The Effects of Gamma-Aminobuytric Acid (GABA) Enrichment on Nutritional, Physical, Shelf-Life, and Sensorial Properties of Dark Chocolate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ingredients
2.2. Preparation of Dark Chocolate
2.3. Proximate Composition
2.4. Quantification of GABA in Dark Chocolate Using HPLC
2.5. Angiotensin-Converting-Enzyme (ACE) Inhibitory Activity
2.6. Textural Properties: Hardness
2.7. Rheological Measurements: Apparent Viscosity
2.8. Melting Properties
2.9. Accelerated Shelf-Life Test: Microbial Analysis
2.10. Hedonic Test
2.11. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition
3.2. GABA Content
3.3. Angiotensin-Converting-Enzyme (ACE) Inhibitory Activity
3.4. Hardness
3.5. Apparent Viscosity
3.6. Melting Properties
3.7. Accelerated Shelf-Life Test: Microbial Analysis
3.8. Hedonic Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. A Global Brief on Hypertension. 2013. Available online: https://www.WHO/DCO/WHD/2013.2 (accessed on 28 October 2022).
- Tablado, M.; Angel, M. Accuracy in the diagnosis of hypertension and CKD is key to determine their possible association. Endocrine 2022, 78, 642–643. [Google Scholar] [CrossRef] [PubMed]
- Krzemińska, J.; Wronka, M.; Młynarska, E.; Franczyk, B.; Rysz, J. Arterial Hypertension—Oxidative Stress and Inflammation. Antioxidants 2022, 11, 172. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Grosse, S.D.; Schooley, M.W. Conducting Research on the Economics of Hypertension to Improve Cardiovascular Health. Am. J. Prev. Med. 2017, 53, S115–S117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kearney, P.M.; Whelton, M.; Reynolds, K.; Muntner, P.; Whelton, P.K.; He, J. Global burden of hypertension: Analysis of worldwide data. Lancet 2005, 365, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Phan, T.T.V.; Heo, S.-Y.; Jung, W.-K.; Yi, M. Spontaneous hinge-bending motions of angiotensin i converting enzyme: Role in activation and inhibition. Molecules 2020, 25, 1288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, J.; Liu, G.; Jin, Y.; Tang, C.; Yao, T.; Zhuo, J.; Li, Q.; Liu, L.; Wang, J. Enrichment of γ-aminobutyric acid in mulberry leaves and the inhibitory effects of the water extract on ACE and α-glucosidase activity. Ind. Crops Prod. 2022, 177, 114485. [Google Scholar] [CrossRef]
- Guiyun, C.; Yushan, W.; Mingyue, Z.; Wanxing, M.; Xixian, X.; Ye, C. Cold atmospheric plasma treatment improves the γ-aminobutyric acid content of buckwheat seeds providing a new anti-hypertensive functional ingredient. Food Chem. 2022, 388, 133064. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhou, X.; He, J.; Xie, Z.; Xia, S.; Lu, G. The roles of GABA in ischemia-reperfusion injury in the central nervous system and peripheral organs. Oxid. Med. Cell. Longev. 2019, 2019, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Murala, S.; Yelam, A.; Ismail, M.M.; Bollu, P.C. History of GABA. In Neurochemistry in Clinical Practice; Springer: Berlin/Heidelberg, Germany, 2022; pp. 73–89. [Google Scholar]
- Luo, H.; Liu, Z.; Xie, F.; Bilal, M.; Liu, L.; Yang, R.; Wang, Z. Microbial production of gamma-aminobutyric acid: Applications, state-of-the-art achievements, and future perspectives. Crit. Rev. Biotechnol. 2021, 41, 491–512. [Google Scholar] [CrossRef]
- Ramos-Ruiz, R.; Poirot, E.; Flores-Mosquera, M. GABA, a non-protein amino acid ubiquitous in food matrices. Cogent Food Agric. 2018, 4, 1534323. [Google Scholar] [CrossRef]
- Marenco, S.; Meyer, C.; van der Veen, J.W.; Zhang, Y.; Kelly, R.; Shen, J.; Weinberger, D.R.; Dickinson, D.; Berman, K.F. Role of gamma-amino-butyric acid in the dorsal anterior cingulate in age-associated changes in cognition. Neuropsychopharmacology 2018, 43, 2285–2291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galli, V.; Venturi, M.; Mari, E.; Guerrini, S.; Granchi, L. Gamma-aminobutyric acid (GABA) production in fermented milk by lactic acid bacteria isolated from spontaneous raw milk fermentation. Int. Dairy J. 2022, 127, 105284. [Google Scholar] [CrossRef]
- Sahab, N.R.; Subroto, E.; Balia, R.L.; Utama, G.L. γ-Aminobutyric acid found in fermented foods and beverages: Current trends. Heliyon 2020, 6, e05526. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Mishra, H.N. Co-microencapsulation of γ-aminobutyric acid (GABA) and probiotic bacteria in thermostable and biocompatible exopolysaccharides matrix. LWT 2021, 136, 110293. [Google Scholar] [CrossRef]
- Pu, Y.; Sinclair, A.J.; Zhong, J.; Liu, D.; Song, L. Determination of ϒ-aminobutyric acid (GABA) in jujube fruit (Ziziphus jujuba Mill.). CyTA 2019, 17, 158–162. [Google Scholar] [CrossRef] [Green Version]
- Statista. Size of the chocolate confectionery market worldwide from 2016 to 2027. Available online: https://www.statista.com/forecasts/983554/global-chocolate-confectionery-market-size (accessed on 28 October 2022).
- Fibrianto, K.; Azhar, L.O.M.F.; Widyotomo, S.; Harijono, H. Effect of cocoa bean origin and conching time on the physicochemical and microstructural properties of Indonesian dark chocolate. Braz. J. Food Technol. 2021, 24, e2019249. [Google Scholar] [CrossRef]
- Faccinetto-Beltrán, P.; Gómez-Fernández, A.R.; Santacruz, A.; Jacobo-Velázquez, D.A. Chocolate as Carrier to Deliver Bioactive Ingredients: Current Advances and Future Perspectives. Foods 2021, 10, 2065. [Google Scholar] [CrossRef]
- Codex Alimentarius, FAO/WHO. Standard for Chocolate and Chocolate Products; CODEX STAN 87-1981; Codex Alimentarius Commission: Rome, Italy, 2003. [Google Scholar]
- Fanton, S.; Cardozo, L.F.; Combet, E.; Shiels, P.G.; Stenvinkel, P.; Vieira, I.O.; Narciso, H.R.; Schmitz, J.; Mafra, D. The sweet side of dark chocolate for chronic kidney disease patients. Clin. Nutr. 2021, 40, 15–26. [Google Scholar] [CrossRef]
- Patel, N.; Jayswal, S.; Maitreya, B.B. Dark Chocolate: Consumption for human health. J. Pharmacogn. Phytochem. 2019, 8, 2887–2890. [Google Scholar]
- Hue, C.; Gunata, Z.; Breysse, A.; Davrieux, F.; Boulanger, R.; Sauvage, F.-X. Impact of fermentation on nitrogenous compounds of cocoa beans (Theobroma cacao L.) from various origins. Food Chem. 2016, 192, 958–964. [Google Scholar] [CrossRef]
- Dala-Paula, B.M.; Deus, V.L.; Tavano, O.L.; Gloria, M.B.A. In vitro bioaccessibility of amino acids and bioactive amines in 70% cocoa dark chocolate: What you eat and what you get. Food Chem. 2021, 343, 128397. [Google Scholar] [CrossRef] [PubMed]
- Le, P.H.; Le, T.T.; Raes, K. Effects of pH and heat treatment on the stability of γ-aminobutyric acid (GABA) in germinated soymilk. J. Food Process. Preserv. 2020, 44, e14301. [Google Scholar] [CrossRef]
- Ward, J. From South America to Willy Wonka–a brief outline of the production and composition of chocolate. Chem. N. Z. 2018, 82, 71–73. [Google Scholar]
- Chandio, Z.A.; Sidiqua, A.; Khaskheli, M.I.; Waghani, A.; Metlo, W.A. Review effect of caffeine overdose. RADS J. Biol. Res. Appl. Sci. 2020, 11, 154–158. [Google Scholar] [CrossRef]
- Gammone, M.A.; D’Orazio, N. Cocoa overconsumption and cardiac rhythm: Potential arrhythmogenic trigger or beneficial pleasure? Curr. Res. Nutr. Food Sci. 2021, 9, 40–51. [Google Scholar] [CrossRef]
- Inoue, K.; Shirai, T.; Ochiai, H.; Kasao, M.; Hayakawa, K.; Kimura, M.; Sansawa, H. Blood-pressure-lowering effect of a novel fermented milk containing gamma-aminobutyric acid (GABA) in mild hypertensives. Eur. J. Clin. Nutr. 2003, 57, 490–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishimura, M.; Yoshida, S.-i.; Haramoto, M.; Mizuno, H.; Fukuda, T.; Kagami-Katsuyama, H.; Tanaka, A.; Ohkawara, T.; Sato, Y.; Nishihira, J. Effects of white rice containing enriched gamma-aminobutyric acid on blood pressure. eJTCM 2016, 6, 66–71. [Google Scholar] [CrossRef] [Green Version]
- Zareian, M.; Oskoueian, E.; Majdinasab, M.; Forghani, B. Production of GABA-enriched idli with ACE inhibitory and antioxidant properties using Aspergillus oryzae: The antihypertensive effects in spontaneously hypertensive rats. Food Funct. 2020, 11, 4304–4313. [Google Scholar] [CrossRef]
- Kawakami, K.; Yamada, K.; Yamada, T.; Nabika, T.; Nomura, M. Antihypertensive effect of γ-aminobutyric acid-enriched brown rice on spontaneously hypertensive rats. J. Nutr. Sci. Vitaminol. 2018, 64, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, S.F.; Dalek, N.E.M.; Raffie, Q.F.M.; Ain, M.F. Quantification of physicochemical and microstructure properties of dark chocolate incorporated with palm sugar and dates as alternative sweetener. Mater. Today Proc. 2020, 31, 366–371. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 17th ed.; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Chen, Y.; Liu, W.; Xue, J.; Yang, J.; Chen, X.; Shao, Y.; Kwok, L.-y.; Bilige, M.; Mang, L.; Zhang, H. Angiotensin-converting enzyme inhibitory activity of Lactobacillus helveticus strains from traditional fermented dairy foods and antihypertensive effect of fermented milk of strain H9. J. Dairy Sci. 2014, 97, 6680–6692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGill, J.; Hartel, R.W. Water relations in confections. In Water Activity in Foods: Fundamentals and Applications; Wiley: New York, NY, USA, 2020; pp. 483–500. [Google Scholar]
- Cahyani, A.; Kurniasari, J.; Nafingah, R.; Rahayoe, S.; Harmayani, E.; Saputro, A.D. Determining casson yield value, casson viscosity and thixotropy of molten chocolate using viscometer. IOP Conf. Ser. Earth Environ. Sci. 2019, 355, 012041. [Google Scholar] [CrossRef]
- Goktas, H.; Konar, N.; Sagdic, O.; Toker, O.S. Investigation effects of inulin degree of polymerization on compound chocolate quality. J. Food Process. Preserv. 2021, 45, e15766. [Google Scholar] [CrossRef]
- Phimolsiripol, Y.; Suppakul, P. Techniques in shelf-life evaluation of food products. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–8. [Google Scholar]
- Ramdany, R.; Rachmawati, Y.; Supu, L.; Mallongi, A. The effect of substitution of purple sweet potato flour and tempeh on organoleptic quality of MP-ASI biscuit. Syst. Rev. Pharm. 2020, 11, 957–961. [Google Scholar]
- Pero, M.; Borhani, B.; Parvian, S.K.; Rashidi, R.; Jafari Asl, M. Substitution of sucrose with HFCS-55 in the formulation of chocolate syrup: Effects on the physicochemical and sensorial properties. J. Food Process. Preserv. 2022, 46, e16422. [Google Scholar] [CrossRef]
- Kuswari, M.; Gifari, N.; Nuzrina, R.; Justickarin, S.; Fathiya, A.; Hutasuhut, F. Analysis of protein content on commercial protein supplement in Indonesia. JUARA J. Olahraga 2021, 6, 207–212. [Google Scholar] [CrossRef]
- Joseph, C.; Batra, R.; Selvasekaran, P.; Chidambaram, R. Low calorie cocoa-based products: A short review. JFST 2021, 59, 2931–2939. [Google Scholar] [CrossRef]
- Kim, S.M.; Woo, J.H.; Kim, H.W.; Park, H.J. Formulation and evaluation of cold-extruded chocolate ganache for three-dimensional food printing. J. Food Eng. 2022, 314, 110785. [Google Scholar] [CrossRef]
- EC (European Commission). Commission Regulation (EC) No 1924/2006 of 20 December 2006 on Nutrition and Health Claims Made on Foods. Available online: http://data.europa.eu/eli/reg/2006/1924/oj (accessed on 28 October 2022).
- Melo, C.W.B.d.; Bandeira, M.d.J.; Maciel, L.F.; Bispo, E.d.S.; Souza, C.O.d.; Soares, S.E. Chemical composition and fatty acids profile of chocolates produced with different cocoa (Theobroma cacao L.) cultivars. Food Sci.Technol. 2020, 40, 326–333. [Google Scholar] [CrossRef] [Green Version]
- Kruszewski, B.; Obiedziński, M.W. Multivariate analysis of essential elements in raw cocoa and processed chocolate mass materials from three different manufacturers. LWT 2018, 98, 113–123. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA). Available online: https://fdc.nal.usda.gov/fdc-app.html#/?query=dark%20chocolate (accessed on 28 October 2022).
- U.S. Code of Federal Regulations. Title 40, Parts 180. Available online: https://www.ecfr.gov/current/title-40/chapter-I/subchapter-E/part-180/subpart-D/section-180.1188 (accessed on 28 October 2022).
- JECFA (Joint FAO/WHO Expert Committee on Food Additives World Health Organization). Evaluation of Certain Food Additives and Contaminants: Sixty-First Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 2004; Volume 61. [Google Scholar]
- Natural and Non-Prescription Health Products Directorate (NNHPD). Natural Health Products Ingredients Database. 4-Aminobutanoic Acid. Group 7: Ingredients with Relaxation Action. 2021. Available online: http://webprod.hc-sc.gc.ca/nhpid-bdipsn/atReq.do?atid=fonc.cognitive.func&lang=eng (accessed on 28 October 2022).
- Monthly Index of Medical Specialities (MIMS). Aminobutyric Acid. Available online: https://www.mims.com/malaysia/drug/info/aminobutyric%20acid?mtype=generic (accessed on 28 October 2022).
- Bruhns, P.; Kanzler, C.; Degenhardt, A.G.; Koch, T.J.; Kroh, L.W. Basic structure of melanoidins formed in the Maillard reaction of 3-deoxyglucosone and γ-aminobutyric acid. J. Agric. Food Chem. 2019, 67, 5197–5203. [Google Scholar] [CrossRef] [PubMed]
- Ji, D.; Ma, H.; Chen, X. Ultrasonication increases γ-aminobutyric acid accumulation in coffee leaves and affects total phenolic content and angiotensin-converting enzyme inhibitory activity. J. Food Process. Preserv. 2021, 45, e15777. [Google Scholar] [CrossRef]
- Suri, T.; Basu, S. Heat resistant chocolate development for subtropical and tropical climates: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 5603–5622. [Google Scholar] [CrossRef] [PubMed]
- Lončarević, I.; Pajin, B.; Fišteš, A.; Šaponjac, V.T.; Petrović, J.; Jovanović, P.; Vulić, J.; Zarić, D. Enrichment of white chocolate with blackberry juice encapsulate: Impact on physical properties, sensory characteristics and polyphenol content. LWT 2018, 92, 458–464. [Google Scholar] [CrossRef]
- Toker, O.S.; Konar, N.; Pirouzian, H.R.; Oba, S.; Polat, D.G.; Palabiyik, I.; Poyrazoglu, E.S.; Sagdic, O. Developing functional white chocolate by incorporating different forms of EPA and DHA-Effects on product quality. LWT 2018, 87, 177–185. [Google Scholar] [CrossRef]
- Sun, P.; Xia, B.; Ni, Z.-J.; Wang, Y.; Elam, E.; Thakur, K.; Ma, Y.-L.; Wei, Z.-J. Characterization of functional chocolate formulated using oleogels derived from β-sitosterol with γ-oryzanol/lecithin/stearic acid. Food Chem. 2021, 360, 130017. [Google Scholar] [CrossRef]
- Saglio, A.; Bourgeay, J.; Socrate, R.; Canette, A.; Cuvelier, G. Understanding the structure of ganache: Link between composition and texture. Int. J. Gastron. Food Sci. 2018, 13, 29–37. [Google Scholar] [CrossRef]
- Ozturk, B.; Elvan, M.; Ozer, M.; Harsa, S.T. Effect of different microencapsulating materials on the viability of S. thermophilus CCM4757 incorporated into dark and milk chocolates. Food Biosci. 2021, 44, 101413. [Google Scholar] [CrossRef]
- Gadhiya, D.; Shah, N.; Patel, A.; Prajapati, J. Preparation and shelf-life study of probiotic chocolate manufactured using Lactobacillus helveticus MTCC 5463. Acta Aliment. 2018, 47, 350–358. [Google Scholar] [CrossRef] [Green Version]
- Food and Drug Administration (FDA). Revised Guidelines for the Assessment of Microbiological Quality of Processed Foods. No. 2013-010; 2013. Available online: https://www.fda.gov.ph/wp-content/uploads/2021/03/FDA-Circular-No.-2013-010.pdf (accessed on 27 December 2022).
- International Commission on Microbiological Specifications for Foods (ICMSF). Microorganisms in Foods 5: Microbiological Specifications of Pathogens; Blackie Academic & Professional: London, UK, 1996; pp. 141–182. [Google Scholar]
- Halim, H.S.a.A.; Selamat, J.; Mirhosseini, S.H.; Hussain, N. Sensory preference and bloom stability of chocolate containing cocoa butter substitute from coconut oil. J. Saudi Soc. Agric. Sci. 2019, 18, 443–448. [Google Scholar]
- Sethupathy, P.; Priyadarshini, S.; Moses, J.A.; Anandharamakrishnan, C. Matrix-dependent oral processing, oro-sensory perception, and glycemic index of chocolate bars. J. Food Process. Preserv. 2021, 45, e16067. [Google Scholar] [CrossRef]
- Hwang, L.-D.; Lin, C.; Gharahkhani, P.; Cuellar-Partida, G.; Ong, J.-S.; An, J.; Gordon, S.D.; Zhu, G.; MacGregor, S.; Lawlor, D.A. New insight into human sweet taste: A genome-wide association study of the perception and intake of sweet substances. AJCN 2019, 109, 1724–1737. [Google Scholar] [CrossRef] [PubMed]
Formulations | Ingredients (% w/w) | ||||
---|---|---|---|---|---|
Sugar Syrup | Cocoa Powder | Cocoa Butter | GABA | Lecithin | |
C | 45.00 | 27.50 | 27.00 | 0.00 | 0.50 |
F1 | 44.95 | 27.50 | 27.00 | 0.05 | 0.50 |
F2 | 44.90 | 27.50 | 27.00 | 0.10 | 0.50 |
F3 | 44.85 | 27.50 | 27.00 | 0.15 | 0.50 |
Formulations | Nutritional Content (%) | ||||||
---|---|---|---|---|---|---|---|
Moisture | Protein | Fat | Fibre | Ash | Carbohydrate | Calorie (kcal) | |
C | 15.89 ± 0.06 a | 6.37 ± 0.01 c | 29.48 ± 0.77 a | 14.73 ± 0.23 a | 2.24 ± 0.06 a | 31.29 ± 0.87 a | 415.97 ± 3.48 a |
F1 | 15.78 ± 0.04 ab | 6.39 ± 0.01 bc | 31.10 ± 0.98 a | 14.70 ± 0.16 a | 2.31 ± 0.14 a | 29.73 ± 0.76 a | 424.34 ± 5.88 a |
F2 | 15.61 ± 0.07 b | 6.41 ± 0.01 ab | 29.47 ± 0.74 a | 14.77 ± 0.9 a | 2.25 ± 0.13 a | 31.49 ± 0.86 a | 416.77 ± 3.34 a |
F3 | 15.34 ± 0.10 c | 6.43 ± 0.01 a | 30.80 ± 1.05 a | 14.73 ± 0.13 a | 2.32 ± 0.09 a | 30.38 ± 1.26 a | 424.47 ± 5.32 a |
Formulations | Concentration of GABA (mg/100 g) |
---|---|
C | 8.23 ± 0.14 b |
F1 | 11.60 ± 0.51 b |
F2 | 16.96 ± 2.11 ab |
F3 | 21.09 ± 4.99 a |
Formulations | ACE Inhibition (%) |
---|---|
C | 54.41 ± 0.90 d |
F1 | 62.20 ± 0.89 c |
F2 | 71.02 ± 1.14 b |
F3 | 79.54 ± 1.53 a |
Formulations | Hardness (g) |
---|---|
C | 468.10 ± 10.77 d |
F1 | 618.57 ± 7.93 c |
F2 | 845.36 ± 20.07 b |
F3 | 923.41 ± 41.81 a |
Formulations | Apparent Viscosity (104 mPa∙s) | ||||||
---|---|---|---|---|---|---|---|
10 rpm | 12 rpm | 20 rpm | 30 rpm | 50 rpm | 60 rpm | 100 rpm | |
C | 34.17 ± 2.61 a | 14.63 ± 0.79 a | 6.95 ± 0.45 a | 2.89 ± 0.18 a | 1.57 ± 0.43 a | 0.56 ± 0.06 a | 0.31 ± 0.06 a |
F1 | 30.24 ± 0.48 a | 14.76 ± 1.27 a | 7.07 ± 0.097 a | 2.80 ± 0.20 a | 1.44 ± 0.07 a | 0.47 ± 0.01 a | 0.19 ± 0.01 a |
F2 | 19.44 ± 4.50 a | 14.42 ± 3.14 a | 4.99 ± 11.01 a | 2.20 ± 0.73 a | 0.92 ± 0.26 a | 0.55 ± 0.17 a | 0.24 ± 0.08 a |
F3 | 17.03 ± 0.39 a | 12.92 ± 0.71 a | 4.97 ± 0.44 a | 1.75 ± 0.19 a | 0.74 ± 0.08 a | 0.61 ± 0.02 a | 0.29 ± 0.01 a |
Formulations | Tonset (°C) | Tpeak (°C) | Tend (°C) | ΔHmelt (J/g) |
---|---|---|---|---|
C | 30.65 ± 0.69 a | 33.45 ± 0.50 a | 35.70 ± 0.48 a | 22.35 ± 1.32 a |
F1 | 31.00 ± 0.15 a | 33.47 ± 0.21 a | 35.42 ± 0.61 a | 20.48 ± 8.41 a |
F2 | 31.03 ± 0.15 a | 33.53 ± 1.09 a | 35.82 ± 0.75 a | 30.29 ± 1.55 a |
F3 | 31.97 ± 1.78 a | 33.61 ± 0.16 a | 35.04 ± 0.45 a | 24.33 ± 0.19 a |
Formulations | Storage Period (Day) | |||||||||||
1 | 6 | 8 | 13 | 15 | 21 | |||||||
20 °C | 30 °C | 20 °C | 30 °C | 20 °C | 30 °C | 20 °C | 30 °C | 20 °C | 30 °C | 20 °C | 30 °C | |
Bacteria Count (CFU/g) | ||||||||||||
C | - | - | - | - | TNTC | - | - | 7.5×10−3 | 2.1 × 10−1 | 1.2 × 10−3 | 4.4 × 10−1 | 1.3 × 10−1 |
F1 | - | - | TNTC | - | - | TNTC | 2.9 × 10−2 | 4.5 × 10−3 | 7.7 × 10−2 | 1.2 × 10−2 | 8.7 × 10−2 | 2.3 × 100 |
F2 | - | - | - | - | - | - | 2.9 × 10−2 | TNTC | 1.1 × 100 | 1.2 × 10−2 | 2.0 × 100 | 2.1 × 10−1 |
F3 | - | - | - | - | 1.4 × 10−2 | 5.8 × 10−2 | 1.7 × 10−1 | 1.6 × 10−2 | 2.3 × 10−1 | 1.2 × 100 | 2.3 × 100 | 2.7 × 100 |
Yeast and mould count (CFU/g) | ||||||||||||
C | - | - | TNTC | TNTC | TNTC | - | - | - | 1.7 × 100 | 6.7 × 10−3 | 2.3 × 100 | 9.5 × 10−1 |
F1 | - | - | TNTC | - | TNTC | TNTC | 1.7 × 10−2 | 2.4 × 10−3 | 1.7 × 10−2 | 1.1 × 10−2 | 1.0 × 10−1 | 2.0 × 100 |
F2 | - | - | TNTC | TNTC | TNTC | - | 9.5 × 10−2 | - | 1.1 × 10−1 | 1.4 × 10−2 | 2.1 × 100 | 2.0 × 100 |
F3 | - | - | TNTC | - | 9.2 × 10−3 | - | 1.4 × 10−1 | 6.6 × 10−3 | 1.4 × 10−1 | 8.4 × 10−2 | 2.3 × 100 | 2.9 × 100 |
Formulations | Sensory Attributes | ||||
---|---|---|---|---|---|
Appearance: Glossiness | Texture: Hardness | Mouthfeel: Melting Rate | Taste: Bittersweetness | Overall Acceptability | |
C | 4.91 ± 1.25 a | 4.46 ± 1.94 a | 5.07 ± 0.24 a | 5.02 ± 0.19 a | 5.60 ± 0.19 a |
F1 | 4.80 ± 1.41 a | 4.30 ± 0.25 a | 5.25 ± 0.21 a | 4.96 ± 0.21 a | 5.37 ± 0.15 a |
F2 | 4.93 ± 1.46 a | 4.51 ± 0.22 a | 4.82 ± 0.21 a | 5.03 ± 0.19 a | 5.51 ± 0.17 a |
F3 | 4.73 ± 1.46 a | 4.81 ± 0.20 a | 4.55 ± 0.19 a | 4.70 ± 0.17 a | 5.40 ± 0.18 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koh, W.Y.; Lim, X.X.; Teoh, E.S.W.; Kobun, R.; Rasti, B. The Effects of Gamma-Aminobuytric Acid (GABA) Enrichment on Nutritional, Physical, Shelf-Life, and Sensorial Properties of Dark Chocolate. Foods 2023, 12, 213. https://doi.org/10.3390/foods12010213
Koh WY, Lim XX, Teoh ESW, Kobun R, Rasti B. The Effects of Gamma-Aminobuytric Acid (GABA) Enrichment on Nutritional, Physical, Shelf-Life, and Sensorial Properties of Dark Chocolate. Foods. 2023; 12(1):213. https://doi.org/10.3390/foods12010213
Chicago/Turabian StyleKoh, Wee Yin, Xiao Xian Lim, Eva Sheue Wen Teoh, Rovina Kobun, and Babak Rasti. 2023. "The Effects of Gamma-Aminobuytric Acid (GABA) Enrichment on Nutritional, Physical, Shelf-Life, and Sensorial Properties of Dark Chocolate" Foods 12, no. 1: 213. https://doi.org/10.3390/foods12010213
APA StyleKoh, W. Y., Lim, X. X., Teoh, E. S. W., Kobun, R., & Rasti, B. (2023). The Effects of Gamma-Aminobuytric Acid (GABA) Enrichment on Nutritional, Physical, Shelf-Life, and Sensorial Properties of Dark Chocolate. Foods, 12(1), 213. https://doi.org/10.3390/foods12010213