Characterization of Flavor Compounds in Distilled Spirits: Developing a Versatile Analytical Method Suitable for Micro-Distilleries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Commercial Samples of Distilled Spirits and Chemicals
2.2. Liquid-Liquid Extraction
2.3. Solid Phase Extraction
2.4. Solid Phase Microextraction
2.5. Stir Bar Sorptive Extraction/Headspace Sorptive Extraction
2.6. GC-MS/FID
2.7. Statistical Analysis
3. Results and Discussion
3.1. Model Spirit Solution
3.2. Extraction Technique Pre-Optimization and Comparison
3.3. SPME Time and Temperature Optimization
3.4. Analysis of Gin, Rum, and Whiskey Samples by HS-SPME-GC-MS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Regulation (EU) 2019/787 of the European Parliament and of the Council of 17 April 2019 on the Definition, Description, Presentation and Labelling of Spirit Drinks, the Use of the Names of Spirit Drinks in the Presentation and Labelling of Other Food-Stuffs, the Protection of Geographical Indications for Spirit Drinks, the Use of Ethyl alcohol and Distillates of Agricultural Origin in Alcoholic Beverages, and Repealing Regulation (EC) No 110/2008, Vol. 130. 2019. Available online: http://data.europa.eu/eli/reg/2019/787/oj/eng (accessed on 30 September 2021).
- Berry, D.R.; Watson, D.C. Production of organoleptic compounds. In Yeast Biotechnology; Springer: Dordrecht, The Netherlands, 1987; pp. 345–368. [Google Scholar] [CrossRef]
- Berry, D.R. The physiology and microbiology of Scotch whisky production. Prog. Ind. Microbiol. 1981, 19, 199–243. [Google Scholar]
- Sahu, L.; Panda, S.K. Innovative Technologies and Implications in Fermented Food and Beverage Industries: An Overview. In Innovations in Technologies for Fermented Food and Beverage Industries; Panda, S.K., Shetty, P.H., Eds.; Springer: Cham, Switzerland, 2018; pp. 1–23. [Google Scholar]
- Wiśniewska, P.; Śliwińska-Bartel, M.; Dymerski, T.; Wardencki, W.; Namiesnik, J. Application of Gas Chromatography to Analysis of Spirit-Based Alcoholic Beverages. Crit. Rev. Anal. Chem. 2014, 45, 201–225. [Google Scholar] [CrossRef]
- Salo, P.; Nykänen, L.; Suomalainen, H. Odor thresholds and relative intensities of volatile aroma components in an artificial beverage imitating whisky. J. Food Sci. 1972, 37, 394–398. [Google Scholar] [CrossRef]
- Franitza, L.; Granvogl, M.; Schieberle, P. Characterization of the Key Aroma Compounds in Two Commercial Rums by Means of the Sensomics Approach. J. Agric. Food Chem. 2016, 64, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Buglass, A.J. Extraction and Focusing Methods in Sample Preparation. Handb. Alcohol. Beverages Tech. Anal. Nutr. Asp. 2011, 2, 647–704. [Google Scholar] [CrossRef]
- Alcarde, A.R.; Souza, L.M.; Bortoletto, A.M. Formation of volatile and maturation-related congeners during the aging of sugarcane spirit in oak barrels. J. Inst. Brew. 2014, 120, 529–536. [Google Scholar] [CrossRef]
- Apostolopoulou, A.; Flouros, A.; Demertzis, P.; Akrida-Demertzi, K. Differences in concentration of principal volatile constituents in traditional Greek distillates. Food Control 2005, 16, 157–164. [Google Scholar] [CrossRef]
- Caldeira, M.; Rodrigues, F.; Perestrelo, R.; Marques, J.C.; Câmara, J. Comparison of two extraction methods for evaluation of volatile constituents patterns in commercial whiskeys: Elucidation of the main odour-active compounds. Talanta 2007, 74, 78–90. [Google Scholar] [CrossRef] [Green Version]
- De León-Rodríguez, A.; González-Hernández, L.; de la Rosa, A.P.B.; Escalante-Minakata, A.P.; López, M.G. Characterization of Volatile Compounds of Mezcal, an Ethnic Alcoholic Beverage Obtained from Agave salmiana. J. Agric. Food Chem. 2006, 54, 1337–1341. [Google Scholar] [CrossRef]
- Delgado, R.; Durán, E.; Castro, R.; Natera, R.; Barroso, C.G. Development of a stir bar sorptive extraction method coupled to gas chromatography-mass spectrometry for the analysis of volatile compounds in Sherry brandy. Anal. Chim. Acta 2010, 672, 130–136. [Google Scholar] [CrossRef]
- López-Vázquez, C.; Bollaín, M.H.; Berstsch, K.; Orriols, I. Fast determination of principal volatile compounds in distilled spirits. Food Control 2010, 21, 1436–1441. [Google Scholar] [CrossRef]
- Niu, Y.; Yu, D.; Xiao, Z.; Zhu, J.; Song, S.; Zhu, G. Use of Stir Bar Sorptive Extraction and Thermal Desorption for Gas Chromatography-Mass Spectrometry Characterization of Selected Volatile Compounds in Chinese Liquors. Food Anal. Methods 2014, 8, 1771–1784. [Google Scholar] [CrossRef]
- Pino, J.A.; Tolle, S.; Gök, R.; Winterhalter, P. Characterisation of odour-active compounds in aged rum. Food Chem. 2012, 132, 1436–1441. [Google Scholar] [CrossRef] [PubMed]
- Poisson, L.; Schieberle, P. Characterization of the Key Aroma Compounds in an American Bourbon Whisky by Quantitative Measurements, Aroma Recombination, and Omission Studies. J. Agric. Food Chem. 2008, 56, 5820–5826. [Google Scholar] [CrossRef]
- Stupak, M.; Kocourek, V.; Kolouchova, I.; Hajslova, J. Rapid approach for the determination of alcoholic strength and overall quality check of various spirit drinks and wines using GC–MS. Food Control 2017, 80, 307–313. [Google Scholar] [CrossRef]
- Vichi, S.; Riu-Aumatell, M.; Mora-Pons, M.; Buxaderas, S.; López-Tamames, E. Characterization of Volatiles in Different Dry Gins. J. Agric. Food Chem. 2005, 53, 10154–10160. [Google Scholar] [CrossRef]
- Zhao, Y.P.; Zheng, X.P.; Song, P.; Sun, Z.L.; Tian, T.T. Characterization of Volatiles in the Six Most Well-Known Distilled Spirits. J. Am. Soc. Brew. Chem. 2013, 71, 161–169. [Google Scholar] [CrossRef]
- Maga, J.A. The contribution of wood to the flavor of alcoholic beverages. Food Rev. Int. 1989, 5, 39–99. [Google Scholar] [CrossRef]
- van Gemert, L.J. Compilations of Odour Threshold Values in Air, Water and Other Media; Boelens Aroma Chemical Information Service: Huizen, The Netherlands, 2003. [Google Scholar]
- Gao, W.; Fan, W.; Xu, Y. Characterization of the Key Odorants in Light Aroma Type Chinese Liquor by Gas Chromatography–Olfactometry, Quantitative Measurements, Aroma Recombination, and Omission Studies. J. Agric. Food Chem. 2014, 62, 5796–5804. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; Marć, M.; Szczepańska, N.; Namiesnik, J. New Polymeric Materials for Solid Phase Extraction. Crit. Rev. Anal. Chem. 2017, 47, 373–383. [Google Scholar] [CrossRef]
- Boothroyd, E.; Linforth, R.S.T.; Jack, F.; Cook, D.J. Origins of the perceived nutty character of new-make malt whisky spirit. J. Inst. Brew. 2013, 120, 16–22. [Google Scholar] [CrossRef]
- Campo, E.; Cacho, J.; Ferreira, V. Solid phase extraction, multidimensional gas chromatography mass spectrometry determination of four novel aroma powerful ethyl esters: Assessment of their occurrence and importance in wine and other alcoholic beverages. J. Chromatogr. A 2007, 1140, 180–188. [Google Scholar] [CrossRef] [PubMed]
- González-Robles, I.W.; Cook, D.J. The impact of maturation on concentrations of key odour active compounds which determine the aroma of tequila. J. Inst. Brew. 2016, 122, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Culleré, L.; Bueno, M.; Cacho, J.; Ferreira, V. Selectivity and efficiency of different reversed-phase and mixed-mode sorbents to preconcentrate and isolate aroma molecules. J. Chromatogr. A 2010, 1217, 1557–1566. [Google Scholar] [CrossRef] [PubMed]
- Alberts, P.; Stander, M.A.; De Villiers, A. Development of a novel solid-phase extraction, LC-MS/MS method for the analysis of ethyl carbamate in alcoholic beverages: Application to South African wine and spirits. Food Addit. Contam. Part A 2011, 28, 826–839. [Google Scholar] [CrossRef] [PubMed]
- Biernacka, P.; Wardencki, W. Volatile composition of raw spirits of different botanical origin. J. Inst. Brew. 2012, 118, 393–400. [Google Scholar] [CrossRef]
- Capobiango, M.; Mastello, R.B.; Chin, S.-T.; Oliveira, E.D.S.; Cardeal, Z.D.L.; Marriott, P.J. Identification of aroma-active volatiles in banana Terra spirit using multidimensional gas chromatography with simultaneous mass spectrometry and olfactometry detection. J. Chromatogr. A 2015, 1388, 227–235. [Google Scholar] [CrossRef]
- Ebeler, S.E.; Terrien, M.B.; Butzke, C.E. Analysis of brandy aroma by solid-phase microextraction and liquid-liquid extraction. J. Sci. Food Agric. 2000, 80, 625–630. [Google Scholar] [CrossRef]
- Hjelmeland, A.K.; Wylie, P.L.; Ebeler, S.E. A comparison of sorptive extraction techniques coupled to a new quantitative, sensitive, high throughput GC–MS/MS method for methoxypyrazine analysis in wine. Talanta 2016, 148, 336–345. [Google Scholar] [CrossRef]
- Ruvalcaba, J.E.; Durán-Guerrero, E.; Barroso, C.G.; Castro, R. Development of Head Space Sorptive Extraction Method for the Determination of Volatile Compounds in Beer and Comparison with Stir Bar Sorptive Extraction. Foods 2020, 9, 255. [Google Scholar] [CrossRef]
- Liska, I. On-line versus off-line solid-phase extraction in the determination of organic contaminants in water: Advantages and limitations. J. Chromatogr. A 1993, 655, 163–176. [Google Scholar] [CrossRef]
- Padilla-Sánchez, J.A.; Plaza-Bolaños, P.; Frenich, A.G. Applications and Strategies Based on Gas Chromatography–Low-Resolution Mass Spectrometry (GC–LRMS) for the Determination of Residues and Organic Contaminants in Environmental Samples. Compr. Anal. Chem. 2013, 61, 181–202. [Google Scholar] [CrossRef]
- Leclercq, S.; Milo, C.; Reineccius, G.A. Effects of Cross-Linking, Capsule Wall Thickness, and Compound Hydrophobicity on Aroma Release from Complex Coacervate Microcapsules. J. Agric. Food Chem. 2009, 57, 1426–1432. [Google Scholar] [CrossRef] [PubMed]
- Pawliszyn, J. Handbook of Solid Phase Microextraction; Chemical Industry Press: Beijing, China, 2009. [Google Scholar]
- Oprean, R.; Oprean, L.; Tamas, M.; Sandulescu, R.; Roman, L. Essential oils analysis. II. Mass spectra identification of terpene and phenylpropane derivatives. J. Pharm. Biomed. Anal. 2001, 24, 1163–1168. [Google Scholar] [CrossRef]
- Hodel, J.; Burke, M.; Hill, A.E. Influence of distillation parameters on the extraction of Juniperus communis L. in vapour infused gin. J. Inst. Brew. 2020, 126, 184–193. [Google Scholar] [CrossRef]
- Câmara, J.; Marques, J.; Perestrelo, R.; Rodrigues, F.; Oliveira, L.; Andrade, P.; Caldeira, M. Comparative study of the whisky aroma profile based on headspace solid phase microextraction using different fibre coatings. J. Chromatogr. A 2007, 1150, 198–207. [Google Scholar] [CrossRef] [Green Version]
- Da Porto, C.; Decorti, D.; Tubaro, F. Evaluation of volatile compounds and antioxidant capacity of some commercial rums from Dominican republic. Int. J. Food Sci. Technol. 2011, 46, 988–993. [Google Scholar] [CrossRef]
- Srivastava, R.; Bousquières, J.; Cepeda-Vázquez, M.; Roux, S.; Bonazzi, C.; Rega, B. Kinetic study of furan and furfural generation during baking of cake models. Food Chem. 2018, 267, 329–336. [Google Scholar] [CrossRef]
- Zdarsky, J.; Rehor, J.; Bretschneider, R. Method of Post-Harvest Treatment of Sugar Cane. U.S. Patent 3,975,204, 17 August 1976. [Google Scholar]
Chemical Class | Compound | CAS | Concentration (mg/L) | Mean Odor Threshold in Water (mg/L) a |
---|---|---|---|---|
Alcohol | 2-phenylethanol | 60-12-8 | 7.31 | 1.331 |
decanol | 112-30-1 | 0.114 | 0.047 | |
Ester | ethyl hexanoate | 123-66-0 | 17.4 | 0.00186 |
diethyl succinate | 123-25-1 | 3.78 | 353 b | |
2-phenylethyl acetate | 103-45-7 | 0.457 | 0.249 | |
ethyl decanoate | 110-38-3 | 7.45 | 1.299 | |
Lactone | sotolon | 28664-35-9 | 0.000938 | 0.00565 |
(Z)-whiskey lactone | 80041-00-5 | 0.69 | 0.035 c | |
(E)-whiskey lactone | 39638-67-0 | 0.31 | 0.05 d | |
Carbonyl | hexanal | 66-25-1 | 0.132 | 0.0501 |
benzaldehyde | 100-52-7 | 7.98 | 1.72 | |
2-octanone | 111-13-7 | 0.261 | 0.0418 | |
(E)-β-damascenone | 23726-93-4 | 0.0469 | 0.00125 | |
Acetal | 1,1,3-triethoxipropane | 7789-92-6 | 0.103 | 3.70 b |
Acid | decanoic acid | 334-48-5 | 5.56 | 5.464 |
Phenol | vanillin | 121-33-5 | 2.86 | 0.301 |
Furan | furfural | 98-01-1 | 18.2 | 9.602 |
Pyrazine | 2,3,5-trimethylpyrazine | 14667-55-1 | 0.154 | 0.216 |
Sulfur compound | dimethyl trisulfide | 3658-80-8 | 0.0595 | 0.00003 |
Aromatic | o-xylene | 95-47-6 | 0.313 | 0.45 |
Monoterpene | α-pinene | 80-56-8 | 4.02 | 0.296 |
Oxygenated monoterpene | linalool | 78-70-6 | 5.28 | 0.0108 |
Sesquiterpene | β-caryophyllene | 87-44-5 | 0.679 | 0.461 |
Oxygenated sesquiterpene | (Z)-nerolidol | 3790-78-1 | 0.0387 | 0.1 |
Total | 24 compounds |
Extraction Technique | LLE | SPE | SPME | SBSE | HSSE |
---|---|---|---|---|---|
Detected compounds (/24) | 23 | 22 | 21 | 22 | 22 |
Handling time * | 3 h | 1 h | 0.2 h | 0.2 h | |
Sample amount | 50 mL | 13 mL | 3 mL | 3 mL | |
Solvent amount | 200 mL | 10 mL | - | - | |
Quantitative analysis | +++ | +++ | + | + | |
Automation | Low | High | High | Moderate | |
Cost per analysis | Low | Low | Moderate | Moderate | |
Cost of instrumentation | Low | High | Moderate | High |
Boiling Point (°C) | Log P (o/w) | |
---|---|---|
α-pinene | 155–156 | 4.830 a |
furfural | 161–162 | 0.410 a |
β-caryophyllene | 254–257 | 6.777 a |
(E)-β-damascenone | 274–276 | 4.120 b |
Chemical Class | Compound | exp. RI | th. RI a | Gin b | Rum b | Whiskey b |
---|---|---|---|---|---|---|
alcohol | 2-methyl-1-propanol | 623 | 624 | - | + | + |
3-methyl-1-butanol | 736 | 736 | - | ++ | + | |
2-methyl-1-butanol | 738 | 739 | - | ++ | + | |
octanol | 1068 | 1070 | - | tr | tr | |
2-phenylethanol | 1109 | 1116 | - | - | + | |
decanol | 1268 | 1272 | - | - | + | |
dodecanol | 1452 | 1474 | - | tr | + | |
tetradecanol | 1678 | 1676 | - | - | + | |
hexadecanol | 1870 | 1880 | - | - | tr | |
ester | ethyl acetate | 611 | 612 | - | + | + |
ethyl propanoate | 716 | 710 | - | tr | tr | |
ethyl 2-methylpropanoate | 754 | 756 | - | - | tr | |
2-methylpropyl acetate | 771 | 772 | - | tr | tr | |
ethyl butanoate | 801 | 802 | - | tr | tr | |
ethyl 2-methylbutanoate | 847 | 849 | - | - | tr | |
ethyl 3-methylbutanoate | 849 | 853 | - | tr | tr | |
3-methylbutyl acetate | 873 | 872 | - | + | + | |
2-methylbutyl acetate | 875 | 879 | - | tr | tr | |
ethyl (E)-2-methyl-2-butenoate | 937 | 939 | - | - | tr | |
ethyl hexanoate | 995 | 999 | tr | ++ | + | |
hexyl acetate | 1010 | 1011 | - | - | tr | |
ethyl heptanoate | 1094 | 1098 | - | + | tr | |
3-methylbutyl angelate | 1144 | 1153 | tr | - | - | |
2-methylpropyl hexanoate | 1146 | 1149 | - | - | tr | |
benzyl acetate | 1153 | 1164 | + | - | - | |
ethyl benzoate | 1157 | 1172 | - | tr | tr | |
diethyl succinate | 1169 | 1181 | - | tr | - | |
ethyl octanoate | 1195 | 1196 | - | ++++ | +++ | |
octyl acetate | 1206 | 1210 | tr | - | tr | |
3-methylbutyl hexanoate | 1238 | 1250 | - | tr | tr | |
ethyl phenylacetate | 1239 | 1247 | - | - | tr | |
2-phenylethyl acetate | 1244 | 1258 | - | tr | + | |
2-methylbutyl hexanoate | 1249 | 1247 | - | - | tr | |
ethyl nonanoate | 1284 | 1295 | - | + | + | |
2-methylpropyl octanoate | 1344 | 1348 | - | - | tr | |
ethyl 9-decenoate | 1370 | 1388 | - | ++ | + | |
ethyl decanoate | 1392 | 1396 | - | +++++ | +++++ | |
decyl acetate | 1421 | 1409 | - | - | + | |
3-methylbutyl octanoate | 1424 | 1446 | - | + | + | |
2-methylbutyl octanoate | 1427 | 1449 | - | + | + | |
ethyl undecanoate | 1473 | 1494 | - | tr | + | |
propyl decanoate | 1491 | 1492 | - | - | tr | |
2-methylpropyl decanoate | 1523 | 1546 | - | + | + | |
methyl dodecanoate | 1524 | 1526 | - | - | tr | |
(Z)-3-hexenyl benzoate | 1568 | 1570 | tr | - | - | |
ethyl dodecanoate | 1599 | 1594 | - | ++ | ++++ | |
dodecyl acetate | 1614 | 1607 | - | - | tr | |
2-phenylethyl hexanoate | 1640 | 1650 | - | tr | tr | |
3-methylbutyl decanoate | 1645 | 1645 | - | ++ | + | |
2-methylbutyl decanoate | 1651 | 1647 | - | tr | + | |
propyl dodecanoate | 1692 | 1685 | - | - | tr | |
ethyl tridecanoate | 1696 | 1687 | - | - | tr | |
methyl tetradecanoate | 1722 | 1725 | tr | - | - | |
benzyl benzoate | 1757 | 1763 | tr | - | - | |
octyl octanoate | 1776 | 1779 | - | tr | - | |
ethyl tetradecanoate | 1794 | 1793 | - | + | + | |
isopropyl myristate | 1824 | 1825 | tr | + | - | |
2-phenylethyl ester + 3-methylbutyl dodecanoate | 1842 | - + 1847 | - | + | - | |
2-phenylethyl octanoate | 1846 | 1851 | - | - | tr | |
methyl hexadecanoate | 1924 | 1926 | tr | - | - | |
ethyl 9-hexadecenoate | 1975 | 1976 | - | - | + | |
ethyl hexadecanoate | 1993 | 1993 | tr | + | tr | |
lactone | γ-butyrolactone | 913 | 916 | - | - | tr |
(E)-whiskeylactone | 1308 | 1302 | - | tr | tr | |
carbonyl | hexanal | 799 | 801 | - | - | tr |
benzaldehyde | 953 | 962 | - | tr | tr | |
2-nonanone | 1086 | 1092 | - | - | tr | |
nonanal | 1098 | 1104 | tr | + | tr | |
decanal | 1192 | 1206 | tr | + | - | |
2-decanone | 1285 | 1294 | + | - | - | |
2-undecanone | 1288 | 1294 | - | - | + | |
undecanal | 1301 | 1307 | - | - | tr | |
β-damascenone | 1365 | 1386 | - | + | tr | |
acetal | diethoxymethane | 700 | 658 | - | tr | - |
1,1-diethoxyethane | 724 | 728 | tr | - | tr | |
1,1-diethoxybutane | 921 | 901 | - | tr | tr | |
acid | acetic acid | 609 | 610 | tr | - | - |
octanoic acid | 1206 | 1180 | - | - | + | |
dodecanoic acid | 1594 | 1567 | - | - | + | |
phenol | methyl salicylate | 1176 | 1192 | - | + | - |
ethyl salicylate | 1248 | 1270 | - | tr | - | |
dihydroeugenol | 1337 | 1373 | - | tr | - | |
dillapiol | 1621 | 1622 | tr | - | - | |
furan | furfural | 827 | 833 | - | + | + |
4,7-dimethylbenzofuran | 1200 | 1220 | tr | - | - | |
vitispirane | 1272 | 1271 | - | - | + | |
aromatic | toluene | 758 | 763 | tr | - | tr |
ethylbenzene | 856 | 855 | - | - | tr | |
styrene | 885 | 893 | - | tr | tr | |
1,2,4-trimethylbenzene | 987 | 990 | - | - | tr | |
cadalene | 1671 | 1674 | + | - | - | |
1,4-dimethyl-7-(1-methylethyl)-azulene | 1769 | 1775 | tr | - | - | |
(1-methyldodecyl)benzene | 1909 | 1916 | - | - | tr | |
monoterpene | α-thujene | 920 | 929 | + | - | - |
α-pinene | 929 | 937 | ++ | - | - | |
dehydrosabinene | 937 | 956 | tr | - | - | |
camphene | 939 | 952 | tr | - | - | |
thuja-2,4(10)-diene | 945 | 956 | + | - | - | |
sabinene | 965 | 974 | + | - | - | |
β-pinene | 967 | 979 | + | - | - | |
β-myrcene | 989 | 991 | ++ | - | - | |
α-phellandrene | 997 | 1005 | + | - | - | |
α-terpinene | 1009 | 1017 | + | - | - | |
p-cymene | 1018 | 1025 | + | - | - | |
limonene | 1023 | 1030 | ++ | tr | tr | |
(Z)-β-ocimene | 1031 | 1038 | + | - | - | |
(E)-β-ocimene | 1041 | 1049 | + | - | - | |
ɣ-terpinene | 1052 | 1060 | ++ | - | - | |
terpinolene | 1080 | 1088 | + | - | - | |
perillene | 1092 | 1101 | + | - | - | |
p-mentha-1,3,8-triene | 1101 | 1119 | tr | - | - | |
oxygenated monoterpene | linalool | 1094 | 1099 | + | - | - |
1-octen-3-yl acetate | 1105 | 1111 | + | - | - | |
ɑ-pinene epoxide | 1116 | 1095 | + | - | - | |
unknown 3 | 1121 | - | + | - | - | |
pinocarveol | 1127 | 1138 | tr | - | - | |
camphor | 1132 | 1144 | tr | - | - | |
citronellal | 1143 | 1153 | tr | - | - | |
unknown 4 | 1147 | - | + | - | - | |
unknown 5 | 1151 | - | + | - | - | |
menthol | 1159 | 1170 | - | + | - | |
isopinocamphone | 1161 | 1173 | tr | - | - | |
terpinen-4-ol | 1167 | 1177 | + | - | - | |
verbenyl ethyl ether | 1174 | 1186 | + | - | - | |
α-terpineol | 1180 | 1189 | tr | - | - | |
piperitol | 1206 | 1208 | + | - | - | |
fenchyl acetate | 1209 | 1224 | tr | - | - | |
citronellol | 1221 | 1228 | + | - | - | |
thymol methyl ether | 1226 | 1235 | ++ | - | - | |
carvacrol methyl ether | 1233 | 1244 | tr | - | - | |
carvotanacetone | 1236 | 1246 | tr | - | - | |
linalyl acetate | 1247 | 1257 | + | - | - | |
geranial | 1261 | 1270 | tr | - | - | |
bornyl acetate | 1277 | 1285 | ++ | - | - | |
lavandulyl acetate | 1283 | 1289 | + | - | - | |
myrtenyl acetate | 1315 | 1327 | + | - | - | |
citronellyl acetate | 1346 | 1353 | + | - | - | |
neryl acetate | 1360 | 1365 | ++ | - | - | |
geranyl acetate | 1381 | 1282 | ++ | - | - | |
sesquiterpene | unknown 8 | 1321 | - | + | - | - |
unknown 10 | 1329 | - | + | - | - | |
α-cubebene | 1342 | 1351 | ++ | - | - | |
α-ylangene | 1363 | 1372 | + | - | - | |
α-copaene | 1369 | 1376 | ++ | - | - | |
β-elemene | 1389 | 1391 | ++ | - | - | |
isolongifolene | 1396 | 1391 | + | - | - | |
β-caryophyllene | 1419 | 1425 | ++ | - | - | |
β-cubebene | 1424 | 1433 | + | - | - | |
ɣ-elemene | 1434 | 1440 | ++ | - | - | |
β-farnesene c | 1435 | 1457 | ++ | + | - | |
alloaromadendrene | 1436 | 1448 | + | - | - | |
α-humulene | 1456 | 1457 | ++ | - | - | |
β-farnesene | 1459 | 1457 | ++ | - | - | |
germacrene D | 1461 | 1472 | + | - | - | |
α-elemene | 1471 | 1469 | + | - | - | |
ɣ-muurolene | 1481 | 1483 | ++ | - | - | |
α-curcumene | 1484 | 1486 | ++ | - | - | |
β-selinene | 1488 | 1486 | ++ | - | - | |
valencene | 1492 | 1492 | + | - | - | |
curzerene | 1497 | 1498 | ++ | - | - | |
α-muurolene | 1503 | 1499 | ++ | - | - | |
β-cadinene | 1507 | 1518 | + | - | - | |
ɣ-cadinene | 1519 | 1513 | ++ | - | - | |
δ-cadinene | 1531 | 1524 | ++ | - | - | |
cadina-1,4-diene | 1537 | 1532 | ++ | - | - | |
selina-3,7(11)-diene | 1540 | 1542 | + | - | - | |
α-cadinene | 1543 | 1538 | ++ | - | - | |
α-calacorene | 1547 | 1542 | ++ | - | - | |
germacrene B | 1558 | 1557 | + | - | - | |
dihydroneoclovene | 1633 | 1680 | + | - | - | |
oxygenated sesquiterpene | unknown 11 | 1530 | - | - | + | - |
unknown 14 | 1562 | - | + | - | - | |
1,5-epoxysalvial-4(14)-ene | 1565 | 1573 | + | - | - | |
spathulenol | 1575 | 1577 | tr | - | - | |
unknown 16 | 1578 | - | + | - | - | |
caryophyllene oxide | 1581 | 1581 | + | - | - | |
unknown 17 | 1582 | - | + | - | - | |
unknown 18 | 1585 | - | + | - | - | |
unknown 19 | 1587 | - | + | - | - | |
salvialenone | 1591 | 1595 | + | - | - | |
unknown 20 | 1595 | - | + | - | - | |
humulene epoxide 2 | 1606 | 1606 | + | - | - | |
cubenol | 1625 | 1642 | tr | - | - | |
alloaromadendrene oxide | 1629 | 1643 | + | - | - | |
τ-cadinol | 1637 | 1640 | + | - | - | |
α-cadinol | 1649 | 1653 | tr | - | - | |
unknown 23 | 1651 | - | + | - | - | |
unknown 24 | 1655 | - | + | - | - | |
eudesma-4,11-dien-2-ol | 1681 | 1690 | tr | - | - | |
unknown 26 | 1697 | - | + | - | - | |
cadina-4,10(15)-dien-one | 1738 | 1755 | tr | - | - | |
unknown 27 | 1843 | - | - | - | tr | |
diterpene | dimyrcene | 1949 | 1958 | tr | - | - |
abietatriene | 2047 | 2054 | tr | - | - | |
oxygenated diterpene | 13-epi-manoyl oxide | 1984 | 2014 | tr | - | - |
alkene | 8-heptadecene | 1674 | 1675 | + | - | - |
5-nonadecene | 1870 | 1873 | tr | - | - | |
alkane | octadecane | 1797 | 1800 | tr | - | - |
nonadecane | 1897 | 1900 | tr | - | - | |
eicosane | 1998 | 2000 | tr | - | - | |
heneicosane | 2094 | 2100 | tr | - | - | |
pentacosane | 2493 | 2500 | tr | - | - | |
other | allyl isothiocyanate | 877 | 885 | - | tr | - |
unknown | unknown 1 | 750 | - | - | + | - |
unknown 2 | 956 | - | - | + | - | |
unknown 6 | 1182 | - | + | - | - | |
unknown 7 | 1200 | - | - | + | - | |
unknown 9 | 1323 | - | - | + | - | |
unknown 12 | 1553 | - | + | - | - | |
unknown 13 | 1554 | - | + | - | - | |
unknown 15 | 1568 | - | - | - | + | |
unknown 21 | 1604 | - | - | + | - | |
unknown 22 | 1614 | - | + | - | - | |
unknown 25 | 1687 | - | - | + | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barnes, Q.; Vial, J.; Thiébaut, D.; De Saint Jores, C.; Steyer, D.; Contamin, M.-A.; Papaiconomou, N.; Fernandez, X. Characterization of Flavor Compounds in Distilled Spirits: Developing a Versatile Analytical Method Suitable for Micro-Distilleries. Foods 2022, 11, 3358. https://doi.org/10.3390/foods11213358
Barnes Q, Vial J, Thiébaut D, De Saint Jores C, Steyer D, Contamin M-A, Papaiconomou N, Fernandez X. Characterization of Flavor Compounds in Distilled Spirits: Developing a Versatile Analytical Method Suitable for Micro-Distilleries. Foods. 2022; 11(21):3358. https://doi.org/10.3390/foods11213358
Chicago/Turabian StyleBarnes, Quentin, Jérôme Vial, Didier Thiébaut, Clément De Saint Jores, Damien Steyer, Marie-Anne Contamin, Nicolas Papaiconomou, and Xavier Fernandez. 2022. "Characterization of Flavor Compounds in Distilled Spirits: Developing a Versatile Analytical Method Suitable for Micro-Distilleries" Foods 11, no. 21: 3358. https://doi.org/10.3390/foods11213358