Chemometric Valorization of Strawberry (Fragaria x ananassa Duch.) cv. ‘Albion’ for the Production of Functional Juice: The Impact of Physicochemical, Toxicological, Sensory, and Bioactive Value
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Standards
2.2. Material
2.3. Methods
2.3.1. Juice Production Yield
2.3.2. Physicochemical Analysis
2.3.3. Toxicology Analysis
Chemicals
Sample Preparation
GC-MS/MS and LC-MS/MS Analysis and ICP/MS Analysis
2.3.4. Sensory Evaluation
2.3.5. Determination of Bioactive Compounds (BACs)
Extraction Procedure
Determination of Total Phenolic Content (TPC)
Determination of Total Hydroxycinnamic Acids (HCA) and Total Flavonols (TF)
Determination of Monomeric Anthocyanins (MA)
2.3.6. Statistical Analysis
3. Results and Discussion
3.1. Physiochemical Assessment of Strawberry Fruits
3.2. Colorimetric Assessment of Strawberry Fruits
3.3. Physiochemical and Color Assessment of Strawberry Juices
3.4. Toxicology Analysis
3.4.1. Heavy Metals
3.4.2. Pesticides
3.5. Sensorial Comparison of Strawberry Fruits and Juices
3.6. Biologically Active Compounds in Fresh Strawberries, Their Juices, and By-Products
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Basu, A.; Nguyen, A.; Betts, N.M.; Lyons, T.J. Strawberry As a Functional Food: An Evidence-Based Review. Crit. Rev. Food Sci. Nutr. 2013, 54, 790–806. [Google Scholar] [CrossRef] [PubMed]
- Afrin, S.; Gasparrini, M.; Forbes-Hernandez, T.Y.; Reboredo-Rodriguez, P.; Mezzetti, B.; Varela-López, A.; Giampieri, F.; Battino, M. Promising health benefits of the strawberry: A focus on clinical studies. J. Agric. Food Chem. 2016, 64, 4435–4449. [Google Scholar] [CrossRef] [PubMed]
- Giampieri, F.; Forbes-Hernandez, T.Y.; Gasparrini, M.; Alvarez-Suarez, J.M.; Afrin, S.; Bompadre, S.; Quiles, J.L.; Mezzetti, B.; Battino, M. Strawberry as a health promoter: An evidence based review. Food Funct. 2015, 6, 1386–1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villamil-Galindo, E.; Van de Velde, F.; Piagentini, A.M. Strawberry agro-industrial by-products as a source of bioactive compounds: Effect of cultivar on the phenolic profile and the antioxidant capacity. Bioresour. Bioprocess. 2021, 8, 61. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Pateiro, M.; Domínguez, R.; Barba, F.J.; Putnik, P.; Kovačević, D.B.; Shpigelman, A.; Granato, D.; Franco, D. Berries extracts as natural antioxidants in meat products: A review. Food Res. Int. 2018, 106, 1095–1104. [Google Scholar] [CrossRef]
- Oszmiański, J.; Wojdyło, A. Comparative study of phenolic content and antioxidant activity of strawberry puree, clear, and cloudy juices. Eur. Food Res. Technol. 2008, 228, 623–631. [Google Scholar] [CrossRef]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [Green Version]
- Aaby, K.; Skrede, G.; Wrolstad, R.E. Phenolic composition and antioxidant activities in flesh and achenes of strawberries (Fragaria ananassa). J. Agric. Food Chem. 2005, 53, 4032–4040. [Google Scholar] [CrossRef]
- Aaby, K.; Wrolstad, R.E.; Ekeberg, D.; Skrede, G. Polyphenol composition and antioxidant activity in strawberry purees; Impact of achene level and storage. J. Agric. Food Chem. 2007, 55, 5156–5166. [Google Scholar] [CrossRef]
- Hartmann, A.; Patz, C.-D.; Andlauer, W.; Dietrich, H.; Ludwig, M. Influence of processing on quality parameters of strawberries. J. Agric. Food Chem. 2008, 56, 9484–9489. [Google Scholar] [CrossRef]
- Fierascu, R.C.; Temocico, G.; Fierascu, I.; Ortan, A.; Babeanu, N.E. Fragaria genus: Chemical composition and biological activities. Molecules 2020, 25, 498. [Google Scholar] [CrossRef] [Green Version]
- Azam, M.; Ejaz, S.; Naveed Ur Rehman, R.; Khan, M.; Qadri, R. Postharvest Quality Management of Strawberries. In Strawberry-Pre- and Post-Harvest Management Techniques for Higher Fruit Quality. Available online: https://www.intechopen.com/books/6996 (accessed on 15 November 2021).
- Barth, E.; Resende, J.T.V.d.; Moreira, A.F.P.; Mariguele, K.H.; Zeist, A.R.; Silva, M.B.; Stulzer, G.C.G.; Mafra, J.G.M.; Simões Azeredo Gonçalves, L.; Roberto, S.R.; et al. Selection of experimental hybrids of strawberry using multivariate analysis. Agronomy 2020, 10, 598. [Google Scholar] [CrossRef]
- Šamec, D.; Maretić, M.; Lugarić, I.; Mešić, A.; Salopek-Sondi, B.; Duralija, B. Assessment of the differences in the physical, chemical and phytochemical properties of four strawberry cultivars using principal component analysis. Food Chem. 2016, 194, 828–834. [Google Scholar] [CrossRef]
- Granato, D.; Putnik, P.; Kovačević, D.B.; Santos, J.S.; Calado, V.; Rocha, R.S.; Cruz, A.G.D.; Jarvis, B.; Rodionova, O.Y.; Pomerantsev, A. Trends in Chemometrics: Food Authentication, Microbiology, and Effects of Processing. Compr. Rev. Food Sci. Food Saf. 2018, 17, 663–677. [Google Scholar] [CrossRef] [Green Version]
- Gündüz, K.; Özbay, H. The effects of genotype and altitude of the growing location on physical, chemical, and phytochemical properties of strawberry. Turk. J. Agric. For. 2018, 42, 145–153. [Google Scholar] [CrossRef]
- Aaby, K.; Mazur, S.; Nes, A.; Skrede, G. Phenolic compounds in strawberry (Fragaria x ananassa Duch.) fruits: Composition in 27 cultivars and changes during ripening. Food Chem. 2012, 132, 86–97. [Google Scholar] [CrossRef]
- Bursać Kovačević, D.; Putnik, P.; Dragović-Uzelac, V.; Vahčić, N.; Babojelić, M.S.; Levaj, B. Influences of organically and conventionally grown strawberry cultivars on anthocyanins content and color in purees and low-sugar jams. Food Chem. 2015, 181, 94–100. [Google Scholar] [CrossRef]
- Bursać Kovaćević, D.; Vahčić, N.; Levaj, B.; Dragović-Uzelac, V. The effect of cultivar and cultivation on sensory profiles of fresh strawberries and their purées. Flavour Fragr. J. 2008, 23, 323–332. [Google Scholar] [CrossRef]
- Oliver, P.; Cicerale, S.; Pang, E.; Keast, R. Developing a strawberry lexicon to describe cultivars at two maturation stages. J. Sens. Stud. 2018, 33, e12312. [Google Scholar] [CrossRef]
- Kosar, M.; Kafkas, E.; Paydas, S.; Baser, K.H.C. Phenolic composition of strawberry genotypes at different maturation stages. J. Agric. Food Chem. 2004, 52, 1586–1589. [Google Scholar] [CrossRef]
- Hwang, H.; Kim, Y.-J.; Shin, Y. Influence of ripening stage and cultivar on physicochemical properties, sugar and organic acid profiles, and antioxidant compositions of strawberries. Food Sci. Biotechnol. 2019, 28, 1659–1667. [Google Scholar] [CrossRef]
- Paniagua, C.; Santiago-Doménech, N.; Kirby, A.R.; Gunning, A.P.; Morris, V.J.; Quesada, M.A.; Matas, A.J.; Mercado, J.A. Structural changes in cell wall pectins during strawberry fruit development. Plant Physiol. Biochem. 2017, 118, 55–63. [Google Scholar] [CrossRef]
- Bhat, R.; Geppert, J.; Funken, E.; Stamminger, R. Consumers perceptions and preference for strawberries—A case study from Germany. Int. J. Fruit Sci. 2015, 15, 405–424. [Google Scholar] [CrossRef]
- Lewers, K.S.; Newell, M.J.; Park, E.; Luo, Y. Consumer preference and physiochemical analyses of fresh strawberries from ten cultivars. Int. J. Fruit Sci. 2020, 20, 733–756. [Google Scholar] [CrossRef]
- Fan, Z.; Hasing, T.; Johnson, T.S.; Garner, D.M.; Barbey, C.R.; Colquhoun, T.A.; Sims, C.A.; Resende, M.F.R.; Whitaker, V.M. Strawberry sweetness and consumer preference are enhanced by specific volatile compounds. Hortic. Res. 2021, 8, 66. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metal Toxicity and the Environment. In Molecular, Clinical and Environmental Toxicology; Experientia Supplementum; Birkhäuser Basel: Basel, Switzerland, 2012; pp. 133–164. [Google Scholar]
- Bekele Bahiru, D.; Yegrem, L. Levels of Heavy Metal in Vegetable, Fruits and Cereals Crops in Ethiopia: A Review. Int. J. Environ. Monit. Anal. 2021, 9, 96–103. [Google Scholar] [CrossRef]
- Parker, C. Strawberry fields forever: Can consumers see pesticides and sustainability as an issue? Sustain. Sci. 2014, 10, 285–303. [Google Scholar] [CrossRef]
- Aktar, W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, H.; Shah, M.H.; Mohiuddin, M.; Elshikh, M.S.; Hussain, Z.; Alkahtani, J.; Ullah, W.; Alwahibi, M.S.; Abbasi, A.M. Quantification of heavy metals and health risk assessment in processed fruits’ products. Arab. J. Chem. 2020, 13, 8965–8978. [Google Scholar] [CrossRef]
- Tiwari, B.K.; Muthukumarappan, K.; O’Donnell, C.P.; Cullen, P.J. Colour degradation and quality parameters of sonicated orange juice using response surface methodology. LWT-Food Sci. Technol. 2008, 41, 1876–1883. [Google Scholar] [CrossRef]
- Bursać, D.; Vahčić, N.; Levaj, B.; Dragović-Uzelac, V.; Biško, A. The influence of cultivar on sensory profiles of fresh and processed strawberry fruits grown in Croatia. Flavour Fragr. J. 2007, 22, 512–520. [Google Scholar] [CrossRef]
- Bursać Kovačević, D.; Putnik, P.; Dragović-Uzelac, V.; Pedisić, S.; Režek Jambrak, A.; Herceg, Z. Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice. Food Chem. 2016, 190, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Škegro, M.; Putnik, P.; Bursać Kovačević, D.; Kovač, A.P.; Salkić, L.; Čanak, I.; Frece, J.; Zavadlav, S.; Ježek, D. Chemometric Comparison of High-Pressure Processing and Thermal Pasteurization: The Nutritive, Sensory, and Microbial Quality of Smoothies. Foods 2021, 10, 1167. [Google Scholar] [CrossRef] [PubMed]
- Howard, L.R.; Clark, J.R.; Brownmiller, C. Antioxidant capacity and phenolic content in blueberries as affected by genotype and growing season. J. Sci. Food Agric. 2003, 83, 1238–1247. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [Green Version]
- Kelly, K.; Whitaker, V.M.; Nunes, M.C.d.N. Physicochemical characterization and postharvest performance of the new Sensation® ‘Florida127′ strawberry compared to commercial standards. Sci. Hortic. 2016, 211, 283–294. [Google Scholar] [CrossRef]
- De Jesús Ornelas-Paz, J.; Yahia, E.M.; Ramírez-Bustamante, N.; Pérez-Martínez, J.D.; del Pilar Escalante-Minakata, M.; Ibarra-Junquera, V.; Acosta-Muñiz, C.; Guerrero-Prieto, V.; Ochoa-Reyes, E. Physical attributes and chemical composition of organic strawberry fruit (Fragaria x ananassa Duch, cv. Albion) at six stages of ripening. Food Chem. 2013, 138, 372–381. [Google Scholar] [CrossRef]
- Nunes, M.C.N.; Brecht, J.K.; Morais, A.M.M.B.; Sargent, S.A. Physicochemical changes during strawberry development in the field compared with those that occur in harvested fruit during storage. J. Sci. Food Agric. 2006, 86, 180–190. [Google Scholar] [CrossRef]
- Olsson, M.E.; Ekvall, J.; Gustavsson, K.-E.; Nilsson, J.; Pillai, D.; Sjöholm, I.; Svensson, U.; Åkesson, B.; Nyman, M.G.L. Antioxidants, low molecular weight carbohydrates, and total antioxidant capacity in strawberries (Fragaria x ananassa): Effects of cultivar, ripening, and storage. J. Agric. Food Chem. 2004, 52, 2490–2498. [Google Scholar] [CrossRef]
- Concha--Meyer, A.A.; D’Ignoti, V.; Saez, B.; Diaz, R.I.; Torres, C.A. Effect of storage on the physico--chemical and antioxidant properties of strawberry and kiwi leathers. J. Food Sci. 2016, 81, C569–C577. [Google Scholar] [CrossRef]
- Belakud, B.; Bahadur, V.; Prasad, V.M. Performance of strawberry (Fragaria x ananassa Duch.) varieties for yield and biochemical parameters. Pharma Innov. J. 2015, 4, 5–8. [Google Scholar]
- Shao, W.-C.; Zang, Y.-Y.; Ma, H.-Y.; Ling, Y.E.; Kai, Z.-P. Concentrations and related health risk assessment of pesticides, phthalates, and heavy metals in strawberries from Shanghai, China. J. Food Prot. 2021, 84, 2116–2122. [Google Scholar] [CrossRef] [PubMed]
- Bystricka, J.; Musilova, J.; Trebichalsky, P.; Tomas, J.; Stanovic, R.; Bajcan, D.; Kavalcova, P. The relationships between content of heavy metals in soil and in strawberries. Int. J. Phytoremediation 2015, 18, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Elbagermi, M.A.; Edwards, H.G.M.; Alajtal, A.I. Monitoring of Heavy Metal Content in Fruits And Vegetables Collected from Production and Market Sites in the Misurata Area of Libya. ISRN Anal. Chem. 2012, 2012, 827645. [Google Scholar] [CrossRef] [Green Version]
- Official Journal of the European Union, L 364, 20 December 2006. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2006:364:TOC (accessed on 15 November 2021).
- Commission Regulation (EU) 2021/1317. Available online: https://eur-lex.europa.eu/eli/reg/2021/1317/oj (accessed on 15 November 2021).
- Commission Regulation (EU) 2021/1323. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32021R1323 (accessed on 15 November 2021).
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on Lead in Food. EFSA J. 2010, 8, 1570. [Google Scholar] [CrossRef]
- Fernández-Ortuño, D.; Chen, F.; Schnabel, G. Resistance to Pyraclostrobin and Boscalid in Botrytis cinerea Isolates from Strawberry fields in the Carolinas. Plant Dis. 2012, 96, 1198–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krieger, R. Hayes’ Handbook of Pesticide Toxicology; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Available online: https://www.fao.org/fileadmin/user_upload/IPM_Pesticide/JMPR/Evaluations/2007/Pyrimethanil.pdf (accessed on 15 November 2021).
- Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimethanil (accessed on 15 November 2021).
- Baggio, J.S.; Peres, N.A.; Amorim, L. Sensitivity of Botrytis cinerea Isolates from Conventional and Organic Strawberry Fields in Brazil to Azoxystrobin, Iprodione, Pyrimethanil, and Thiophanate-Methyl. Plant Dis. 2018, 102, 1803–1810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faniband, M.; Ekman, E.; Littorin, M.; Maxe, M.; Larsson, E.; Lindh, C.H. Biomarkers of Exposure to Pyrimethanil After Controlled Human Experiments. J. Anal. Toxicol. 2019, 43, 277–283. [Google Scholar] [CrossRef]
- Weber, F.; Larsen, L.R. Influence of fruit juice processing on anthocyanin stability. Food Res. Int. 2017, 100, 354–365. [Google Scholar] [CrossRef]
- Orton, F.; Rosivatz, E.; Scholze, M.; Kortenkamp, A. Widely Used Pesticides with Previously Unknown Endocrine Activity Revealed asin VitroAntiandrogens. Environ. Health Perspect. 2011, 119, 794–800. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.K. Toxicity of Fungicides. In Veterinary Toxicology; Gupta, R.C., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 569–580. [Google Scholar]
- Waechter, F.; Weber, E.; Hertner, T. Cyprodinil: A Fungicide of the Anilinopyrimidine Class. In Handbook of Pesticide Toxicology; Academic Press: London, UK, 2001; pp. 1701–1710. [Google Scholar]
- Seeland, A.; Oehlmann, J.; Müller, R. Aquatic ecotoxicity of the fungicide pyrimethanil: Effect profile under optimal and thermal stress conditions. Environ. Pollut. 2012, 168, 161–169. [Google Scholar] [CrossRef]
- Malhat, F.M.; Loutfy, N.M.; Thabet, W. Dissipation Profile and Human Risk Assessment of Pyrimethanil Residues in Cucumbers and Strawberries. J. Health Pollut. 2014, 4, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Aprea, E.; Biasioli, F.; Carlin, S.; Endrizzi, I.; Gasperi, F. Investigation of volatile compounds in two raspberry cultivars by two headspace techniques: Solid-phase microextraction/gas chromatography−mass spectrometry (SPME/GC−MS) and proton-transfer reaction−mass spectrometry (PTR−MS). J. Agric. Food Chem. 2009, 57, 4011–4018. [Google Scholar] [CrossRef]
- Lu, H.; Ban, Z.; Wang, K.; Li, D.; Li, D.; Poverenov, E.; Li, L.; Luo, Z. Aroma volatiles, sensory and chemical attributes of strawberry (Fragaria x ananassa Duch.) achenes and receptacle. Int. J. Food Sci. Technol. 2017, 52, 2614–2622. [Google Scholar] [CrossRef]
- Aubert, C.; Bruaut, M.; Chalot, G.; Cottet, V. Impact of maturity stage at harvest on the main physicochemical characteristics, the levels of vitamin C, polyphenols and volatiles and the sensory quality of Gariguette strawberry. Eur. Food Res. Technol. 2020, 247, 37–49. [Google Scholar] [CrossRef]
- Wei, M.; Wang, H.; Ma, T.; Ge, Q.; Fang, Y.; Sun, X. Comprehensive utilization of thinned unripe fruits from horticultural crops. Foods 2021, 10, 2043. [Google Scholar] [CrossRef]
- Jančářová, I.; Jančář, L.; Náplavová, A.; Kubáň, V. Changes of organic acids and phenolic compounds contents in grapevine berries during their ripening. Open Chem. 2013, 11, 1575–1582. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Y.; Chen, D.; Fan, M.; Young Quek, S. UPLC-QqQ-MS/MS-based phenolic quantification and antioxidant activity assessment for thinned young kiwifruits. Food Chem. 2019, 281, 97–105. [Google Scholar] [CrossRef]
- Zheng, H.-Z.; Kim, Y.-I.; Chung, S.-K. A profile of physicochemical and antioxidant changes during fruit growth for the utilisation of unripe apples. Food Chem. 2012, 131, 106–110. [Google Scholar] [CrossRef]
- Labbé, M.; Ulloa, P.A.; López, F.; Sáenz, C.; Peña, Á.; Salazar, F.N. Characterization of chemical compositions and bioactive compounds in juices from pomegranates (Wonderful, Chaca and Codpa) at different maturity stages. Chil. J. Agric. Res. 2016, 76, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Heng Koh, T.; Melton, L.D. Ripening-related changes in cell wall polysaccharides of strawberry cortical and pith tissues. Postharvest Biol. Technol. 2002, 26, 23–33. [Google Scholar] [CrossRef]
- Siebeneichler, T.J.; Crizel, R.L.; Camozatto, G.H.; Paim, B.T.; da Silva Messias, R.; Rombaldi, C.V.; Galli, V. The postharvest ripening of strawberry fruits induced by abscisic acid and sucrose differs from their in vivo ripening. Food Chem. 2020, 317, 126407. [Google Scholar] [CrossRef]
- Haile, Z.M.; Nagpala-De Guzman, E.G.; Moretto, M.; Sonego, P.; Engelen, K.; Zoli, L.; Moser, C.; Baraldi, E. Transcriptome Profiles of Strawberry (Fragaria vesca) Fruit Interacting With Botrytis cinerea at Different Ripening Stages. Front. Plant Sci. 2019, 10, 1131. [Google Scholar] [CrossRef]
Sensory Attribute | Descriptive Term |
---|---|
Color | Color intensity |
Flavor | Flavor intensity |
Floral flavor | |
Fruity flavor | |
Green flavor | |
Off-flavor | |
Taste | Taste intensity |
Acid taste | |
Sweet taste | |
Harmonious | |
Off-taste | |
Texture | Firmness/homogeneity |
Overall sensory quality | Overall sensory quality |
Strawberry Fruit Parameters | M1 | M2 | M3 | Havg | TSS | pH | TA |
---|---|---|---|---|---|---|---|
Maturity | p ≤ 0.01 † | p ≤ 0.01 † | p ≤ 0.01 † | p ≤ 0.01 † | p = 0.09 ‡ | p ≤ 0.01 † | p ≤ 0.01 † |
F1 | 43.34 ± 1.52 b | 0.68 ± 0.04 b | 42.67 ± 1.49 b | 0.48 ± 0.02 a | 8.75 ± 0.19 a | 3.25 ± 0.01 b | 1.10 ± 0.01 a |
F2 | 60.23 ± 1.52 a | 0.93 ± 0.04 a | 59.30 ± 1.49 a | 0.31 ± 0.02 b | 9.22 ± 0.19 a | 3.38 ± 0.01 a | 0.87 ± 0.01 b |
Storage | p = 0.24 ‡ | p ≤ 0.01 † | p = 0.27 ‡ | p = 0.02 † | p = 0.02 † | p ≤ 0.01 † | p ≤ 0.01 † |
0 days | 53.08 ± 1.52 a | 0.92 ± 0.04 a | 52.17 ± 1.49 a | 0.43 ± 0.02 a | 9.32 ± 0.19 a | 3.38 ± 0.01 a | 1.05 ± 0.01 a |
4 days | 50.50 ± 1.52 a | 0.69 ± 0.04 b | 49.80 ± 1.49 a | 0.36 ± 0.02 b | 8.65 ± 0.19 b | 3.26 ± 0.01 b | 0.92 ± 0.01 b |
Maturity by Storage | p = 0.79 ‡ | p = 0.67 ‡ | p = 0.79 ‡ | p = 0.17 ‡ | p = 0.34 ‡ | p = 0.10 ‡ | p = 0.70 ‡ |
F1; 0 days | 44.35 ± 2.14 a | 0.78 ± 0.06 a | 43.57 ± 2.1 a | 0.43 ± 0.03 a | 8.95 ± 0.27 a | 3.30 ± 0.01 a | 1.16 ± 0.01 a |
F1; 4 days | 42.34 ± 2.14 a | 0.58 ± 0.06 a | 41.77 ± 2.1 a | 0.54 ± 0.03 a | 8.54 ± 0.27 a | 3.21 ± 0.01 a | 1.04 ± 0.01 a |
Maturity by Storage | p = 0.79 ‡ | p = 0.67 ‡ | p = 0.79 ‡ | p = 0.17 ‡ | p = 0.34 ‡ | p = 0.10 ‡ | p = 0.70 ‡ |
F2; 0 days | 61.82 ± 2.14 a | 1.06 ± 0.06 a | 60.76 ± 2.1 a | 0.30 ± 0.03 a | 9.69 ± 0.27 a | 3.45 ± 0.01 a | 0.93 ± 0.01 a |
F2; 4 days | 58.65 ± 2.14 a | 0.81 ± 0.06 a | 57.84 ± 2.1 a | 0.32 ± 0.03 a | 8.75 ± 0.27 a | 3.31 ± 0.01 a | 0.81 ± 0.01 a |
Average in samples | 51.79 ± 1.07 | 0.80 ± 0.03 | 50.99 ± 1.05 | 0.40 ± 0.14 | 8.98 ± 0.14 | 3.25 ± 0.01 | 0.98 ± 0.01 |
Strawberry Fruit Parameters | n | L* | a* | b* | C* | H* |
---|---|---|---|---|---|---|
Maturity | p ≤ 0.01 † | p ≤ 0.01 † | p ≤ 0.01 † | p ≤ 0.01 † | p = 0.55 ‡ | |
F1 | 40 | 33.83 ± 0.49 a | 19.15 ± 0.39 a | 22.98 ± 0.83 a | 30.15 ± 0.67 a | 49.43 ± 1.35 a |
F2 | 40 | 29.68 ± 0.49 b | 16.55 ± 0.39 b | 19.33 ± 0.83 b | 25.79 ± 0.67 b | 48.29 ± 1.35 a |
Storage | p ≤ 0.01 † | p = 0.91 ‡ | p = 0.72 ‡ | p = 0.81 ‡ | p = 0.42 ‡ | |
0 days | 40 | 33.18 ± 0.49 a | 17.82 ± 0.39 a | 21.36 ± 0.83 a | 28.09 ± 0.67 a | 49.64 ± 1.35 a |
4 days | 40 | 30.33 ± 0.49 b | 17.88 ± 0.39 a | 20.94 ± 0.83 a | 27.86 ± 0.67 a | 48.08 ± 1.35 a |
Maturity by Storage | p = 0.17 ‡ | p = 0.89 ‡ | p = 0.04† | p = 0.05† | p = 0.64 ‡ | |
F1; 0 days | 20 | 34.51 ± 0.69 a | 19.08 ± 0.55 a | 21.18 ± 1.17 a | 28.75 ± 0.95 b | 47.23 ± 1.91 a |
F1; 4 days | 20 | 33.15 ± 0.69 a | 19.22 ± 0.55 a | 24.78 ± 1.17 b | 31.55 ± 0.95 a | 51.63 ± 1.91 a |
Maturity by Storage | p ≤ 0.01 † | p = 0.89 ‡ | p ≤ 0.01 † | p = 0.02 † | p = 0.02 † | |
F2; 0 days | 20 | 31.84 ± 0.70 a | 16.56 ± 0.55 a | 21.55 ± 1.17 a | 27.43 ± 0.95 a | 52.05 ± 1.91 a |
F2; 4 days | 20 | 27.51 ± 0.70 b | 16.54 ± 0.55 a | 17.10 ± 1.17 b | 24.16 ± 0.95 b | 44.53 ± 1.91 b |
Average | 80 | 31.75 ± 0.35 | 17.85 ± 0.27 | 21.15 ± 0.58 | 27.97 ± 0.48 | 48.86 ± 0.96 |
Parameter | Ripeness 75% | Ripeness 100% |
---|---|---|
Strawberry mass with calyces (g) | 1004.73 | 1011.72 |
Strawberry mass without calyces (g) | 989.73 | 998.37 |
Calyx weight (g) | 14.74 | 13.12 |
Juice weight (g) | 677.68 | 697.61 |
Pomace weight (g) | 304.04 | 316.03 |
Proportion of calyces in relation to whole strawberries (%) | 1.47 | 1.30 |
Proportion of juice in relation to strawberries with calyces (%) | 67.45 | 68.95 |
Proportion of stalks in relation to strawberries without calyces (%) | 68.47 | 69.87 |
Proportion of pomace in relation to strawberries with calyces (%) | 30.26 | 31.24 |
Proportion of pomace in relation to strawberries without calyces (%) | 30.72 | 31.66 |
Sample | Cu m/z 63 | Zn m/z 67 | Ni m/z 60 | As m/z 75 | Cd m/z 111 | Pb m/z 208 |
---|---|---|---|---|---|---|
F1 | 0.159 ± 0.006 | 1.20 ± 0.015 | <0.04 ± 0.000 | 0.022 ± 0.009 | <0.01 ± 0.000 | <0.03 ± 0.000 |
F2 | 0.144 ± 0.008 | 1.24 ± 0.026 | <0.04 ± 0.000 | 0.026 ± 0.008 | <0.01 ± 0.000 | <0.03 ± 0.000 |
J1 | 0.077 ± 0.003 | 1.03 ± 0.049 | <0.04 ± 0.000 | <0.02 ± 0.000 | <0.01 ± 0.000 | <0.03 ± 0.000 |
J2 | 0.132 ± 0.000 | 0.988 ± 0.033 | <0.04 ± 0.000 | 0.038 ± 0.007 | <0.01 ± 0.000 | 0.035 ± 0.002 |
BP1 | 0.412 ± 0.011 | 3.12 ± 0.091 | <0.04 ± 0.000 | 0.040 ± 0.007 | <0.01 ± 0.000 | <0.03 ± 0.000 |
BP2 | 0.371 ± 0.003 | 2.40 ± 0.018 | <0.04 ± 0.000 | <0.02 ± 0.000 | <0.01 ± 0.000 | 0.076 ± 0.005 |
Pesticides/RT (min)/Recovery% | F1 | F2 | J1 | J2 | BP1 | BP2 |
---|---|---|---|---|---|---|
Cyprodinil/ 13.77/68 | ND | ND | ND | ND | 0.013 ± 0.0065 | ND |
Pyrimethanil/ 10.06/109 | 0.037 ± 0.0185 | 0.035 ± 0.0175 | 0.033 ± 0.165 | 0.034 ± 0.017 | 0.060 ± 0.030 | 0.053 ± 0.0265 |
Strawberry Fruit Parameters | n | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | S12 | S13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Material | p = 0.55 ‡ | p = 0.85 ‡ | p = 0.32 ‡ | p = 0.85 ‡ | p = 0.82 ‡ | p = 0.40 ‡ | p = 0.06 ‡ | p = 0.75 ‡ | p = 0.45 ‡ | p = 0.11 ‡ | p = 0.36 ‡ | p = 0.49 ‡ | p = 0.06 ‡ | |
Fruit | 16 | 5.75 ± 0.22 a | 5.06 ± 0.24 a | 4.63 ± 0.35 a | 5.44 ± 0.25 a | 2.94 ± 0.39 a | 1.25 ± 0.16 a | 5.63 ± 0.2 a | 4.06 ± 0.27 a | 4.63 ± 0.23 a | 5.19 ± 0.24 a | 1.25 ± 0.16 a | 5.63 ± 0.25 a | 5.63 ± 0.25 a |
Juice | 16 | 5.56 ± 0.22 a | 5.00 ± 0.24 a | 5.13 ± 0.35 a | 5.38 ± 0.25 a | 2.81 ± 0.39 a | 1.44 ± 0.16 a | 5.06 ± 0.2 a | 3.94 ± 0.27 a | 4.38 ± 0.23 a | 4.63 ± 0.24 a | 1.50 ± 0.16 a | 5.38 ± 0.25 a | 4.94 ± 0.25 a |
Maturity | p ≤ 0.01 † | p = 0.05 † | p = 0.09 ‡ | p ≤ 0.01 † | p = 0.03 † | p = 0.78 ‡ | p ≤ 0.01 † | p ≤ 0.01 † | p ≤ 0.01 † | p ≤ 0.01 † | p = 1.00 ‡ | p = 0.73 ‡ | p = 0.01 † | |
75% | 16 | 4.75 ± 0.22 b | 4.68 ± 0.24 b | 4.44 ± 0.35 a | 4.88 ± 0.25 b | 3.50 ± 0.39 a | 1.38 ± 0.16 a | 4.81 ± 0.2 b | 4.88 ± 0.27 a | 3.69 ± 0.23 b | 4.25 ± 0.24 b | 1.38 ± 0.16 a | 5.44 ± 0.25 a | 4.81 ± 0.25 b |
100% | 16 | 6.56 ± 0.22 a | 5.38 ± 0.24 a | 5.31 ± 0.35 a | 5.94 ± 0.25 a | 2.25 ± 0.39 b | 1.31 ± 0.16 a | 5.88 ± 0.2 a | 3.13 ± 0.27 b | 5.31 ± 0.23 a | 5.56 ± 0.24 a | 1.38 ± 0.16 a | 5.56 ± 0.25 | 5.75 ± 0.25 a |
Material by Maturity | p = 0.17 ‡ | p = 0.85 ‡ | p = 0.80 ‡ | p = 0.85 ‡ | p = 0.82 ‡ | p = 0.78 ‡ | p = 0.83 ‡ | p = 0.75 ‡ | p = 0.71 ‡ | p = 0.36 ‡ | p = 1.00 ‡ | p = 0.09 ‡ | p = 0.86 ‡ | |
Fruit; 75% | 8 | 4.63 ± 0.31 a | 4.75 ± 0.33 a | 4.13 ± 0.5 a | 4.88 ± 0.36 a | 3.63 ± 0.55 a | 1.25 ± 0.22 a | 5.13 ± 0.28 a | 5.00 ± 0.39 a | 3.88 ± 0.33 a | 4.38 ± 0.34 a | 1.25 ± 0.22 a | 5.88 ± 0.36 a | 5.13 ± 0.35 a |
Fruit; 100% | 8 | 6.88 ± 0.31 a | 5.38 ± 0.33 a | 5.13 ± 0.5 a | 6.00 ± 0.36 a | 2.25 ± 0.55 a | 1.25 ± 0.22 a | 6.13 ± 0.28 a | 3.13 ± 0.39 a | 5.38 ± 0.33 a | 6.00 ± 0.34 a | 1.25 ± 0.22 a | 5.38 ± 0.36 a | 6.13 ± 0.35 a |
p = 0.17 ‡ | p = 0.85 ‡ | p = 0.80 ‡ | p = 0.85 ‡ | p = 0.82 ‡ | p = 0.78 ‡ | p = 0.83 ‡ | p = 0.75 ‡ | p = 0.71 ‡ | p = 0.36 ‡ | p = 1.00 ‡ | p = 0.09 ‡ | p = 0.86 ‡ | ||
Juice; 75% | 8 | 4.88 ± 0.31 a | 4.63 ± 0.33 a | 4.75 ± 0.5 a | 4.88 ± 0.36 a | 3.38 ± 0.55 a | 1.50 ± 0.22 a | 4.50 ± 0.28 a | 4.75 ± 0.39 a | 3.50 ± 0.33 a | 4.13 ± 0.34 a | 1.50 ± 0.22 a | 5.00 ± 0.36 a | 4.50 ± 0.35 a |
Juice; 100% | 8 | 6.25 ± 0.31 a | 5.38 ± 0.33 a | 5.50 ± 0.5 a | 5.88 ± 0.36 a | 2.25 ± 0.55 a | 1.38 ± 0.22 a | 5.63 ± 0.28 a | 3.13 ± 0.39 a | 5.25 ± 0.33 a | 5.13 ± 0.34 a | 1.50 ± 0.22 a | 5.75 ± 0.36 a | 5.38 ± 0.35 a |
Average in samples | 32 | 5.66 ± 0.15 | 5.03 ± 0.17 | 4.88 ± 0.25 | 5.41 ± 0.25 | 2.88 ± 0.27 | 1.34 ± 0.11 | 5.34 ± 0.14 | 4.00 ± 0.19 | 4.50 ± 0.17 | 4.91 ± 0.17 | 1.38 ± 0.11 | 5.50 ± 0.18 | 5.28 ± 0.18 |
Parameters | n | TPC | ANT | HCA | FL |
---|---|---|---|---|---|
Material | p ≤ 0.01 † | p ≤ 0.01 † | p = 0.05 † | p ≤ 0.01 † | |
Fruit | 4 | 58.19 ± 1.5 a | 26.75 ± 0.47 a | 14.51 ± 0.29 b | 2.92 ± 0.25 b |
Juice | 4 | 35.27 ± 1.5 b | 22.08 ± 0.47 b | 9.06 ± 0.29 c | 0.55 ± 0.25 c |
By-Product | 4 | 55.56 ± 1.5 a | 26.90 ± 0.47 a | 24.61 ± 0.29 a | 6.29 ± 0.25 a |
Maturity | p = 0.02 † | p ≤ 0.01 † | p ≤ 0.01 † | p = 0.68 ‡ | |
75% | 6 | 52.51 ± 1.22 a | 23.45 ± 0.38 b | 16.43 ± 0.23 a | 3.23 ± 0.21 a |
100% | 6 | 46.83 ± 1.22 b | 27.04 ± 0.38 a | 15.69 ± 0.23 b | 3.28 ± 0.21 a |
Material by Maturity | p = 0.07 ‡ | p = 0.16 ‡ | p = 0.01 † | p = 0.07 ‡ | |
Fruit; 75% | 2 | 64.36 ± 2.39 a | 28.36 ± 1.04 a | 16.96 ± 0.38 a | 2.73 ± 0.36 a |
Fruit; 100% | 2 | 52.02 ± 2.39 a | 25.13 ± 1.04 a | 12.06 ± 0.38 b | 3.12 ± 0.36 a |
p = 0.09 ‡ | p ≤ 0.01 † | p ≤ 0.01 † | p = 0.07 ‡ | ||
Juice; 75% | 2 | 32.56 ± 1.23 a | 15.80 ± 0.31 b | 7.36 ± 0.20 b | 1.10 ± 0.36 a |
Juice; 100% | 2 | 37.97 ± 1.23 a | 28.36 ± 0.31 a | 10.76 ± 0.20 a | 1.00 ± 0.36 a |
p = 0.10 ‡ | p = 0.11 ‡ | p = 0.47 ‡ | p = 0.07‡ | ||
By-product; 75% | 2 | 60.62 ± 2.49 a | 26.19 ± 0.37 b | 24.96 ± 0.55 a | 6.87 ± 0.36 a |
By-product; 100% | 2 | 50.51 ± 2.49 a | 27.62 ± 0.37 a | 24.26 ± 0.55 a | 5.71 ± 0.36 a |
Average in samples | 12 | 49.67 ± 0.86 | 25.24 ± 0.27 | 16.06 ± 0.17 | 3.25 ± 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bebek Markovinović, A.; Putnik, P.; Duralija, B.; Krivohlavek, A.; Ivešić, M.; Mandić Andačić, I.; Palac Bešlić, I.; Pavlić, B.; Lorenzo, J.M.; Bursać Kovačević, D. Chemometric Valorization of Strawberry (Fragaria x ananassa Duch.) cv. ‘Albion’ for the Production of Functional Juice: The Impact of Physicochemical, Toxicological, Sensory, and Bioactive Value. Foods 2022, 11, 640. https://doi.org/10.3390/foods11050640
Bebek Markovinović A, Putnik P, Duralija B, Krivohlavek A, Ivešić M, Mandić Andačić I, Palac Bešlić I, Pavlić B, Lorenzo JM, Bursać Kovačević D. Chemometric Valorization of Strawberry (Fragaria x ananassa Duch.) cv. ‘Albion’ for the Production of Functional Juice: The Impact of Physicochemical, Toxicological, Sensory, and Bioactive Value. Foods. 2022; 11(5):640. https://doi.org/10.3390/foods11050640
Chicago/Turabian StyleBebek Markovinović, Anica, Predrag Putnik, Boris Duralija, Adela Krivohlavek, Martina Ivešić, Ivana Mandić Andačić, Iva Palac Bešlić, Branimir Pavlić, Jose Manuel Lorenzo, and Danijela Bursać Kovačević. 2022. "Chemometric Valorization of Strawberry (Fragaria x ananassa Duch.) cv. ‘Albion’ for the Production of Functional Juice: The Impact of Physicochemical, Toxicological, Sensory, and Bioactive Value" Foods 11, no. 5: 640. https://doi.org/10.3390/foods11050640
APA StyleBebek Markovinović, A., Putnik, P., Duralija, B., Krivohlavek, A., Ivešić, M., Mandić Andačić, I., Palac Bešlić, I., Pavlić, B., Lorenzo, J. M., & Bursać Kovačević, D. (2022). Chemometric Valorization of Strawberry (Fragaria x ananassa Duch.) cv. ‘Albion’ for the Production of Functional Juice: The Impact of Physicochemical, Toxicological, Sensory, and Bioactive Value. Foods, 11(5), 640. https://doi.org/10.3390/foods11050640