Quantitative Determination of Bisphenol A and Its Congeners in Plant-Based Beverages by Liquid Chromatography Coupled to Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Real Samples
2.3. Sample Preparation
2.3.1. Sample Pretreatment
2.3.2. Sample Extraction Procedure by SPE
2.4. LC-ESI-QqQ-MS/MS Analysis
2.5. Statistical Analysis
2.6. Method Validation
- A = peak area obtained by adding the analytes to solvent consisted of ultrapure water and MeOH in the ratio of 50/50 (v/v).
- B = peak area obtained by spiking plant-based beverage extracts with the analytes.
3. Results and Discussion
3.1. Sample Preparation and LC/ESI-QqQ MS/MS
3.2. Method Validation
3.3. BP Contamination in Plant-Based Beverages
3.4. Chronic Risk Assessment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zandona, L.; Lima, C.; Lannes, S. Plant-Based Milk Substitutes: Factors to Lead to Its Use and Benefits to Human Health. In Milk Substitutes—Selected Aspects, 1st ed.; Ziarno, M., Ed.; Intech Open, University of Life Sciences: Warsaw, Poland, 2021; pp. 1–17. [Google Scholar]
- Astolfi, M.L.; Marconi, E.; Protano, C.; Canepari, S. Comparative elemental analysis of dairy milk and plant-based milk alternatives. Food Control 2020, 116, 1–11. [Google Scholar] [CrossRef]
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-based milk alternatives an emerging segment of functional beverages: A review. J. Food Sci. Technol. 2016, 53, 3408–3423. [Google Scholar] [CrossRef] [PubMed]
- Rashid, H.; Alqahtani, S.S.; Alshahrani, S. Diet: A source of endocrine disruptors. Endocr. Metab. Immune Disord. Drug Targets 2020, 20, 633–645. [Google Scholar] [CrossRef] [PubMed]
- Abraham, A.; Chakraborty, P. A review on sources and health impacts of bisphenol A. Rev. Environ. Health 2020, 35, 201–210. [Google Scholar] [CrossRef]
- Provvisiero, D.P.; Pivonello, C.; Muscogiuri, G.; Negri, M.; De Angelis, C.; Simeoli, C.; Pivonello, R.; Colao, A. Influence of Bisphenol A on type 2 diabetes mellitus. Review. Int. J. Environ. Res. Public Health 2016, 613, 989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braun, J.M. Early life exposure to endocrine disrupting chemicals and childhood obesity and neurodevelopment. Nat. Rev. Endocrinol. 2017, 13, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Liu, H.; Wua, J.; Yuan, L.; Wang, Y.; Du, X.; Wang, R.; Marwa, P.W.; Petlulu, P.; Chen, X.; et al. The adverse health effects of bisphenol A and related toxicity mechanisms. Environ. Res. 2019, 176, 108575–108591. [Google Scholar] [CrossRef]
- Feng, D.; Zhang, H.; Jiang, X.; Zou, J.; Li, Q.; Mai, H.; Su, D.; Ling, W.; Feng, X. Bisphenol A exposure induces gut microbiota dysbiosis and consequent activation of gut-liver axis leading to hepatic steatosis in CD-1 mice. Environ. Pollut. 2020, 265, 114880–114891. [Google Scholar] [CrossRef] [PubMed]
- Predieri, B.; Bruzzi, P.; Bigi, E.; Cianci, S.; Made, S.E.; Lucaccioni, L.; Iughetti, L. Endocrine disrupting chemicals and type 1 diabetes. Int. J. Mol. Sci. 2020, 22, 2937. [Google Scholar] [CrossRef]
- Hansen, J.B.; Bilenberg, N.; Timmermann, C.A.G.; Jensen, R.C.; Frederiksen, H.; Andersson, A.; Kyhl, H.B.; Jensen, T.K. Prenatal exposure to bisphenol A and autistic- and ADHD-related symptoms in children aged 2 and 5 years from the Odense Child Cohort. J. Environ. Health 2021, 20, 24. [Google Scholar] [CrossRef] [PubMed]
- Vogel, S. The politics of plastics: The making and unmaking of Bisphenol A safety. Am. J. Public Health 2019, 99, 559–566. [Google Scholar] [CrossRef]
- Chen, D.; Kannan, K.; Tan, H.; Zheng, Z.; Feng, Y.; Wu, L.; Widelka, M. Bisphenol analogues other than BPA: Environmental occurrence, human exposure, and toxicity—A review. Environ. Sci. Technol. 2016, 50, 5438–5453. [Google Scholar] [CrossRef]
- Pelch, K.; Wignall, J.A.; Goldstone, A.E.; Ross, P.K.; Blain, R.B.; Shapiro, A.J.; Holmgren, S.D.; Hsieh, J.H.; Svoboda, D.; Auerbach, S.S.; et al. A scoping review of the health and toxicological activity of bisphenol A (BPA) structural analogues and functional alternatives. Toxicology 2019, 424, 152235–152252. [Google Scholar] [CrossRef] [PubMed]
- Usman, A.; Ikhlas, S.; Ahmad, M. Occurrence, toxicity and endocrine disrupting potential of Bisphenol-B and Bisphenol-F: A mini-review. Toxicol. Lett. 2019, 312, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Siracusa, J.S.; Yina, L.; Measela, E.; Lianga, S.; Yu, X. Effects of bisphenol A and its analogs on reproductive health: A mini review. Reprod. Toxicol. 2018, 79, 96–123. [Google Scholar] [PubMed]
- Ullah, A.; Pirzada, M.; Jahan, S.; Ullah, H.; Shaheen, G.; Rehman, H.; Siddiqui, M.F.; Butt, M.A. Effect of bisphenol S exposure on male reproductive system of rats: A histological and biochemical study. Chemosphere 2018, 209, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Grumetto, L.; Gennari, O.; Montesano, D.; Ferracane, R.; Ritieni, A.; Albrizio, S.; Barbato, F. Determination of five bisphenols in commercial milk samples by liquid chromatography coupled to fluorescence detection. J. Food Prot. 2013, 76, 1590–1596. [Google Scholar] [CrossRef] [PubMed]
- Fattore, M.; Russo, G.; Barbato, F.; Grumetto, L.; Albrizio, S. Monitoring of bisphenols in canned tuna from Italian markets. Food Chem. Toxicol. 2015, 83, 68–75. [Google Scholar] [CrossRef]
- Gallo, P.; Di Marco Pisciottano, I.; Fattore, M.; Rimoli, M.G.; Seccia, S.; Albrizio, S. A method to determine BPA, BPB, and BPF levels in fruit juices by liquid chromatography coupled to tandem mass spectrometry. Food Addit. Contam. Part A 2019, 36, 1871–1881. [Google Scholar] [CrossRef] [PubMed]
- Mercogliano, R.; Santonicola, S.; Albrizio, S.; Ferrante, M.C. Occurrence of bisphenol A in the milk chain: A monitoring model for risk assessment at a dairy company. J. Dairy Sci. 2021, 104, 5125–5132. [Google Scholar] [CrossRef]
- Bolognesi, C.; Castle, L.; Cravedi, J.P.; Engel, K.H.; Fowler, P.A.F.; Franz, R.; Grob, K.; Gürtler, R.; Husøy, T.; Mennes, W.; et al. Scientific opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs: Executive summary. EFSA J. 2015, 13, 3978. [Google Scholar] [CrossRef]
- Ballesteros-Gomez, A.; Rubio, S.; Pèrez-Bendito, D. Analytical methods for the determination of bisphenol A in food. J. Chromatogr. A 2009, 1216, 449–469. [Google Scholar] [CrossRef] [PubMed]
- Gallo, P.; Di Marco Pisciottano, I.; Esposito, F.; Fasano, E.; Scognamiglio, G.; Mita, G.D.; Cirillo, T. Determination of BPA, BPB, BPF, BADGE and BFDGE in canned energy drinks by molecularly imprinted polymer cleaning up and UPLC with fluorescence detection. Food Chem. 2017, 220, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Strategies for evaluating the matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal. Chem. 2003, 75, 3019–3030. [Google Scholar] [CrossRef]
- Siddique, M.A.; Harrison, S.M.; Monahan, F.J.; Cummins, E.; Brunton, N.P. Bisphenol A and metabolites in meat and meat products: Occurrence, toxicity, and recent development in analytical methods. Foods 2021, 10, 714. [Google Scholar] [CrossRef]
- Di Marco Pisciottano, I.; Albrizio, S.; Guadagnuolo, G.; Gallo, P. Development and validation of a method for determination of 17 endocrine disrupting chemicals in milk, water, blood serum and feed by UHPLC-MS/MS. Food Addit. Contam. Part A 2022, 39, 1744–1758. [Google Scholar] [CrossRef]
- Fürst, P.; Milana, M.R.; Pfaff, K.; Tlustos, C.; Vleminckx, C.; Arcella, D.; Barthélémy, E.; Colombo, P.; Goumperis, T.; Pasinato, L.; et al. Scientific technical assistance to RASFF on chemical contaminants: Risk evaluation of chemical contaminants in food in the context of RASFF notifications. EFSA Support. Publ. 2019, 16, 1–108. [Google Scholar] [CrossRef]
Time | Ultrapure Water with 0.01% Acetic Acid | MeOH Water with 0.01% Acetic Acid |
---|---|---|
0.0 | 60.00 | 40.00 |
0.5 | 60.00 | 40.00 |
3.0 | 5.0 | 95.00 |
4.0 | 5.0 | 95.00 |
Production | Q1 m/z | Collision Energy | Fragmentor |
---|---|---|---|
BPA-Q | 227.2 | −20 | 162 |
BPA-q | 227.2 | −28 | 162 |
BPB-Q | 241.3 | −40 | 110 |
BPB-q | 241.3 | −45 | 110 |
BPS-Q | 249.3 | −30 | 130 |
BPS-q | 249.3 | −30 | 130 |
Compound | Spiking Level (ng/mL) | Mean Percentage Recovery (%) 1 | Repeatability (RSDr, %) 2 | Intermediate Precision (RSDR, %) 1 |
---|---|---|---|---|
BPA | 10.0 | 98.0 | 11.0 | 11.1 |
25.0 | 105.0 | 8.7 | 8.8 | |
BPB | 10.0 25.0 | 98.0 101.3 | 6.4 12.1 | 8.1 12.3 |
BPS | 10.0 25.0 | 85.3 78.0 | 13.2 10.2 | 14.1 10.3 |
Sample | Taste | Brand * | BPA (ng/mL) | BPB (ng/mL) | BPS (ng/mL) |
---|---|---|---|---|---|
1 | Almond | B1 | <LOQ | <LOD | <LOD |
2 | B2 | 1.15 | <LOD | <LOD | |
3 | B3 | <LOQ | <LOD | <LOD | |
4 | B5 | 7.25 | <LOD | <LOD | |
5 | B6 | 1.14 | <LOD | <LOD | |
6 | B7 | <LOD | <LOD | <LOD | |
7 | B10 | 2.6 | <LOD | <LOD | |
8 | Oats | B1 | 3.75 | <LOD | <LOD |
9 | B2 | <LOQ | <LOD | <LOD | |
10 | B3 | <LOD | <LOD | <LOD | |
11 | B4 | <LOD | <LOD | <LOD | |
12 | B5 | 18.17 | <LOD | <LOD | |
13 | B6 | <LOD | <LOD | <LOD | |
14 | B8 | 1.00 | <LOD | <LOD | |
15 | B9 | <LOD | <LOD | <LOD | |
16 | Rice | B2 | 1.50 | <LOD | <LOD |
17 | B3 | <LOD | <LOD | <LOD | |
18 | B4 | <LOD | <LOD | <LOD | |
19 | B7 | <LOD | <LOD | <LOD | |
20 | B8 | <LOD | <LOD | <LOD | |
21 | B9 | <LOQ | <LOD | <LOD | |
22 | B10 | <LOQ | <LOD | <LOD | |
23 | B11 | 1.85 | <LOD | <LOD | |
24 | Soya | B1 | <LOD | 5.17 | <LOD |
25 | B2 | <LOD | <LOD | <LOD | |
26 | B3 | <LOD | <LOD | <LOD | |
27 | B4 | <LOD | <LOD | <LOD | |
28 | B6 | <LOQ | <LOD | <LOD | |
29 | B7 | <LOQ | <LOD | <LOD | |
30 | B8 | <LOD | <LOD | <LOD | |
31 | B9 | 2.37 | <LOD | <LOD | |
32 | B10 | <LOD | <LOD | <LOD | |
33 | Coconut | B1 | <LOD | <LOD | <LOD |
34 | B7 | 3.7 | <LOD | <LOD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schiano, M.E.; Sodano, F.; Cassiano, C.; Fiorino, F.; Seccia, S.; Rimoli, M.G.; Albrizio, S. Quantitative Determination of Bisphenol A and Its Congeners in Plant-Based Beverages by Liquid Chromatography Coupled to Tandem Mass Spectrometry. Foods 2022, 11, 3853. https://doi.org/10.3390/foods11233853
Schiano ME, Sodano F, Cassiano C, Fiorino F, Seccia S, Rimoli MG, Albrizio S. Quantitative Determination of Bisphenol A and Its Congeners in Plant-Based Beverages by Liquid Chromatography Coupled to Tandem Mass Spectrometry. Foods. 2022; 11(23):3853. https://doi.org/10.3390/foods11233853
Chicago/Turabian StyleSchiano, Marica Erminia, Federica Sodano, Chiara Cassiano, Ferdinando Fiorino, Serenella Seccia, Maria Grazia Rimoli, and Stefania Albrizio. 2022. "Quantitative Determination of Bisphenol A and Its Congeners in Plant-Based Beverages by Liquid Chromatography Coupled to Tandem Mass Spectrometry" Foods 11, no. 23: 3853. https://doi.org/10.3390/foods11233853
APA StyleSchiano, M. E., Sodano, F., Cassiano, C., Fiorino, F., Seccia, S., Rimoli, M. G., & Albrizio, S. (2022). Quantitative Determination of Bisphenol A and Its Congeners in Plant-Based Beverages by Liquid Chromatography Coupled to Tandem Mass Spectrometry. Foods, 11(23), 3853. https://doi.org/10.3390/foods11233853