Pilot Study for the Dietary Assessment of Xenobiotics Derived from Food Processing in an Adult Spanish Sample
Abstract
1. Introduction
2. Subjects and Methods
2.1. Sample Recruitment and Study Design
2.2. General Characteristics and Food Frequency Questionnaire (FFQ)
2.3. Xenobiotic Estimation and Nutritional Analyses
2.4. Digestive Function Self-Assessment Questionnaire
2.5. Statistical Analyses
3. Results
3.1. Description of the Sample
3.2. Xenobiotics: Doses and Dietary Origin
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AESAN | Spanish Agency for Food Safety and Nutrition |
AαC | Amino-alpha-carboline |
B(a)P | Benzo (a) pyrene |
BMI | Body mass index |
CESNID | Centre for Higher Education in Nutrition and Dietetics |
CHARRED | Computerized Heterocyclic Amines Resource for Research in Epidemiology of Disease |
Comb. | Combined nitroso compounds |
CRA | Colorectal adenoma |
CRC | Colorectal cancer |
DiB(a)A | Dibenzo (a) anthracene |
DiMeIQx | 2-Amino-3,4,8 trimethylimidazo (4,5,f) quinoxaline |
EFSA | European Food Safety Authority |
EPIC European | Prospective Investigation into Cancer and Nutrition |
FDA | U.S. Food and Drug Administration |
FFQ | Food Frequency Questionnaire |
HAs | Heterocyclic amines |
IARC | International Agency for Research on Cancer |
IQ | 2-Amino-3-methylimidazo (4,5,f) quinoline |
MEC | Multiethnic cohort |
MeIQ | 2-Amino-3.4 dimethylimidazo (4,5,f) quinoline |
MeIQx | 2-Amino-3,8 dimethylimidazo (4,5,f) quinoxaline |
MUFA | Monounsaturated fatty acid |
NDMA | N-nitrosodimethylamine |
NOAEL | No observed adverse effect level |
NOCs | N-Nitroso compounds |
NPIP | N-Nitrosopiperidine |
NPYR | N-Nitrosopyrrolidine |
OR | Odds ratio |
ORAC | Oxygen radical absorbance capacity |
PAHs | Polycyclic aromatic hydrocarbons |
PANCAKE | Assessment of Nutrient Intake and Food Consumption Among Kids in Europe |
PHEX | Phenol Explorer |
PhIP | 2-Amino-1-methyl-6-phenylimidazo (4,5,b) pyridine |
PUFA | Polyunsaturated fatty acid |
PUMUO | University Program for Older Adults of the University of Oviedo |
R24h | 24-h dietary recall |
SEEDO | Spanish Society for the Study of Obesity |
SFA | Saturated fatty acid |
USDA | United States Department of Agriculture |
WHO | World Health Organization |
References
- De Kok, T.M.C.M.; Van Maanen, J.M.S. Evaluation of fecal mutagenicity and colorectal cancer risk. Mutat. Res.-Rev. Mutat. Res. 2000, 463, 53–101. [Google Scholar] [CrossRef]
- Nadeem, H.R.; Akhtar, S.; Ismail, T.; Sestili, P.; Lorenzo, J.M.; Ranjha, M.M.A.N.; Jooste, L.; Hano, C.; Aadil, R.M. Heterocyclic aromatic amines in meat: Formation, isolation, risk assessment, and inhibitory effect of plant extracts. Foods 2021, 10, 1466. [Google Scholar] [CrossRef] [PubMed]
- Etemadi, A.; Abnet, C.C.; Graubard, B.I.; Beane-Freeman, L.; Freedman, N.D.; Liao, L.; Dawsey, S.M.; Sinha, R. Anatomical subsite can modify the association between meat and meat compounds and risk of colorectal adenocarcinoma: Findings from three large US cohorts. Int. J. Cancer 2018, 143, 2261–2270. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer (IARC) Working Group. Red Meat and Processed Meat: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2018; Volume 114, pp. 1599–1600. ISBN 9789283201809. [Google Scholar]
- Chiavarini, M.; Bertarelli, G.; Minelli, L.; Fabiani, R. Dietary intake of meat cooking-related mutagens (HCAs) and risk of colorectal adenoma and cancer: A systematic review and meta-analysis. Nutrients 2017, 9, 514. [Google Scholar] [CrossRef]
- Le, N.T.; Silva Michels, F.A.; Song, M.; Zhang, X.; Bernstein, A.M.; Giovannucci, E.L.; Fuchs, C.S.; Ogino, S.; Chan, A.T.; Sinha, R.; et al. A prospective analysis of meat mutagens and colorectal cancer in the Nurses’ Health Study and Health Professionals Follow-up Study. Environ. Health Perspect. 2016, 124, 1529–1536. [Google Scholar] [CrossRef]
- Miller, P.E.; Lazarus, P.; Lesko, S.M.; Cross, A.J.; Sinha, R.; Laio, J.; Zhu, J.; Harper, G.; Muscat, J.E.; Hartman, T.J. Meat-related compounds and colorectal cancer risk by anatomical subsite. Nutr. Cancer 2013, 65, 202–226. [Google Scholar] [CrossRef]
- World Cancer Research Fund International; American Institute for Cancer Research. Diet, Nutrition, Physical Activity and Colorectal Cancer; Continuous Update Project; World Cancer Research Fund International: London, UK, 2018; pp. 1–111. Available online: https://www.aicr.org/wp-content/uploads/2020/01/colorectal-cancer-2017-report.pdf (accessed on 10 January 2021).
- Jakszyn, P.; Agudo, A.; Ibãñez, R.; García-Closas, R.; Pera, G.; Amiano, P.; González, C.A. Development of a food database of nitrosamines, heterocyclic amines, and polycyclic aromatic hydrocarbons. J. Nutr. 2004, 134, 2011–2014. [Google Scholar] [CrossRef]
- Jahurul, M.H.A.; Jinap, S.; Ang, S.J.; Abdul-Hamid, A.; Hajeb, P.; Lioe, H.N.; Zaidul, I.S.M. Dietary exposure to heterocyclic amines in high-temperature cooked meat and fish in Malaysia. Food Addit. Contam.-Part A Chem. Anal. Control Expo. Risk Assess. 2010, 27, 1060–1071. [Google Scholar] [CrossRef]
- Dybing, E.; Farmer, P.B.; Andersen, M.; Fennell, T.R.; Lalljie, S.P.D.; Müller, D.J.G.; Olin, S.; Petersen, B.J.; Schlatter, J.; Scholz, G.; et al. Human exposure and internal dose assessments of acrylamide in food. Food Chem. Toxicol. 2005, 43, 365–410. [Google Scholar] [CrossRef]
- Mucci, L.A.; Adami, H.O.; Wolk, A. Prospective study of dietary acrylamide and risk of colorectal cancer among women. Int. J. Cancer 2006, 118, 169–173. [Google Scholar] [CrossRef]
- Scientific Committee on Food Annex. Background Document to the Opinion of the Scientific Committee on Food on the Risks to Human Health of Polycyclic Aromatic Hydrocarbons in Food (Expressed on 4 December 2002); European Commission Health and Consumer Protection Directorate: Brussels, Belgium, 2002; pp. 1–84. Available online: https://ec.europa.eu/food/system/files/2020-12/sci-com_scf_out153_en.pdf (accessed on 12 September 2021).
- Nogacka, A.M.; Gómez-Martín, M.; Suárez, A.; González-Bernardo, O.; de los Reyes-Gavilán, C.G.; González, S. Xenobiotics formed during food processing: Their relation with the intestinal microbiota and colorectal cancer. Int. J. Mol. Sci. 2019, 20, 2051. [Google Scholar] [CrossRef] [PubMed]
- Ollberding, N.J.; Wilkens, L.R.; Henderson, B.E.; Kolonel, L.N.; Le Marchand, L. Meat consumption, heterocyclic amines and colorectal cancer risk: The Multiethnic Cohort Study. Int. J. Cancer 2012, 131, 1125–1133. [Google Scholar] [CrossRef] [PubMed]
- Ritter-Gooder, P.K.; Lewis, N.M.; Heidal, K.B.; Eskridge, K.M. Validity and reliability of a quantitative Food Frequency Questionnaire measuring n-3 fatty acid intakes in cardiac patients in the midwest: A validation pilot study. J. Am. Diet. Assoc. 2006, 106, 1251–1255. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sierra-Ruelas, É.; Bernal-Orozco, M.F.; Marcedo-Ojeda, G.; Márquez-Sandoval, Y.F.; Altamirano-Martínez, M.B.; Vizmanos, B. Validation of semiquantitative FFQ administered to adults: A systematic review. Public Health Nutr. 2020, 24, 3399–3418. [Google Scholar] [CrossRef] [PubMed]
- Ocké, M.; de Boer, E.; Brants, H.; van der Laan, J.; Niekerk, M.; van Rossum, C.; Temme, L.; Freisling, H.; Nicolas, G.; Casagrande, C.; et al. PANCAKE—Pilot study for the assessment of nutrient intake and food consumption among kids in Europe. EFSA Support. Publ. 2012, 9, 1–120. [Google Scholar] [CrossRef]
- Watson, E.O.; Heath, A.L.M.; Taylor, R.W.; Mills, V.C.; Barris, A.C.; Skidmore, P.M.L. Relative validity and reproducibility of an FFQ to determine nutrient intakes of New Zealand toddlers aged 12–24 months. Public Health Nutr. 2015, 18, 3265–3271. [Google Scholar] [CrossRef] [PubMed]
- Zazpe, I.; Santiago, S.; de la Pascual, O.V.; Romanos-Nanclares, A.; Rico-Campà, A.; Álvarez-Zallo, N.; Martínez-González, M.Á.; Martín-Calvo, N. Validity and reproducibility of a semi-quantitative food frequency questionnaire in Spanish preschoolers—The Sendo Project. Nutr. Hosp. 2020, 37, 672–684. [Google Scholar] [CrossRef]
- Sociedad Española para el Estudio de la Obesidad (SEEDO); Foz, M.; Barbany, M.; Remesar, X.; Carrillo, M.; Aranceta, J.; García-Luna, P.; Alemany, M.; Vázquez, C.; Palou, A.; et al. Consenso SEEDO’ 2000 para la evaluación del sobrepeso y la obesidad y el establecimiento de criterios de intervención terapéutica. Med. Clin. 2000, 115, 587–597. [Google Scholar] [CrossRef]
- Jakszyn, P.; Ibáñez, R.; Pera, G.; Agudo, A.; García-Closas, R.; Amiano, P.; González, C.A. Food Content of Potential Carcinogens; Catalan Institute of Oncology: Barcelona, Spain, 2004. [Google Scholar]
- National Institutes of Health (NIH). CHARRED: Computerized Heterocyclic Amines Resource for Research in Epidemiology of Disease. Available online: https://dceg.cancer.gov/tools/design/charred (accessed on 21 May 2021).
- European Food Safety Authority (EFSA). Update on acrylamide levels in food from monitoring years 2007 to 2010. EFSA J. 2012, 10, 2938–2976. [Google Scholar] [CrossRef]
- Food and Drug Administration (FDA). Survey Data on Acrylamide in Food; Food and Drug Administration: Silver Spring, MD, USA, 2015. Available online: https://www.fda.gov/food/chemical-contaminants-food/acrylamide (accessed on 3 March 2021).
- Farran, A.; Zamora, R.; Cervera, P. Tablas de Composición de Alimentos del Centro de Enseñanza Superior en Nutrición y Dietética (CESNID); McGraw-Hill: New York, NY, USA, 2003; ISBN 9789283201809. [Google Scholar]
- United States Department of Agriculture (USDA). Food Composition Databases. Available online: https://ndb.nal.usda.gov/ndb/ (accessed on 17 September 2021).
- Neveu, V.; Perez-Jiménez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database 2010, 2010. [Google Scholar] [CrossRef]
- Marlett, J.; Cheung, T. Database and quick methods of assessing typical dietary fiber intakes using data for 228 commonly consumed foods. J. Am. Diet. Assoc. 1997, 1151, 1139–1148. [Google Scholar] [CrossRef]
- Drossman, D.A. The functional gastrointestinal disorders and the Rome III process. Gastroenterology 2006, 130, 1377–1390. [Google Scholar] [CrossRef] [PubMed]
- Rohrmann, S.; Hermann, S.; Linseisen, J. Heterocyclic aromatic amine intake increases colorectal adenoma risk: Findings from a prospective European cohort study. Am. J. Clin. Nutr. 2009, 89, 1418–1424. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.M.; Miranda, A.M.; Santos, F.A.; Loureiro, A.P.M.; Fisberg, R.M.; Marchioni, D.M. High intake of heterocyclic amines from meat is associated with oxidative stress. Br. J. Nutr. 2015, 113, 1301–1307. [Google Scholar] [CrossRef]
- Rohrmann, S.; Zoller, D.; Hermann, S.; Linseisen, J. Intake of heterocyclic aromatic amines from meat in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Heidelberg cohort. Br. J. Nutr. 2007, 98, 1112–1115. [Google Scholar] [CrossRef]
- Ibáñez, R.; Agudo, A.; Berenguer, A.; Jakszyn, P.; Tormo, M.J.; Sanchéz, M.J.; Quirós, J.R.; Pera, G.; Navarro, C.; Martinez, C.; et al. Dietary intake of polycyclic aromatic hydrocarbons in a Spanish population. J. Food Prot. 2005, 68, 2190–2195. [Google Scholar] [CrossRef]
- Falcó, G.; Domingo, J.L.; Llobet, J.M.; Teixidó, A.; Casas, C.; Müller, L. Polycyclic Aromatic Hydrocarbons in foods: Human exposure through the diet in Catalonia, Spain. J. Food Prot. 2003, 66, 2325–2331. [Google Scholar] [CrossRef]
- Loh, Y.H.; Jakszyn, P.; Luben, R.N.; Mulligan, A.A.; Mitrou, P.N.; Khaw, K.T. N-nitroso compounds and cancer incidence: The European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk Study. Am. J. Clin. Nutr. 2011, 93, 1053–1061. [Google Scholar] [CrossRef]
- Obón-Santacana, M.; Kaaks, R.; Slimani, N.; Lujan-Barroso, L.; Freisling, H.; Ferrari, P.; Dossus, L.; Chabbert-Buffet, N.; Baglietto, L.; Fortner, R.T.; et al. Dietary intake of acrylamide and endometrial cancer risk in the European Prospective Investigation into Cancer and Nutrition cohort. Br. J. Cancer 2014, 111, 987–997. [Google Scholar] [CrossRef]
- Wie, G.A.; Cho, Y.A.; Kang, H.H.; Ryu, K.A.; Yoo, M.K.; Kim, Y.A.; Jung, K.W.; Kim, J.; Lee, J.H.; Joung, H. Red meat consumption is associated with an increased overall cancer risk: A prospective cohort study in Korea. Br. J. Nutr. 2014, 112, 238–247. [Google Scholar] [CrossRef]
- Zimmerli, B.; Rhyn, P.; Zoller, O.; Schlatter, J. Occurrence of heterocyclic aromatic amines in the Swiss diet: Analytical method, exposure estimation and risk assessment. Food Addit. Contam. 2001, 18, 533–551. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Food Additives and Nutrient Sources Added to Food (EFSA ANS Panel); Mortensen, A.; Aguilar, F.; Crebelli, R.; Di Domenico, A.; Dusemund, B.; Frutos, M.J.; Galtier, P.; Gott, D.; Gundert-Remy, U.; et al. Scientific Opinion on the re-evaluation of potassium nitrite (E 249) and sodium nitrite (E 250) as food additives. EFSA J. 2017, 15, e04786. [Google Scholar]
- Knize, M.; Felton, J.; Sinha, R.; Rothman, N. Collaborative Study; Biosciences Directorate of the University of California, Lawrence Livermore National Laboratory: Livermore, CA, USA, 2003; unpublished.
- Solyakov, A.; Skog, K. Screening for heterocyclic amines in chicken cooked in various ways. Food Chem. Toxicol. 2002, 40, 1205–1211. [Google Scholar] [CrossRef]
- Norat, T.; Bingham, S.; Ferrari, P.; Slimani, N.; Jenab, M.; Mazuir, M.; Overvad, K.; Olsen, A.; Tjønneland, A.; Clavel, F.; et al. Meat, fish, and colorectal cancer risk: The European Prospective Investigation into Cancer and Nutrition. J. Natl. Cancer Inst. 2005, 97, 906–916. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, A.; Aguilar, F.; Crebelli, R.; Di Domenico, A.; Dusemund, B.; Frutos, M.; Galtier, P.; Gott, D.; Gundert-Remy, U.; Lambré, C.; et al. Re-evaluation of sodium nitrate (E 251) and potassium nitrate (E 252) as food additives. EFSA J. 2017, 15, e04787. [Google Scholar] [CrossRef] [PubMed]
- Agencia Española de Seguridad Alimentaria y Nutrición (AESAN). Acrilamida. Available online: http://www.aesan.gob.es/AECOSAN/web/seguridad_alimentaria/subdetalle/acrilamida.htm%0A (accessed on 4 April 2021).
- DellaValle, C.T.; Xiao, Q.; Yang, G.; Ou Shu, X.; Aschebrook-Kilfoy, B.; Zheng, W.; Li, H.L.; Ji, B.-T.; Rothman, N.; Chow, W.-H.; et al. Dietary nitrate and nitrite intake and risk of colorectal cancer in the Shanghai Women’s Health Study. Int. J. Cancer 2014, 134, 2091–2926. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, P.P.; Zhao, J.; Green, R.; Sun, Z.; Roebothan, B.; Squires, J.; Buehler, S.; Dicks, E.; Zhao, J.; et al. Dietary N-nitroso compounds and risk of colorectal cancer: A case-control study in Newfoundland and Labrador and Ontario, Canada. Br. J. Nutr. 2014, 111, 1109–1117. [Google Scholar] [CrossRef]
- Augustsson, K.; Skog, K.; Jägerstad, M.; Steineck, G. Assessment of the human exposure to heterocyclic amines. Carcinogenesis 1997, 18, 1931–1935. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO); World Health Organization (WHO). Food Additives: Evaluation of Certain Food Contaminants: Sixty-Fourth Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization Technical Report Series; Food and Agriculture Organization: Rome, Italy, 2006; Volume 930, ISBN 9241209305. [Google Scholar]
- Agencia Española de Seguridad Alimentaria y Nutrición (AESAN). Hidrocarburos Aromáticos Policíclicos (HAPs); Agencia Española de Seguridad Alimentaria y Nutrición: Madrid, Spain, 2020. Available online: https://www.aesan.gob.es/AECOSAN/docs/documentos/seguridad_alimentaria/HAPs_ficha_SEPT_2020.pdf (accessed on 20 May 2021).
- Lee, J.-S.; Han, J.-W.; Jung, M.; Lee, K.-W.; Chung, M.-S. Effects of thawing and frying methods on the formation of acrylamide and polycyclic aromatic hydrocarbons in chicken meat. Foods 2020, 9, 573. [Google Scholar] [CrossRef]
Characteristics | Total (N = 70) | Gender | |
---|---|---|---|
Male (N = 25) | Female (N = 45) | ||
Age (years) | 59 ± 12 | 62 ± 7 | 57 ± 14 |
<57 | 24 (34%) | 5 (20%) | 19 (42%) |
57–65 | 18 (26%) | 9 (36%) | 9 (20%) |
>66 | 28 (40%) | 11 (44%) | 17 (38%) |
Energy intake (kcal/day) | 1885.87 ± 581.71 | 1935.28 ± 569.40 | 1858.42 ± 593.01 |
Weight (kg) | 74.70 ± 16.02 | 84.48 ± 16.84 | 69.15 ± 12.67 * |
Height (m) | 1.66 ± 0.08 | 1.74 ± 0.07 | 1.62 ± 0.05 * |
BMI (kg/m2) | 26.90 ± 4.64 | 27.77 ± 4.67 | 26.41 ± 4.60 |
Normal weight (18.5–24.9) | 25 (36%) | 7 (28%) | 18 (40%) |
Overweight (25.0–29.9) | 32 (46%) | 13 (52%) | 19 (42%) |
Obese (≥30.0) | 12 (17%) | 5 (20%) | 7 (16%) |
Na | 1 (1%) | 0 (0%) | 1 (2%) |
Smoking status | |||
Current smoker | 7 (10%) | 3 (12%) | 4 (9%) |
Former smoker | 27 (39%) | 14 (56%) | 13 (29%) * |
Never smoker | 36 (51%) | 8 (32%) | 28 (62%) * |
Exercise (hours/week) | 1.13 ± 1.93 | 1.80 ± 2.20 | 0.76 ± 1.68 * |
Sleeping (hours/day) | 6.93 ± 1.11 | 6.80 ± 1.08 | 7.00 ± 1.13 |
Family CRC history | |||
Presence | 11 (16%) | 5 (20%) | 6 (13%) |
Absence | 52 (74%) | 18 (72%) | 34 (76%) |
Na | 6 (9%) | 2 (8%) | 4 (9%) |
Previous pathologies | |||
Hypertension | 11 (16%) | 7 (28%) | 4 (9%) * |
Diabetes | 6 (9%) | 3 (12%) | 3 (7%) |
Obesity | 28 (40%) | 12 (48%) | 16 (36%) |
Asthma and/or allergies | 12 (17%) | 4 (16%) | 8 (18%) |
None | 14 (20%) | 4 (16%) | 10 (22%) |
Intestinal pathologies | |||
Diarrhea | 1 (1%) | 0 (0%) | 1 (2%) |
Constipation | 9 (13%) | 1 (4%) | 8 (18%) |
Hemorrhoids | 29 (41%) | 6 (24%) | 23 (51%) * |
Fissures | 2 (3%) | 1 (4%) | 1 (2%) |
None | 30 (43%) | 17 (68%) | 13 (29%) * |
Bleeding frequency | |||
Daily | 1 (1%) | 1 (4%) | 0 (0%) |
At least once a week | 0 (0%) | 0 (0%) | 0 (0%) |
Occasionally | 24 (34%) | 8 (32%) | 16 (36%) |
Never | 45 (64%) | 16 (64%) | 29 (64%) |
Rome III Criteria | |||
No discomfort | 49 ± 28 | 50 ± 24 | 49 ± 30 |
Mild discomfort | 31 ± 21 | 33 ± 19 | 29 ± 22 |
Moderate discomfort | 11 ± 12 | 8 ± 10 | 12 ± 14 |
Severe discomfort | 1 ± 7 | 1 ± 2 | 2 ± 9 |
Very severe discomfort | 1 ± 8 | 0 ± 2 | 2 ± 10 |
Na | 7 ± 20 | 8 ± 23 | 7 ± 19 |
Stool frequency a | 7 ± 2 | 7 ± 2 | 7 ± 3 |
Stool consistency | |||
Liquid | 0 (0%) | 0 (0%) | 0 (0%) |
Soft | 42 (60%) | 15 (60%) | 27 (60%) |
Hard | 27 (39%) | 10 (40%) | 17 (38%) |
Food Groups Intake (g/Day) | Total (N = 70) | Gender | |
---|---|---|---|
Male (N = 25) | Female (N = 45) | ||
Cereals and cereals products | 195.09 ± 138.37 | 185.08 ± 106.56 | 200.66 ± 154.09 |
Whole grain cereals | 57.69 ± 118.62 | 23.31 ± 41.01 | 76.78 ± 141.78 |
Milk and dairy products | 392.43 ± 236.26 | 323.14 ± 216.16 | 425.92 ± 242.56 |
Meat and meat products | 147.47 ± 89.62 | 146.89 ± 72.32 | 147.79 ± 98.70 |
White meat | 48.77 ± 37.88 | 48.05 ± 39.05 | 49.16 ± 37.66 |
Red meat | 42.17 ± 30.04 | 47.13 ± 33.94 | 39.42 ± 27.66 |
Processed meat | 58.90 ± 52.99 | 54.00 ± 28.47 | 61.62 ± 62.77 |
Eggs | 43.51 ± 29.53 | 49.23 ± 33.74 | 40.33 ± 26.79 |
Fish | 61.83 ± 36.99 | 63.46 ± 30.00 | 60.93 ± 40.66 |
Seafood | 22.82 ± 19.64 | 22.92 ± 19.16 | 22.77 ± 20.12 |
Oils and fats | 16.18 ± 8.57 | 18.05 ± 9.09 | 15.15 ± 8.19 |
Vegetables | 308.53 ± 179.13 | 262.94 ± 153.23 | 333.86 ± 188.88 |
Legumes | 42.61 ± 76.11 | 49.79 ± 77.89 | 38.62 ± 75.70 |
Potatoes and tubers | 50.38 ± 31.75 | 60.50 ± 32.11 | 44.76 ± 30.46 * |
Fruits | 130.68 ± 90.87 | 156.27 ± 126.20 | 116.47 ± 60.69 |
Nuts and seeds | 13.29 ± 17.60 | 9.12 ± 9.00 | 15.61 ± 20.65 |
Sugar and sweets | 7.45 ± 10.11 | 9.93 ± 12.44 | 6.07 ± 8.39 |
Snacks | 2.09 ± 4.45 | 3.16 ± 4.55 | 1.49 ± 4.32 |
Sauces and condiments | 8.17 ± 7.17 | 8.04 ± 5.25 | 8.24 ± 8.10 |
Other foods | 10.20 ± 14.37 | 14.84 ± 19.64 | 7.62 ± 9.72 * |
Nonalcoholic beverages (mL/day) | 225.86 ± 231.79 | 283.30 ± 325.24 | 193.96 ± 153.74 |
Alcoholic beverages (mL/day) | 133.42 ± 171.11 | 191.02 ± 175.93 | 101.42 ± 161.55 * |
Xenobiotics | Value (N = 70) | Type of Study | |||||
---|---|---|---|---|---|---|---|
Reference Value | Sample Size (Gender) | Age (Years) | Health Status | Country | Reference | ||
Heterocyclic amines (ng/day) | |||||||
MeIQx | 29.48 ± 27.85 | 16.8 (±29.7) | n = 3.699 (MF) | 35–65 | Healthy | DE | [31] a |
102.7 | n = 561 (MF) | >20 | Na | BR | [32] b | ||
DiMeIQx | 8.18 ± 7.96 | 3.0 (±4.5) | n = 3.699 (MF) | 35–65 | Healthy | DE | [31] a |
9.8 | n = 561 (MF) | >20 | Na | BR | [32] b | ||
PhIP | 187.59 ± 257.04 | 41.0 (±117.5) | n = 3.699 (MF) | 35–65 | Healthy | DE | [31] a |
324.3 | n = 561 (MF) | >20 | Na | BR | [32] b | ||
Total HAs | 226.99 ± 285.50 | 69.4 | n = 21.462 (MF) | 35–65 | Na | DE | [33] a |
436.8 | n = 561 (MF) | >20 | Na | BR | [32] b | ||
Polycyclic aromatic hydrocarbons (µg/day) | |||||||
B(a)P | 0.03 ± 0.03 | 0.14 (±0.07) | n = 40.690 (MF) | 35–64 | Na | SP | [34] a |
DiB(a)A | 0.07 ± 0.10 | 0.06 | n = 3.890.240 (M) | 20–65 | Na | SP | [35] c |
Total PAHs | 5.04 ± 3.84 | 8.57 (±2.69) | n = 40.690 (MF) | 35–64 | Na | SP | [34] a |
Nitrates, nitrites, and nitroso compounds | |||||||
Nitrites (mg/day) | 3.14 ± 2.90 | 1.48 (±0.51) | n = 20.095 (MF) | 40–79 | Healthy | UK | [36] a |
NDMA (µg/day) | 0.17 ± 0.14 | 0.06 (±0.05) | n = 20.095 (MF) | 40–79 | Healthy | UK | [36] a |
NPIP (µg/day) | 0.09 ± 0.09 | 72.3 (±19.2) d | n = 20.095 (MF) | 40–79 | Healthy | UK | [36] a |
NPYR (µg/day) | 0.15 ± 0.16 | ||||||
Comb. (ng/day) | 1.71 ± 5.10 | ||||||
Acrylamide (µg/day) | 15.12 ± 11.60 | 20.6 (±12.1) | n = 22.783 (F) | 29–69 | Cases & healthy | SP | [37] a |
Mean Daily Intake | Heterocyclic Amines (ng/Day) | Polycyclic Aromatic Hydrocarbons (μg/Day) | Nitroso Compounds (μg/Day) | Acrylamide (μg/Day) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AαC | IQ | MeIQ | MeIQx | DiMeIQx | PhIP | B(a)P | DiB(a)A | Total PAHs | Nitrates (mg/Day) | Nitrites (mg/Day) | NDMA | NPIP | NPYR | Comb (ng/Day) | Acrylamide | |
BMI (kg/m2) | ||||||||||||||||
Normal weight | 0.01 | 0.15 | 1.79 | 27.92 | 7.88 | 159.69 | 0.03 | 0.06 | 3.89 | 118.39 | 2.85 | 0.16 | 0.08 | 0.14 | 2.80 | 11.96 |
Overweight | 0.03 | 0.11 | 1.48 | 27.24 | 7.26 | 152.55 | 0.03 | 0.07 | 4.88 | 123.03 | 3.43 | 0.18 | 0.10 | 0.16 | 1.25 | 16.36 |
Obese | 0.00 | 0.18 | 1.45 | 37.48 | 9.97 | 330.26 | 0.04 | 0.07 | 7.95 * | 153.24 | 2.91 | 0.16 | 0.08 | 0.13 | 0.83 | 16.17 |
Smoking status | ||||||||||||||||
Current smoker | 0.01 | 0.15 | 1.95 | 35.17 | 10.32 | 177.52 | 0.04 | 0.04 | 4.35 | 110.49 | 2.41 | 0.13 | 0.07 | 0.12 | 1.43 | 21.37 |
Former smoker | 0.01 | 0.14 | 1.46 | 25.88 | 7.57 | 226.07 | 0.03 | 0.09 | 4.82 | 130.36 | 2.73 | 0.14 | 0.07 | 0.11 | 1.11 | 12.16 |
Never smoker | 0.03 | 0.14 | 1.60 | 31.09 | 8.21 | 160.69 | 0.03 | 0.05 | 5.35 | 125.77 | 3.58 | 0.19 | 0.11 | 0.18 | 2.22 | 16.13 |
Exercise | ||||||||||||||||
Active | 0.01 | 0.13 | 1.54 | 29.17 | 9.05 | 210.78 | 0.03 | 0.06 | 3.65 | 110.16 | 2.31 | 0.14 | 0.06 | 0.09 | 1.20 | 15.09 |
Sedentary | 0.02 | 0.14 | 1.60 | 29.66 | 7.69 | 174.71 | 0.03 | 0.07 | 5.82 * | 134.82 | 3.59 | 0.19 | 0.10 * | 0.18 * | 2.00 | 15.15 |
Sleeping | ||||||||||||||||
≥7 h/day | 0.02 | 0.13 | 1.47 | 27.88 | 7.24 | 185.21 | 0.03 | 0.06 | 4.61 | 130.64 | 2.65 | 0.14 | 0.07 | 0.12 | 1.20 | 13.38 |
<7 h/day | 0.02 | 0.15 | 1.86 | 33.51 | 10.51 | 193.55 | 0.03 | 0.09 | 6.14 | 114.43 | 4.35 * | 0.23 * | 0.13 * | 0.21 * | 3.00 | 19.50 * |
Intestinal pathologies | ||||||||||||||||
Constipation | 0.00 | 0.19 | 2.17 | 38.64 | 11.05 | 261.38 | 0.05 | 0.02 | 8.33 | 94.33 | 3.24 | 0.14 | 0.09 | 0.15 | 1.11 | 9.83 |
Regular transit | 0.02 | 0.13 | 1.49 | 28.13 | 7.75 | 176.71 | 0.03 | 0.07 | 4.56 * | 130.68 | 3.12 | 0.17 | 0.09 | 0.15 | 1.80 | 15.91 |
Hemorrhoids | 0.03 | 0.15 | 1.47 | 33.13 | 9.70 | 195.17 | 0.03 | 0.07 | 4.83 | 126.60 | 4.01 | 0.22 | 0.12 | 0.20 | 0.34 | 16.67 |
No hemorrhoids | 0.01 | 0.13 | 1.66 | 26.90 | 7.10 | 182.23 | 0.03 | 0.06 | 5.19 | 125.59 | 2.52 * | 0.13 * | 0.06 * | 0.11 * | 2.68 | 14.03 |
Fissures | 0.05 | 0.40 | 2.73 | 36.88 | 10.96 | 469.58 | 0.02 | 0.04 | 2.72 | 120.76 | 7.87 | 0.37 | 0.24 | 0.39 | 5.00 | 16.54 |
No fissures | 0.02 | 0.13 * | 1.55 | 29.27 | 8.09 | 179.30 | 0.03 | 0.07 | 5.11 | 126.17 | 3.00 * | 0.16 * | 0.08 * | 0.14 * | 1.62 | 15.08 |
Bleeding | ||||||||||||||||
Ever | 0.03 | 0.14 | 1.43 | 28.74 | 8.94 | 180.16 | 0.03 | 0.09 | 4.76 | 124.45 | 3.96 | 0.22 | 0.12 | 0.20 | 0.80 | 15.21 |
Never | 0.01 | 0.14 | 1.66 | 29.90 | 7.75 | 191.72 | 0.03 | 0.05 | 5.20 | 126.88 | 2.67 | 0.14 * | 0.07 | 0.12 | 2.22 | 15.08 |
Rome III Criteria | ||||||||||||||||
Moderate or greater a | 0.00 | 0.20 | 1.89 | 36.92 | 19.70 | 258.23 | 0.03 | 0.01 | 10.56 | 82.01 | 0.54 | 0.03 | 0.01 | 0.02 | 5.00 | 10.56 |
Never or mild b | 0.02 | 0.14 | 1.57 | 29.27 | 7.84 * | 185.51 | 0.03 | 0.07 | 4.88 * | 127.31 | 3.21 | 0.17 | 0.09 | 0.15 | 1.62 | 15.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zapico, A.; Ruiz-Saavedra, S.; Gómez-Martín, M.; de los Reyes-Gavilán, C.G.; González, S. Pilot Study for the Dietary Assessment of Xenobiotics Derived from Food Processing in an Adult Spanish Sample. Foods 2022, 11, 470. https://doi.org/10.3390/foods11030470
Zapico A, Ruiz-Saavedra S, Gómez-Martín M, de los Reyes-Gavilán CG, González S. Pilot Study for the Dietary Assessment of Xenobiotics Derived from Food Processing in an Adult Spanish Sample. Foods. 2022; 11(3):470. https://doi.org/10.3390/foods11030470
Chicago/Turabian StyleZapico, Aida, Sergio Ruiz-Saavedra, María Gómez-Martín, Clara G. de los Reyes-Gavilán, and Sonia González. 2022. "Pilot Study for the Dietary Assessment of Xenobiotics Derived from Food Processing in an Adult Spanish Sample" Foods 11, no. 3: 470. https://doi.org/10.3390/foods11030470
APA StyleZapico, A., Ruiz-Saavedra, S., Gómez-Martín, M., de los Reyes-Gavilán, C. G., & González, S. (2022). Pilot Study for the Dietary Assessment of Xenobiotics Derived from Food Processing in an Adult Spanish Sample. Foods, 11(3), 470. https://doi.org/10.3390/foods11030470