What’s new in biopotential of fruit and vegetable by-products applied in the food processing industry. Trends Food Sci. Technol. 2017, 67, 150–159. [Google Scholar] [CrossRef]
- Baldino, L.; Della Porta, G.; Reverchon, E. Supercritical CO2 processing strategies for pyrethrins selective extraction. J. CO2 Util. 2017, 20, 14–19. [Google Scholar] [CrossRef]
- Ferrentino, G.; Giampiccolo, S.; Morozova, K.; Haman, N.; Spilimbergo, S.; Scampicchio, M. Supercritical fluid extraction of oils from apple seeds: Process optimization, chemical characterization and comparison with a conventional solvent extraction. Innov. Food Sci. Emerg. Technol. 2020, 64, 102428. [Google Scholar] [CrossRef]
- Páramos, P.R.; Granjo, J.F.; Corazza, M.L.; Matos, H.A. Extraction of high value products from avocado waste biomass. J. Supercrit. Fluids 2020, 165, 104988. [Google Scholar] [CrossRef]
- Narváez-Cuenca, C.-E.; Inampues-Charfuelan, M.-L.; Hurtado-Benavides, A.-M.; Parada-Alfonso, F.; Vincken, J.-P. The phenolic compounds, tocopherols, and phytosterols in the edible oil of guava (Psidium guava) seeds obtained by supercritical CO2 extraction. J. Food Compos. Anal. 2020, 89, 103467. [Google Scholar] [CrossRef]
- Vladic, J.; Gavaric, A.; Jokic, S.; Pavlovic, N.; Moslavac, T.; Popovic, L.; Matias, A.; Agostinho, A.; Banozic, M.; Vidovic, S. Alternative to Conventional Edible Oil Sources: Cold Pressing and Supercritical CO2 Extraction of Plum (Prunus domestica L.) Kernel Seed. Acta Chim. Slov. 2020, 67, 778–784. [Google Scholar] [CrossRef]
- Pereira, M.G.; Maciel, G.M.; Haminiuk, C.W.I.; Bach, F.; Hamerski, F.; Scheer, A.D.; Corazza, M.L. Effect of Extraction Process on Composition, Antioxidant and Antibacterial Activity of Oil from Yellow Passion Fruit (Passiflora edulis Var. Flavicarpa) Seeds. Waste Biomass Valorization 2019, 10, 2611–2625. [Google Scholar] [CrossRef]
- de Andrade Lima, M.; Kestekoglou, I.; Charalampopoulos, D.; Chatzifragkou, A. Supercritical Fluid Extraction of Carotenoids from Vegetable Waste Matrices. Molecules 2019, 24, 466. [Google Scholar] [CrossRef] [Green Version]
- Romano, R.; Aiello, A.; Pizzolongo, F.; Rispoli, A.; De Luca, L.; Masi, P. Characterisation of oleoresins extracted from tomato waste by liquid and supercritical carbon dioxide. Int. J. Food Sci. Technol. 2020, 55, 3334–3342. [Google Scholar] [CrossRef]
- Viganó, J.; Coutinho, J.P.; Souza, D.S.; Baroni, N.A.; Godoy, H.T.; Macedo, J.A.; Martínez, J. Exploring the selectivity of supercritical CO2 to obtain nonpolar fractions of passion fruit bagasse extracts. J. Supercrit. Fluids 2016, 110, 1–10. [Google Scholar] [CrossRef]
- Borja-Martinez, M.; Lozano-Sanchez, J.; Borras-Linares, I.; Pedreno, M.A.; Sabater-Jara, A.B. Revalorization of Broccoli By-Products for Cosmetic Uses Using Supercritical Fluid Extraction. Antioxidants 2020, 9, 1195. [Google Scholar] [CrossRef] [PubMed]
- Aresta, A.; Cotugno, P.; De Vietro, N.; Massari, F.; Zambonin, C. Determination of Polyphenols and Vitamins in Wine-Making by-Products by Supercritical Fluid Extraction (SFE). Anal. Lett. 2020, 53, 2585–2595. [Google Scholar] [CrossRef]
- Ferrentino, G.; Morozova, K.; Mosibo, O.K.; Ramezani, M.; Scampicchio, M. Biorecovery of antioxidants from apple pomace by supercritical fluid extraction. J. Clean. Prod. 2018, 186, 253–261. [Google Scholar] [CrossRef]
- Misra, N.; Koubaa, M.; Roohinejad, S.; Juliano, P.; Alpas, H.; Inácio, R.S.; Saraiva, J.A.; Barba, F.J. Landmarks in the historical development of twenty first century food processing technologies. Food Res. Int. 2017, 97, 318–339. [Google Scholar] [CrossRef] [PubMed]
- Essien, S.O.; Young, B.; Baroutian, S. Recent advances in subcritical water and supercritical carbon dioxide extraction of bioactive compounds from plant materials. Trends Food Sci. Technol. 2020, 97, 156–169. [Google Scholar] [CrossRef]
- Attard, T.M.; Bukhanko, N.; Eriksson, D.; Arshadi, M.; Geladi, P.; Bergsten, U.; Budarin, V.L.; Clark, J.H.; Hunt, A.J. Supercritical extraction of waxes and lipids from biomass: A valuable first step towards an integrated biorefinery. J. Clean. Prod. 2018, 177, 684–698. [Google Scholar] [CrossRef]
- Zhou, J.J.; Gullon, B.; Wang, M.; Gullon, P.; Lorenzo, J.M.; Barba, F.J. The Application of Supercritical Fluids Technology to Recover Healthy Valuable Compounds from Marine and Agricultural Food Processing By-Products: A Review. Processes 2021, 9, 357. [Google Scholar] [CrossRef]
- Fabrowska, J.; Ibañez, E.; Łęska, B.; Herrero, M. Supercritical fluid extraction as a tool to valorize underexploited freshwater green algae. Algal Research 2016, 19, 237–245. [Google Scholar] [CrossRef]
- de Andrade Lima, M.; Andreou, R.; Charalampopoulos, D.; Chatzifragkou, A. Supercritical carbon dioxide extraction of phenolic compounds from potato (Solanum tuberosum) peels. Appl. Sci. 2021, 11, 3410. [Google Scholar] [CrossRef]
- Tyśkiewicz, K.; Konkol, M.; Rój, E. The application of supercritical fluid extraction in phenolic compounds isolation from natural plant materials. Molecules 2018, 23, 2625. [Google Scholar] [CrossRef] [Green Version]
- Uwineza, P.A.; Waśkiewicz, A. Recent advances in supercritical fluid extraction of natural bioactive compounds from natural plant materials. Molecules 2020, 25, 3847. [Google Scholar] [CrossRef]
- Ahangari, H.; King, J.W.; Ehsani, A.; Yousefi, M. Supercritical fluid extraction of seed oils–A short review of current trends. Trends Food Sci. Technol. 2021, 111, 249–260. [Google Scholar] [CrossRef]
- Yousefi, M.; Rahimi-Nasrabadi, M.; Pourmortazavi, S.M.; Wysokowski, M.; Jesionowski, T.; Ehrlich, H.; Mirsadeghi, S. Supercritical fluid extraction of essential oils. TrAC Trends Anal. Chem. 2019, 118, 182–193. [Google Scholar] [CrossRef]
- Zhuang, K.; Zhang, C.; Zhang, W.; Xu, W.; Tao, Q.; Wang, G.Z.; Wang, Y.H.; Ding, W.P. Effect of different ozone treatments on the degradation of deoxynivalenol and flour quality in Fusarium-contaminated wheat. Cyta-J. Food 2020, 18, 776–784. [Google Scholar] [CrossRef]
- Esiegwu, A.; Okonkwo, V. Growth performance and blood indices of broiler finisher birds fed enzyme-fortified (maxi grain) rice milling waste. J. Agric. Food Sci. 2018, 16, 24–32. [Google Scholar] [CrossRef]
- Shiomi, N.; Waisundara, V. Superfood and Functional Food: The Development of Superfoods and Their Roles as Medicine; BoD–Books on Demand: Norderstedt, Germany, 2017. [Google Scholar]
- Zema, D.A.; Calabro, P.S.; Folino, A.; Tamburino, V.; Zappia, G.; Zimbone, S.M. Wastewater Management in Citrus Processing Industries: An Overview of Advantages and Limits. Water 2019, 11, 2481. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, T.; Belwal, T.; Li, L.; Ramola, S.; Aadil, R.M.; Abdullah; Xu, Y.X.; Luo, Z.S. Utilization of wastewater from edible oil industry, turning waste into valuable products: A review. Trends Food Sci. Technol. 2020, 99, 21–33. [Google Scholar] [CrossRef]
- Zia, S.; Khan, M.R.; Shabbir, M.A.; Aslam Maan, A.; Khan, M.K.I.; Nadeem, M.; Khalil, A.A.; Din, A.; Aadil, R.M. An inclusive overview of advanced thermal and nonthermal extraction techniques for bioactive compounds in food and food-related matrices. Food Rev. Int. 2022, 38, 1166–1196. [Google Scholar] [CrossRef]
- Vigano, J.; Machado, A.P.D.; Martinez, J. Sub- and supercritical fluid technology applied to food waste processing. J. Supercrit. Fluids 2015, 96, 272–286. [Google Scholar] [CrossRef]
- Arshad, R.N.; Abdul-Malek, Z.; Roobab, U.; Qureshi, M.I.; Khan, N.; Ahmad, M.H.; Liu, Z.W.; Aadil, R.M. Effective valorization of food wastes and by-products through pulsed electric field: A systematic review. J. Food Process Eng. 2021, 44, e13629. [Google Scholar] [CrossRef]
- Abdualrahman, M.A.Y.; Ma, H.L.; Zhou, C.S.; Yagoub, A.E.A.; Ali, A.O.; Tahir, H.E.; Wali, A. Postharvest physicochemical properties of the pulp and seed oil from Annona squamosa L. (Gishta) fruit grown in Darfur region, Sudan. Arab. J. Chem. 2019, 12, 4514–4521. [Google Scholar] [CrossRef] [Green Version]
- Panadare, D.; Dialani, G.; Rathod, V. Extraction of volatile and non-volatile components from custard apple seed powder using supercritical CO2 extraction system and its inventory analysis. Process Biochem. 2021, 100, 224–230. [Google Scholar] [CrossRef]
- Sharma, P.C.; Gupta, A.; Issar, K. Effect of Packaging and Storage on Dried Apple Pomace and Fiber Extracted from Pomace. J. Food Process. Preserv. 2017, 41, e12913. [Google Scholar] [CrossRef]
- Makki, K.; Deehan, E.C.; Walter, J.; Backhed, F. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe 2018, 23, 705–715. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Amezquita, L.E.; Tejada-Ortigoza, V.; Serna-Saldivar, S.O.; Welti-Chanes, J. Dietary Fiber Concentrates from Fruit and Vegetable By-products: Processing, Modification, and Application as Functional Ingredients. Food Bioprocess Technol. 2018, 11, 1439–1463. [Google Scholar] [CrossRef]
- Garcia-Amezquita, L.E.; Tejada-Ortigoza, V.; Heredia-Olea, E.; Serna-Saldivar, S.O.; Welti-Chanes, J. Differences in the dietary fiber content of fruits and their by-products quantified by conventional and integrated AOAC official methodologies. J. Food Compos. Anal. 2018, 67, 77–85. [Google Scholar] [CrossRef]
- Górnaś, P.; Rudzińska, M. Seeds recovered from industry by-products of nine fruit species with a high potential utility as a source of unconventional oil for biodiesel and cosmetic and pharmaceutical sectors. Ind. Crops Prod. 2016, 83, 329–338. [Google Scholar] [CrossRef]
- de Oliveira Felipe, L.; de Oliveira, A.M.; Bicas, J.L. Bioaromas–perspectives for sustainable development. Trends Food Sci. Technol. 2017, 62, 141–153. [Google Scholar] [CrossRef]
- Andler, S.M.; Goddard, J.M. Transforming food waste: How immobilized enzymes can valorize waste streams into revenue streams. Npj Sci. Food 2018, 2, 19. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez De Luna, S.L.; Ramírez-Garza, R.; Serna Saldívar, S.O. Environmentally friendly methods for flavonoid extraction from plant material: Impact of their operating conditions on yield and antioxidant properties. Sci. World J. 2020, 2020, 6792069. [Google Scholar] [CrossRef]
- Forecast, M.D. Global Bioactive Ingredients Market Segmented by Product (Fibre, Vitamin, Probiotic, Prebiotic & Amino Acid, Carotenoids, Phytoextract, Omega 3 Fatty Acid and others), by Application (Food & Beverages, Dietary Supplements, Cosmetics, Animal Feed and Pharmaceuticals), By Sources (Plant, Animal, Microbial) and by Regional Analysis (North America, Europe, Asia Pacific, Latin America, and Middle East & Africa)—Global Industry Analysis, Size, Share, Growth, Trends, and Forecast (2020–2025), 1132. Available online: https://www.marketdataforecast.com/market-reports/global-bioactive-ingredients-market (accessed on 22 April 2023).
- Campalani, C.; Amadio, E.; Zanini, S.; Dall’Acqua, S.; Panozzo, M.; Ferrari, S.; De Nadai, G.; Francescato, S.; Selva, M.; Perosa, A. Supercritical CO2 as a green solvent for the circular economy: Extraction of fatty acids from fruit pomace. J. CO2 Util. 2020, 41, 101259. [Google Scholar] [CrossRef]
- Bello, U.; Amran, N.A.; Samsuri, S.; Ruslan, M.S.H. Kinetics, thermodynamic studies, and parametric effects of supercritical CO2 extraction of banana peel wastes. Sustain. Chem. Pharm. 2023, 31, 100912. [Google Scholar] [CrossRef]
- Ghadiri, K.; Raofie, F.; Qomi, M.; Davoodi, A. Response surface methodology for optimization of supercritical fluid extraction of orange peel essential oil. Pharm. Biomed. Res. 2020, 6, 303–312. [Google Scholar] [CrossRef]
- Campone, L.; Celano, R.; Piccinelli, A.L.; Pagano, I.; Carabetta, S.; Di Sanzo, R.; Russo, M.; Ibañez, E.; Cifuentes, A.; Rastrelli, L. Response surface methodology to optimize supercritical carbon dioxide/co-solvent extraction of brown onion skin by-product as source of nutraceutical compounds. Food Chem. 2018, 269, 495–502. [Google Scholar] [CrossRef] [Green Version]
- Kheirkhah, H.; Baroutian, S.; Quek, S.Y. Evaluation of bioactive compounds extracted from Hayward kiwifruit pomace by subcritical water extraction. Food Bioprod. Process. 2019, 115, 143–153. [Google Scholar] [CrossRef]
- Moreira, M.M.; Barroso, M.F.; Porto, J.V.; Ramalhosa, M.J.; Svarc-Gajic, J.; Estevinho, L.; Morais, S.; Delerue-Matos, C. Potential of Portuguese vine shoot wastes as natural resources of bioactive compounds. Sci. Total Environ. 2018, 634, 831–842. [Google Scholar] [CrossRef] [Green Version]
- Kayathi, A.; Chakrabarti, P.P.; Bonfim-Rocha, L.; Cardozo, L.; Jegatheesan, V. Selective extraction of polar lipids of mango kernel using Supercritical Carbon dioxide (SC-CO2) extraction: Process optimization of extract yield/phosphorous content and economic evaluation. Chemosphere 2020, 260, 127639. [Google Scholar] [CrossRef] [PubMed]
- Scaglia, B.; D’Incecco, P.; Squillace, P.; Dell’Orto, M.; De Nisi, P.; Pellegrino, L.; Botto, A.; Cavicchi, C.; Adani, F. Development of a tomato pomace biorefinery based on a CO2-supercritical extraction process for the production of a high value lycopene product, bioenergy and digestate. J. Clean. Prod. 2020, 243, 118650. [Google Scholar] [CrossRef]
- Casas, L.; Mantell, C.; Rodríguez, M.; de la Ossa, E.M.; Roldán, A.; De Ory, I.; Caro, I.; Blandino, A. Extraction of resveratrol from the pomace of Palomino fino grapes by supercritical carbon dioxide. J. Food Eng. 2010, 96, 304–308. [Google Scholar] [CrossRef]
- Chen, M.-H.; Huang, T.-C. Volatile and nonvolatile constituents and antioxidant capacity of oleoresins in three Taiwan citrus varieties as determined by supercritical fluid extraction. Molecules 2016, 21, 1735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.H. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef] [Green Version]
- Gallego, R.; Bueno, M.; Herrero, M. Sub- and supercritical fluid extraction of bioactive compounds from plants, food-by-products, seaweeds and microalgae—An update. Trac-Trends Anal. Chem. 2019, 116, 198–213. [Google Scholar] [CrossRef]
- Pimentel-Moral, S.; Borras-Linares, I.; Lozano-Sanchez, J.; Arraez-Roman, D.; Martinez-Ferez, A.; Segura-Carretero, A. Supercritical CO2 extraction of bioactive compounds from Hibiscus sabdariffa. J. Supercrit. Fluids 2019, 147, 213–221. [Google Scholar] [CrossRef]
- Kultys, E.; Kurek, M.A. Green extraction of carotenoids from fruit and vegetable byproducts: A review. Molecules 2022, 27, 518. [Google Scholar] [CrossRef]
- Koubaa, M.; Mhemdi, H.; Fages, J. Recovery of valuable components and inactivating microorganisms in the agro-food industry with ultrasound-assisted supercritical fluid technology. J. Supercrit. Fluids 2018, 134, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Wrona, O.; Rafinska, K.; Mozenski, C.; Buszewski, B. Supercritical Fluid Extraction of Bioactive Compounds from Plant Materials. J. AOAC Int. 2017, 100, 1624–1635. [Google Scholar] [CrossRef] [PubMed]
- Chakravarty, P.; Famili, A.; Nagapudi, K.; Al-Sayah, M.A. Using Supercritical Fluid Technology as a Green Alternative During the Preparation of Drug Delivery Systems. Pharmaceutics 2019, 11, 629. [Google Scholar] [CrossRef] [Green Version]
- Rifna, E.J.; Misra, N.N.; Dwivedi, M. Recent advances in extraction technologies for recovery of bioactive compounds derived from fruit and vegetable waste peels: A review. Crit. Rev. Food Sci. Nutr. 2023, 63, 719–752. [Google Scholar] [CrossRef]
- Abou Elmaaty, T.; Sayed-Ahmed, K.; Elsisi, H.; Magdi, M. Optimization of extraction of natural antimicrobial pigments using supercritical fluids: A review. Processes 2022, 10, 2111. [Google Scholar] [CrossRef]
- Palmer, M.; Ting, S. Applications for supercritical fluid technology in food processing. Food Chem. 1995, 52, 345–352. [Google Scholar] [CrossRef]
- Durante, M.; Montefusco, A.; Marrese, P.P.; Soccio, M.; Pastore, D.; Piro, G.; Mita, G.; Lenucci, M.S. Seeds of pomegranate, tomato and grapes: An underestimated source of natural bioactive molecules and antioxidants from agri-food by-products. J. Food Compos. Anal. 2017, 63, 65–72. [Google Scholar] [CrossRef]
- Su, Y.J.; Ji, M.Y.; Li, J.H.; Chang, C.H.; Dong, S.J.; Deng, Y.D.; Yang, Y.J.; Gu, L.P. Subcritical fluid extraction treatment on egg yolk: Product characterization. J. Food Eng. 2020, 274, 109805. [Google Scholar] [CrossRef]
- Wang, L.; Wu, M.; Liu, H.M.; Ma, Y.X.; Wang, X.D.; Qin, G.Y. Subcritical Fluid Extraction of Chinese Quince Seed: Optimization and Product Characterization. Molecules 2017, 22, 528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.G.; Mei, L.J.; Wang, Q.L.; Shao, Y.; Tao, Y.D. Optimization of subcritical fluid extraction of seed oil from Nitraria tangutorum using response surface methodology. LWT-Food Sci. Technol. 2014, 56, 168–174. [Google Scholar] [CrossRef]
- Srinivas, K.; King, J.W.; Monrad, J.K.; Howard, L.R.; Hansen, C.M. Optimization of subcritical fluid extraction of bioactive compounds using Hansen solubility parameters. J. Food Sci. 2009, 74, E342–E354. [Google Scholar] [CrossRef]
- Kawabata, T.; Tanaka, Y.; Horinishi, A.; Mori, M.; Hosoda, A.; Yamamoto, N.; Mitani, T. Subcritical Methanol Extraction of the Stone of Japanese Apricot Prunus mume Sieb. et Zucc. Biomolecules 2020, 10, 1047. [Google Scholar] [CrossRef]
- Gbashi, S.; Adebo, O.A.; Piater, L.; Madala, N.E.; Njobeh, P.B. Subcritical Water Extraction of Biological Materials. Sep. Purif. Rev. 2017, 46, 21–34. [Google Scholar] [CrossRef]
- Gbashi, S.; Madala, N.E.; Adebo, O.A.; Piater, L.; Phoku, J.Z.; Njobeh, P.B. Subcritical water extraction and its prospects for aflatoxins extraction in biological materials. Aflatoxin-Control Anal. Detect. Health Risks. Rij. Croat. InTech 2017, 11, 229–250. [Google Scholar] [CrossRef] [Green Version]
- Zaini, A.S.; Putra, N.R.; Idham, Z.; Mohd Faizal, A.N.; Che Yunus, M.A.; Mamat, H.; Abdul Aziz, A.H. Comparison of alliin recovery from Allium sativum L. using Soxhlet extraction and subcritical water extraction. ChemEngineering 2022, 6, 73. [Google Scholar] [CrossRef]
- Squillace, P.; Adani, F.; Scaglia, B. Supercritical CO2 extraction of tomato pomace: Evaluation of the solubility of lycopene in tomato oil as limiting factor of the process performance. Food Chem. 2020, 315, 126224. [Google Scholar] [CrossRef]
- Kedrina-Okutan, O.; Novello, V.; Hoffmann, T.; Hadersdorfer, J.; Occhipinti, A.; Schwab, W.; Ferrandino, A. Constitutive Polyphenols in Blades and Veins of Grapevine (Vitis vinifera L.) Healthy Leaves. J. Agric. Food Chem. 2018, 66, 10977–10990. [Google Scholar] [CrossRef]
- Gullon, P.; Gullon, B.; Davila, I.; Labidi, J.; Gonzalez-Garcia, S. Comparative environmental Life Cycle Assessment of integral revalorization of vine shoots from a biorefinery perspective. Sci. Total Environ. 2018, 624, 225–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Beamonte, R.; Sanclemente, T.; Surra, J.C.; Osada, J. Could squalene be an added value to use olive by-products? J. Sci. Food Agric. 2020, 100, 915–925. [Google Scholar] [CrossRef] [PubMed]
- Tsitsagi, M.; Ebralidze, K.; Chkhaidze, M.; Rubashvili, I.; Tsitsishvili, V. Sequential extraction of bioactive compounds from tangerine (Citrus Unshiu) peel. Ann. Agrar. Sci. 2018, 16, 236–241. [Google Scholar] [CrossRef]
- Lachos-Perez, D.; Baseggio, A.M.; Mayanga-Torres, P.C.; Marostica, M.R.; Rostagno, M.A.; Martinez, J.; Forster-Carneiro, T. Subcritical water extraction of flavanones from defatted orange peel. J. Supercrit. Fluids 2018, 138, 7–16. [Google Scholar] [CrossRef]
- Barrales, F.M.; Silveira, P.; Barbosa, P.D.M.; Ruviaro, A.R.; Paulino, B.N.; Pastore, G.M.; Macedo, G.A.; Martinez, J. Recovery of phenolic compounds from citrus by-products using pressurized liquids—An application to orange peel. Food Bioprod. Process. 2018, 112, 9–21. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Q.R.; Lu, X. Pectin extracted from apple pomace and citrus peel by subcritical water. Food Hydrocoll. 2014, 38, 129–137. [Google Scholar] [CrossRef]
- Pereira, D.T.V.; Zabot, G.L.; Reyes, F.G.; Iglesias, A.H.; Martinez, J. Integration of pressurized liquids and ultrasound in the extraction of bioactive compounds from passion fruit rinds: Impact on phenolic yield, extraction kinetics and technical-economic evaluation. Innov. Food Sci. Emerg. Technol. 2021, 67, 102549. [Google Scholar] [CrossRef]
- de Souza, R.d.C.; Machado, B.A.S.; Barreto, G.d.A.; Leal, I.L.; Anjos, J.P.d.; Umsza-Guez, M.A. Effect of experimental parameters on the extraction of grape seed oil obtained by low pressure and supercritical fluid extraction. Molecules 2020, 25, 1634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexandre, E.M.C.; Moreira, S.A.; Castro, L.M.G.; Pintado, M.; Saraiva, J.A. Emerging technologies to extract high added value compounds from fruit residues: Sub/supercritical, ultrasound-, and enzyme-assisted extractions. Food Rev. Int. 2018, 34, 581–612. [Google Scholar] [CrossRef]
- Akhter, S.; McDonald, M.A.; Marriott, R. Mangifera sylvatica (Wild Mango): A new cocoa butter alternative. Sci. Rep. 2016, 6, 32050. [Google Scholar] [CrossRef] [Green Version]
- Nadeem, M.; Imran, M.; Khalique, A. Promising features of mango (Mangifera indica L.) kernel oil: A review. J. Food Sci. Technol. 2016, 53, 2185–2195. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Aty, A.M.; Salama, W.H.; Hamed, M.B.; Fahmy, A.S.; Mohamed, S.A. Phenolic-antioxidant capacity of mango seed kernels: Therapeutic effect against viper venoms. Rev. Bras Farm. 2018, 28, 594–601. [Google Scholar] [CrossRef]
- Masibo, M.; He, Q. Mango Bioactive Compounds and Related Nutraceutical Properties-A Review. Food Rev. Int. 2009, 25, 346–370. [Google Scholar] [CrossRef]
- Akanda, M.J.H.; Sarker, M.Z.I.; Norulaini, N.; Ferdosh, S.; Rahman, M.M.; Omar, A.K.M. Optimization of supercritical carbon dioxide extraction parameters of cocoa butter analogy fat from mango seed kernel oil using response surface methodology. J. Food Sci. Technol.-Mysore 2015, 52, 319–326. [Google Scholar] [CrossRef]
- Araújo, R.G.; Rodriguez-Jasso, R.M.; Ruiz, H.A.; Pintado, M.M.E.; Aguilar, C.N. Avocado by-products: Nutritional and functional properties. Trends Food Sci. Technol. 2018, 80, 51–60. [Google Scholar] [CrossRef]
- Kitrytė, V.; Kavaliauskaitė, A.; Tamkutė, L.; Pukalskienė, M.; Syrpas, M.; Venskutonis, P.R. Zero waste biorefining of lingonberry (Vaccinium vitis-idaea L.) pomace into functional ingredients by consecutive high pressure and enzyme assisted extractions with green solvents. Food Chem. 2020, 322, 126767. [Google Scholar] [CrossRef]
- Han, L.; Han, Q.; Yang, Y.; Wang, H.; Wang, S.; Li, G. Characterization and Biological Activities of Seed Oil Extracted from Berberis dasystachya Maxim. by the Supercritical Carbon Dioxide Extraction Method. Molecules 2020, 25, 1836. [Google Scholar] [CrossRef] [Green Version]
- Rohman, A. Irnawati Pumpkin (Cucurbita maxima) seed oil: Chemical composition, antioxidant activities and its authentication analysis. Food Res. 2020, 4, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Paini, J.; Benedetti, V.; Ferrentino, G.; Baratieri, M.; Patuzzi, F. Thermochemical conversion of apple seeds before and after supercritical CO2 extraction: An assessment through evolved gas analysis. Biomass Convers. Biorefinery 2021, 11, 473–488. [Google Scholar] [CrossRef]
- Gao, Y.; Ozel, M.Z.; Dugmore, T.; Sulaeman, A.; Matharu, A.S. A biorefinery strategy for spent industrial ginger waste. J. Hazard Mater. 2021, 401, 123400. [Google Scholar] [CrossRef]
- Kitrytė, V.; Narkevičiūtė, A.; Tamkutė, L.; Syrpas, M.; Pukalskienė, M.; Venskutonis, P.R. Consecutive high-pressure and enzyme assisted fractionation of blackberry (Rubus fruticosus L.) pomace into functional ingredients: Process optimization and product characterization. Food Chem. 2020, 312, 126072. [Google Scholar] [CrossRef] [PubMed]
- Basegmez, H.I.O.; Povilaitis, D.; Kitryte, V.; Kraujaliene, V.; Sulniute, V.; Alasalvar, C.; Venskutonis, P.R. Biorefining of blackcurrant pomace into high value functional ingredients using supercritical CO2, pressurized liquid and enzyme assisted extractions. J. Supercrit. Fluids 2017, 124, 10–19. [Google Scholar] [CrossRef]
- Tamkutė, L.; Liepuoniūtė, R.; Pukalskienė, M.; Venskutonis, P.R. Recovery of valuable lipophilic and polyphenolic fractions from cranberry pomace by consecutive supercritical CO2 and pressurized liquid extraction. J. Supercrit. Fluids 2020, 159, 104755. [Google Scholar] [CrossRef]
- Al Bulushi, K.; Attard, T.M.; North, M.; Hunt, A.J. Optimisation and economic evaluation of the supercritical carbon dioxide extraction of waxes from waste date palm (Phoenix dactylifera) leaves. J. Clean. Prod. 2018, 186, 988–996. [Google Scholar] [CrossRef] [Green Version]
- de Aguiar, A.C.; Osorio-Tobon, J.F.; Vigano, J.; Martinez, J. Economic evaluation of supercritical fluid and pressurized liquid extraction to obtain phytonutrients from biquinho pepper: Analysis of single and sequential-stage processes. J. Supercrit. Fluids 2020, 165, 104935. [Google Scholar] [CrossRef]
- Chañi-Paucar, L.O.; Johner, J.C.F.; Zabot, G.L.; Meireles, M.A.A. Technical and economic evaluation of supercritical CO2 extraction of oil from sucupira branca seeds. J. Supercrit. Fluids 2022, 181, 105494. [Google Scholar] [CrossRef]
- Hatami, T.; Johner, J.C.; Zabot, G.L.; Meireles, M.A.A. Supercritical fluid extraction assisted by cold pressing from clove buds: Extraction performance, volatile oil composition, and economic evaluation. J. Supercrit. Fluids 2019, 144, 39–47. [Google Scholar] [CrossRef]
- Restrepo-Serna, D.L.; Alzate, C.A.C. Economic pre-feasibility of supercritical fluid extraction of antioxidants from fruit residues. Sustain. Chem. Pharm. 2022, 25, 100600. [Google Scholar] [CrossRef]
- Canabarro, N.I.; Veggi, P.C.; Vardanega, R.; Mazutti, M.A.; do Carmo Ferreira, M. Techno-economic evaluation and mathematical modeling of supercritical CO2 extraction from Eugenia uniflora L. leaves. J. Appl. Res. Med. Aromat. Plants 2020, 18, 100261. [Google Scholar] [CrossRef]
- Braga, M.E.; Gaspar, M.C.; de Sousa, H.C. Supercritical fluid technology for agrifood materials processing. Curr. Opin. Food Sci. 2023, 50, 100983. [Google Scholar] [CrossRef]
- Caldeira, C.; Vlysidis, A.; Fiore, G.; De Laurentiis, V.; Vignali, G.; Sala, S. Sustainability of food waste biorefinery: A review on valorisation pathways, techno-economic constraints, and environmental assessment. Bioresour. Technol. 2020, 312, 123575. [Google Scholar] [CrossRef]
Waste Material | Valorized Extract | Usage | Reference |
---|---|---|---|
Custard apple seed powder | Volatile and non-volatile components | Flavoring industry | [40] |
Apple seed | Linoleic acid and phloridzin, amygdalin absence (antinutrient), higher oxidative stability | Pharmaceutical industry | [10] |
Tomato seeds and skins | 205 mg per 100 g of lycopene and 75 mg per 100 g of β-carotene | Food and pharmaceutical industries | [16] |
Strawberry pomace | 46.8 mg/mL saturated FAs, 64.0 mg/mL monounsaturated FAs, and 145.8 mg/mL polyunsaturated FAs | Food and cosmetic industries | [50] |
Banana peels | Bioactive compounds; gallic acid, quercetin, and β-carotene | Pharmaceutical industry | [51] |
Orange peels | Citronellol, β-pinene, α-pinene, myrcene, terpinolene, C8-aldehyde, linalool, and d-limonene | Pharmaceutical industry | [52] |
Sweet potato peels | β-carotene (99.8%), lutein (68.2%), and antioxidant activity (20.7%) | Food and pharmaceutical industries | [15] |
Potato peels | Caffeic acid (0.75 mg/g), phenolic recovery 37%, and antioxidant activity 73% | Pharmaceutical and nutraceutical industries | [26] |
Onion outer dry layers | Protocatechuic acid mg/100 g and quercetin equivalents | Pharmaceutical industry | [53] |
Kiwifruit pomace, skin, and seeds | Phenolic compounds, protocatechuic acid, caffeic acid, catechin | Pharmaceutical industry | [54] |
Avocado processing waste | Oleic and linoleic acid, higher phenolic and antioxidant ability as compared to Soxhlet extract | Pharmaceutical industry | [11] |
Broccoli processing waste (stems and leaves) | β-carotene, phytosterols, chlorophylls, and phenolic compounds | Cosmetic industry | [18] |
Grape pruning waste | Antibacterial and α-amylase inhibition activity | Pharmaceutical industry | [55] |
Grape skin, seeds, and pomace | Antioxidants, vitamins, and polyphenols | Pharmaceutical and nutraceutical industries | [19] |
Guava seed | Linoleic acid, oleic acid, tocopherol, and phytosterols | Dairy industry | [12] |
Mango kernel | Polar lipids 3.38% with desirable phosphorus content | Pharmaceutical and nutraceutical industries | [56] |
Tomato cannery waste (peels and seeds) | 97% lycopene recovery, spent material showed 64% biodegradability | Food and pharmaceutical industries | [57] |
Tomato peels | 91% carotenoid recovery in which 96.9% was β-carotene, 87.9% antioxidation | Food and nutraceutical industries | [15] |
Peach peels | 94.2% total carotenoids of which 75.3% was lutein and 34.1% antioxidation activity | Food and nutraceutical industries | [15] |
Grape (Palomino fino) pomace | 2176 mg/100 g resveratrol of dry sample | Pharmaceutical and nutraceutical industries | [58] |
Citrus peels | 33 volatile compounds, polymethoxyflavones, limonoids, and phytosterols | Flavoring and pharmaceutical industries | [59] |
Apple pomace | Higher antioxidation, 5.63 TEA/g of extract as compared to conventional method | Nutraceutical industry | [20] |
Passion fruit bagasse | 23.9 g oil/100 g feed, including tocols, carotenoids, and fatty acids | Nutraceutical and cosmetic industries | [17] |
Studies Using CO2 in Combination with Other Solvents | ||||
---|---|---|---|---|
Technique | Sample | Treatment Condition | Overall Outcomes | Reference |
SFE-CO2, 15.5% ethanol as co-solvent | Tomato and peach peels | 350 bar, 59 °C, 5 g/min, 30 min | 91% and 94.2% carotenoid recovery, with considerable content of β-carotene and lutein | [15] |
SFE-CO2, 5% ethanol as co-solvent | Apple pomace | 30 MPa, 45 °C, 2 L/h, 2 h | Higher antioxidation, 5.63 TEA/g of extract as compared to conventional method | [20] |
SFE-CO2, 5% ethanol as co-solvent | Grape (Palomino fino) pomace | 400 bar, 55 °C, 0.8 g/min, 3 h | 2176 mg/100 g resveratrol on dry basis | [58] |
SFE-CO2, ethanol as co-solvent 7% | Broccoli (Brassica oleracea var. italica) stem and leaves | 443 bar, 40 °C, 31 g/min | β-carotene, chlorophylls, phytosterols, and phenolic compounds | [18] |
SC-CO2, ethanol as a co-solvent 10% | Tomato (Lycopersicon esculentum L.) waste, seeds and skins | 150 bar, 20 °C, and 5 mL/min | Lycopene 205 mg per 100 g and β-carotene 75 mg per 100 g of extracted oleoresin | [16] |
SFE-CO2, ethanol as co-solvent | Grape (Vitis vinifera L.) skin, seeds and pomace | 250 bar, 60 °C, 2 mL/min | Trans-resveratrol, β-sitosterol, α-tocopherol, and ascorbic acid | [19] |
SC-CO2 + 1.5:1 ethanol | Avocado (Persea americana) seeds and peels | 25 MPa, 80 °C | 6.9% oil yield, major components were oleic and linoleic acid | [11] |
SC-CO2, exogenous tomato oil as co-solvent | Tomato solid waste | 380 bar, 80 °C and 15 kg/h | 97% lycopene recovery | [57] |
Studies using CO2 and water as a sole solvent | ||||
SFE | Apple (Malus pumila) seed | 24 MPa, 40 °C, 1 L/h, and 140 min | Linoleic acid (63.76 g/100 g) and phloridzin (2.96 μg/g of seed) | [10] |
SC-CO2 | Strawberry pomace | 300 bar, 70 °C, 5 h | 26% essential FAs | [50] |
SWE | Grape (Tinta Roriz and Touriga Nacional) pruned shoots | 40 bars, 150 °C, 40 min | Antimicrobial and enzyme inhibition activity | [55] |
SFE-CO2 | Mango kernel | 50 MPa, 40 °C, and 30 g/min | Polar lipid 3.28%, desirable phosphorus content (91.2 mg/kg) | [56] |
SFE-CO2 | Guava (Psidium guava) seed | 35.7 MPa, 52 °C, 30 g/min and 150 min | Linoleic acid (78.5%), oleic acid (13.8%), phenolics, tocopherol, and phytosterol compounds | [12] |
SC-CO2 | Custard apple (Annona Squamosa) seed powder | 15 MPa, 308 K, and 1.5 mL/min for volatile and 25 MPa, 318 K, and 2.5 mL/min for nonvolatile components | Volatile and non-volatile components | [40] |
SWE | Kiwifruit waste (pomace, skin, and seeds) | 50 bar, 200 °C, and 90 min | Phenolic compounds (60.53 mg CaE/g DW), protocatechuic acid, caffeic acid, catechin | [54] |
SFE-CO2 | Passion fruit bagasse | 17–26 MPa, 60 °C, 1.80 × 10−4 kg/s flow rate | 5.8 and 1.5 times more carotenoids and tocols were extracted in sequential process | [17] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afraz, M.T.; Xu, X.; Adil, M.; Manzoor, M.F.; Zeng, X.-A.; Han, Z.; Aadil, R.M. Subcritical and Supercritical Fluids to Valorize Industrial Fruit and Vegetable Waste. Foods 2023, 12, 2417. https://doi.org/10.3390/foods12122417
Afraz MT, Xu X, Adil M, Manzoor MF, Zeng X-A, Han Z, Aadil RM. Subcritical and Supercritical Fluids to Valorize Industrial Fruit and Vegetable Waste. Foods. 2023; 12(12):2417. https://doi.org/10.3390/foods12122417
Chicago/Turabian StyleAfraz, Muhammad Talha, Xindong Xu, Muhammad Adil, Muhammad Faisal Manzoor, Xin-An Zeng, Zhong Han, and Rana Muhammad Aadil. 2023. "Subcritical and Supercritical Fluids to Valorize Industrial Fruit and Vegetable Waste" Foods 12, no. 12: 2417. https://doi.org/10.3390/foods12122417
APA StyleAfraz, M. T., Xu, X., Adil, M., Manzoor, M. F., Zeng, X.-A., Han, Z., & Aadil, R. M. (2023). Subcritical and Supercritical Fluids to Valorize Industrial Fruit and Vegetable Waste. Foods, 12(12), 2417. https://doi.org/10.3390/foods12122417