Effect of Hempseed Cake (Cannabis sativa L.) Incorporation on the Physicochemical and Antioxidant Properties of Reconstructed Potato Chips
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Nutritional Value
2.4. Physical Characteristics: Color and Texture
2.5. Total Phenolic Content (TPC)
2.6. Antioxidant Capacity–DPPH and ABTS Assay
2.7. Lipid Oxidation–Peroxide Value and TBARS Assay
2.8. Data Analysis
3. Results and Discussion
3.1. Nutritional Value
3.2. Physical Characteristics
3.3. Antioxidant Capacity
3.4. Lipid Oxidation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Y.; Li, J.; Zhao, J.; Wang, W.; Griffin, J.; Li, Y.; Bean, S.; Tilley, M.; Wang, D. Hempseed as a nutritious and healthy human food or animal feed source: A review. Int. J. Food Sci. Technol. 2021, 56, 530–543. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, J.; Hu, R.; Wang, W.; Griffin, J.; Li, Y.; Sun, X.S.; Wang, D. Effect of genotype on the physicochemical, nutritional, and antioxidant properties of hempseed. J. Agric. Food Res. 2021, 3, 100119. [Google Scholar] [CrossRef]
- Vonapartis, E.; Aubin, M.-P.; Seguin, P.; Mustafa, A.F.; Charron, J.-B. Seed composition of ten industrial hemp cultivars approved for production in Canada. J. Food Compos. Anal. 2015, 39, 8–12. [Google Scholar] [CrossRef]
- Lan, Y.; Zha, F.; Peckrul, A.; Hanson, B.; Johnson, B.; Rao, J.; Chen, B. Genotype x environmental effects on yielding ability and seed chemical composition of industrial hemp (Cannabis sativa L.) varieties grown in North Dakota, USA. J. Am. Oil Chem. Soc. 2019, 96, 1417–1425. [Google Scholar] [CrossRef]
- Mattila, P.; Mäkinen, S.; Eurola, M.; Jalava, T.; Pihlava, J.-M.; Hellström, J.; Pihlanto, A. Nutritional value of commercial protein-rich plant products. Qual. Plant. Plant Foods Hum. Nutr. 2018, 73, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Russo, R.; Reggiani, R. Variability in antinutritional compounds in hempseed meal of italian and french varieties. Plant 2013, 1, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Russo, R.; Reggiani, R. Phenolics and antioxidant activity in flax varieties with different productive attitude. Int. Food Res. J. 2015, 22, 1736. [Google Scholar]
- Leonard, W.; Zhang, P.; Ying, D.; Fang, Z. Hempseed in food industry: Nutritional value, health benefits, and industrial applications. Compr. Rev. Food Sci. Food Saf. 2020, 19, 282–308. [Google Scholar] [CrossRef] [Green Version]
- Pojić, M.; Mišan, A.; Sakač, M.; Dapčević Hadnađev, T.; Šarić, B.; Milovanović, I.; Hadnađev, M. Characterization of byproducts originating from hemp oil processing. J. Agric. Food Chem. 2014, 62, 12436–12442. [Google Scholar] [CrossRef]
- Pihlanto, A.; Mattila, P.; Mäkinen, S.; Pajari, A.-M. Bioactivities of alternative protein sources and their potential health benefits. Food Funct. 2017, 8, 3443–3458. [Google Scholar] [CrossRef]
- Mikulec, A.; Kowalski, S.; Sabat, R.; Skoczylas, Ł.; Tabaszewska, M.; Wywrocka-Gurgul, A. Hemp flour as a valuable component for enriching physicochemical and antioxidant properties of wheat bread. LWT 2019, 102, 164–172. [Google Scholar] [CrossRef]
- Norajit, K.; Gu, B.-J.; Ryu, G.-H. Effects of the addition of hemp powder on the physicochemical properties and energy bar qualities of extruded rice. Food Chem. 2011, 129, 1919–1925. [Google Scholar] [CrossRef]
- Nissen, L.; Casciano, F.; Babini, E.; Gianotti, A. Prebiotic potential and bioactive volatiles of hemp byproduct fermented by lactobacilli. LWT 2021, 151, 112201. [Google Scholar] [CrossRef]
- Zając, M.; Guzik, P.; Kulawik, P.; Tkaczewska, J.; Florkiewicz, A.; Migdał, W. The quality of pork loaves with the addition of hemp seeds, de-hulled hemp seeds, hemp protein and hemp flour. LWT 2019, 105, 190–199. [Google Scholar] [CrossRef]
- Jozinović, A.; AčkAr, Đ.; Jokić, S.; BABić, J.; BAlentić, J.P.; BAnožić, M.; ŠuBArić, D. Optimisation of extrusion variables for the production of corn snack products enriched with defatted hemp cake. Czech J. Food Sci. 2017, 35, 507–516. [Google Scholar]
- Kerner, K.; Jõudu, I.; Tänavots, A.; Venskutonis, P.R. Application of Raw and Defatted by Supercritical CO2 Hemp Seed Press-Cake and Sweet Grass Antioxidant Extract in Pork Burger Patties. Foods 2021, 10, 1904. [Google Scholar] [CrossRef]
- Kotecka-Majchrzak, K.; Kasałka-Czarna, N.; Spychaj, A.; Mikołajczak, B.; Montowska, M. The Effect of Hemp Cake (Cannabis sativa L.) on the Characteristics of Meatballs Stored in Refrigerated Conditions. Molecules 2021, 26, 5284. [Google Scholar] [CrossRef]
- Pojić, M.; Dapčević Hadnađev, T.; Hadnađev, M.; Rakita, S.; Brlek, T. Bread supplementation with hemp seed cake: A by-product of hemp oil processing. J. Food Qual. 2015, 38, 431–440. [Google Scholar] [CrossRef] [Green Version]
- Radočaj, O.; Dimić, E.; Tsao, R. Effects of hemp (Cannabis sativa L.) seed oil press-cake and decaffeinated green tea leaves (Camellia sinensis) on functional characteristics of gluten-free crackers. J. Food Sci. 2014, 79, C318–C325. [Google Scholar] [CrossRef]
- Sharma, S.; Prabhasankar, P. Effect of whole hempseed flour incorporation on the rheological, microstructural and nutritional characteristics of chapati–Indian flatbread. LWT 2021, 137, 110491. [Google Scholar] [CrossRef]
- Pedreschi, F.; Cortés, P.; Mariotti, M.S. Potato crisps and snack foods. Ref. Modul. Food Sci. 2018, 2018, 1–10. [Google Scholar] [CrossRef]
- Dhital, S.; Baier, S.K.; Gidley, M.J.; Stokes, J.R. Microstructural properties of potato chips. Food Struct. 2018, 16, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Stojceska, V.; Ainsworth, P.; Plunkett, A.; İbanoğlu, Ş. The advantage of using extrusion processing for increasing dietary fibre level in gluten-free products. Food Chem. 2010, 121, 156–164. [Google Scholar] [CrossRef]
- Alam, M.; Kaur, J.; Khaira, H.; Gupta, K. Extrusion and extruded products: Changes in quality attributes as affected by extrusion process parameters: A review. Crit. Rev. Food Sci. Nutr. 2016, 56, 445–473. [Google Scholar] [CrossRef]
- Tiwari, P.; Joshi, A.; Varghese, E.; Thakur, M. Process standardization and storability of calcium fortified potato chips through vacuum impregnation. J. Food Sci. Technol. 2018, 55, 3221–3231. [Google Scholar] [CrossRef] [PubMed]
- Lisiecka, K.; Wójtowicz, A. Effect of fresh beetroot application and processing conditions on some quality features of new type of potato-based snacks. LWT 2021, 141, 110919. [Google Scholar] [CrossRef]
- Miao, Y.; Zhang, H.; Zhang, L.; Wu, S.; Sun, Y.; Shan, Y.; Yuan, Y. Acrylamide and 5-hydroxymethylfurfural formation in reconstituted potato chips during frying. J. Food Sci. Technol. 2014, 51, 4005–4011. [Google Scholar] [CrossRef] [Green Version]
- Ismail, B.P. Ash content determination. In Food Analysis Laboratory Manual; Springer: Berlin/Heidelberg, Germany, 2017; pp. 117–119. [Google Scholar]
- Bradstreet, R.B. Kjeldahl method for organic nitrogen. Anal. Chem. 1954, 26, 185–187. [Google Scholar] [CrossRef]
- De Castro, M.L.; Priego-Capote, F. Soxhlet extraction: Past and present panacea. J. Chromatogr. A 2010, 1217, 2383–2389. [Google Scholar] [CrossRef]
- Prosky, L.; Asp, N.-G.; Furda, I.; Devries, J.W.; Schweizer, T.F.; Harland, B.F. Determination of total dietary fiber in foods and food products: Collaborative study. J. Assoc. Off. Anal. Chem. 1985, 68, 677–679. [Google Scholar] [CrossRef]
- Segnini, S.; Dejmek, P.; Öste, R. Reproducible texture analysis of potato chips. J. Food Sci. 1999, 64, 309–312. [Google Scholar] [CrossRef]
- Wang, S.; Meckling, K.A.; Marcone, M.F.; Kakuda, Y.; Tsao, R. Synergistic, additive, and antagonistic effects of food mixtures on total antioxidant capacities. J. Agric. Food Chem. 2011, 59, 960–968. [Google Scholar] [CrossRef]
- Leonard, W.; Zhang, P.; Ying, D.; Xiong, Y.; Fang, Z. Extrusion improves the phenolic profile and biological activities of hempseed (Cannabis sativa L.) hull. Food Chem. 2021, 346, 128606. [Google Scholar] [CrossRef] [PubMed]
- Okpala, C.O.R.; Bono, G.; Geraci, M.L.; Sardo, G.; Vitale, S.; Schaschke, C.J. Lipid oxidation kinetics of ozone-processed shrimp during iced storage using peroxide value measurements. Food Biosci. 2016, 16, 5–10. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Y.; Chen, M.; Warner, R.D.; Fang, Z. Incorporating nisin and grape seed extract in chitosan-gelatine edible coating and its effect on cold storage of fresh pork. Food Control 2020, 110, 107018. [Google Scholar] [CrossRef]
- Dewettinck, K.; Van Bockstaele, F.; Kühne, B.; Van de Walle, D.; Courtens, T.; Gellynck, X. Nutritional value of bread: Influence of processing, food interaction and consumer perception. J. Cereal Sci. 2008, 48, 243–257. [Google Scholar] [CrossRef]
- Callaway, J. Hempseed as a nutritional resource: An overview. Euphytica 2004, 140, 65–72. [Google Scholar] [CrossRef]
- Multari, S.; Neacsu, M.; Scobbie, L.; Cantlay, L.; Duncan, G.; Vaughan, N.; Stewart, D.; Russell, W.R. Nutritional and phytochemical content of high-protein crops. J. Agric. Food Chem. 2016, 64, 7800–7811. [Google Scholar] [CrossRef]
- Lattimer, J.M.; Haub, M.D. Effects of dietary fiber and its components on metabolic health. Nutrients 2010, 2, 1266–1289. [Google Scholar] [CrossRef] [Green Version]
- Duarte-Correa, Y.; Granda-Restrepo, D.; Cortés, M.; Vega-Castro, O. Potato snacks added with active components: Effects of the vacuum impregnation and drying processes. J. Food Sci. Technol. 2020, 57, 1523–1534. [Google Scholar] [CrossRef]
- Arslan, M.; Xiaobo, Z.; Shi, J.; Rakha, A.; Hu, X.; Zareef, M.; Zhai, X.; Basheer, S. Oil uptake by potato chips or French fries: A review. Eur. J. Lipid Sci. Technol. 2018, 120, 1800058. [Google Scholar] [CrossRef]
- Yang, Z.; Fei, H.; TingTing, Z.; JinWei, L.; LiuPing, F. Effects of material composition on the oil absorption of restructured potato chips. Food Ferment. Ind. 2017, 43, 140–145. [Google Scholar]
- Lisiecka, K.; Wójtowicz, A.; Mitrus, M.; Oniszczuk, T.; Combrzyński, M. New type of potato-based snack-pellets supplemented with fresh vegetables from the Allium genus and its selected properties. LWT 2021, 145, 111233. [Google Scholar] [CrossRef]
- Korus, A.; Gumul, D.; Krystyjan, M.; Juszczak, L.; Korus, J. Evaluation of the quality, nutritional value and antioxidant activity of gluten-free biscuits made from corn-acorn flour or corn-hemp flour composites. Eur. Food Res. Technol. 2017, 243, 1429–1438. [Google Scholar] [CrossRef]
- Pellegrini, N.; Chiavaro, E.; Gardana, C.; Mazzeo, T.; Contino, D.; Gallo, M.; Riso, P.; Fogliano, V.; Porrini, M. Effect of different cooking methods on color, phytochemical concentration, and antioxidant capacity of raw and frozen brassica vegetables. J. Agric. Food Chem. 2010, 58, 4310–4321. [Google Scholar] [CrossRef]
- Chen, X.; Fang, F.; Wang, S. Physicochemical properties and hepatoprotective effects of glycated Snapper fish scale peptides conjugated with xylose via maillard reaction. Food Chem. Toxicol. 2020, 137, 111115. [Google Scholar] [CrossRef]
- Wang, Q.; Xiong, Y.L. Processing, nutrition, and functionality of hempseed protein: A review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 936–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaworska, D.; Hoffmann, M. Relative importance of texture properties in the sensory quality and acceptance of commercial crispy products. J. Sci. Food Agric. 2008, 88, 1804–1812. [Google Scholar] [CrossRef]
- Nemś, A.; Pęksa, A.; Kucharska, A.Z.; Sokół-Łętowska, A.; Kita, A.; Drożdż, W.; Hamouz, K. Anthocyanin and antioxidant activity of snacks with coloured potato. Food Chem. 2015, 172, 175–182. [Google Scholar] [CrossRef]
- Ertaş, N.; Aslan, M. Antioxidant and physicochemical properties of cookies containing raw and roasted hemp flour. Acta Sci. Pol. Technol. Aliment. 2020, 19, 177–184. [Google Scholar]
- Floegel, A.; Kim, D.-O.; Chung, S.-J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Lake, R.; Scholes, P. Quality and consumption of oxidized lipids from deep-frying fats and oils in New Zealand. J. Am. Oil Chem. Soc. 1997, 74, 1065–1068. [Google Scholar] [CrossRef]
- Rababah, T.M.; Feng, H.; Yang, W.; Yücel, S. Fortification of potato chips with natural plant extracts to enhance their sensory properties and storage stability. J. Am. Oil Chem. Soc. 2012, 89, 1419–1425. [Google Scholar] [CrossRef]
- Choulitoudi, E.; Velliopoulou, A.; Tsimogiannis, D.; Oreopoulou, V. Effect of active packaging with Satureja thymbra extracts on the oxidative stability of fried potato chips. Food Packag. Shelf Life 2020, 23, 100455. [Google Scholar] [CrossRef]
- Chew, S.C. Cold-pressed rapeseed (Brassica napus) oil: Chemistry and functionality. Food Res. Int. 2020, 131, 108997. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; Singh, R. Advances in Instrumental Methods for Shelf Life Evaluation. In The Stability and Shelf Life of Food; Elsevier: Amsterdam, The Netherlands, 2016; pp. 229–251. [Google Scholar]
- Xiong, Y.; Zhang, P.; Warner, R.D.; Hossain, M.N.; Leonard, W.; Fang, Z. Effect of sorghum bran incorporation on the physicochemical and microbial properties of beef sausage during cold storage. Food Control 2022, 132, 108544. [Google Scholar] [CrossRef]
- Castañeda-Arriaga, R.; Pérez-González, A.; Reina, M.; Alvarez-Idaboy, J.R.l.; Galano, A. Comprehensive investigation of the antioxidant and pro-oxidant effects of phenolic compounds: A double-edged sword in the context of oxidative stress? J. Phys. Chem. B 2018, 122, 6198–6214. [Google Scholar] [CrossRef] [PubMed]
Group | Hempseed Cake (g) | Potato Starch (g) | Wheat Flour (g) | Water (mL) | Salt (g) |
---|---|---|---|---|---|
Control | 0 | 60 | 20 | 50 | 2 |
H5 | 4 | 57 | 19 | 50 | 2 |
H10 | 8 | 54 | 18 | 50 | 2 |
H15 | 12 | 51 | 17 | 50 | 2 |
H20 | 16 | 48 | 16 | 50 | 2 |
Control | H5 | H10 | H15 | H20 | |
---|---|---|---|---|---|
Ash (g/100 g) | 2.22 ± 0.01 d | 2.91 ± 0.17 c | 3.44 ± 0.04 bc | 3.86 ± 0.14 ab | 4.41 ± 0.22 a |
Protein (g/100 g) | 2.74 ± 0.62 d | 3.52 ± 0.39 d | 5.72 ± 0.61 c | 7.50 ± 0.43 b | 9.66 ± 0.28 a |
Lipid (g/100 g) | 30.83 ± 4.52 ab | 30.10 ± 2.05 ab | 33.94 ± 5.21 a | 31.15 ± 1.35 ab | 24.53 ± 1.03 b |
Soluble fiber (g/100 g) | 1.20 ± 0.31 d | 2.15 ± 0.51 c | 2.33 ± 0.19 bc | 2.97 ± 0.06 b | 4.01 ± 0.19 a |
Insoluble fiber (g/100 g) | 1.56 ± 0.01 e | 2.68 ± 0.44 d | 4.52 ± 0.24 c | 6.01 ± 0.62 b | 9.56 ± 0.23 a |
Total Dietary fiber (g/100 g) | 2.76 ± 0.31 e | 4.83 ± 0.95 d | 6.85 ± 0.43 c | 8.98 ± 0.68 b | 13.57 ± 0.42 a |
Variations | Control | H5 | H10 | H15 | H20 |
---|---|---|---|---|---|
L* | 72.23 ± 1.22 a | 64.00 ± 1.81 b | 56..48 ± 1.65 c | 47.86 ± 1.01 d | 46.40 ± 1.76 e |
a* | 0.20 ± 0.07 c | 0.99 ± 0.16 a | 0.77 ± 0.20 b | 1.15 ± 0.12 a | 1.03 ± 0.18 a |
b* | 21.23 ± 0.91 d | 23.71 ± 1.15 c | 24..91 ± 1.32 bc | 24.17 ± 0.88 bc | 25.32 ± 0.90 a |
Hardness (N) | 5.38 ± 3.08 c | 12.51 ± 6.20 b | 12.96 ± 3.84 b | 19.41 ± 4.59 a | 20.06 ± 6.06 a |
Control | H5 | H10 | H15 | H20 | |
---|---|---|---|---|---|
TPC (mg GAE/g) | 0.19 ± 0.01 d | 0.21 ± 0.002 cd | 0.23 ± 0.005 bc | 0.25 ± 0.01 ab | 0.26 ± 0.01 a |
DPPH inhibition rate (%) | 18.76 ± 2.87 a | 19.62 ± 1.29 a | 23.52 ± 3.22 a | 24.06 ± 1.50 a | 23.22 ± 1.61 a |
ABTS inhibition rate (%) | 27.53 ± 1.71 d | 31.87 ± 1.46 c | 42.98 ± 3.03 b | 46.37 ± 2.94 ab | 47.76 ± 2.23 a |
Control | H5 | H10 | H15 | H20 | |
---|---|---|---|---|---|
Peroxide value (meq O2/kg) | 0.75 ± 0.36 b | 2.05 ± 0.67 b | 2.30 ± 0.15 b | 5.40 ± 0.11 a | 6.80 ± 0.62 a |
TBARS (mg MDA/kg) | 0.27 ± 0.01 d | 0.47 ± 0.06 c | 0.49 ± 0.04 bc | 0.58 ± 0.03 b | 0.78 ± 0.04 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, X.; Sun, G.; Fang, Z. Effect of Hempseed Cake (Cannabis sativa L.) Incorporation on the Physicochemical and Antioxidant Properties of Reconstructed Potato Chips. Foods 2022, 11, 211. https://doi.org/10.3390/foods11020211
Feng X, Sun G, Fang Z. Effect of Hempseed Cake (Cannabis sativa L.) Incorporation on the Physicochemical and Antioxidant Properties of Reconstructed Potato Chips. Foods. 2022; 11(2):211. https://doi.org/10.3390/foods11020211
Chicago/Turabian StyleFeng, Xiaoyu, Guoxiao Sun, and Zhongxiang Fang. 2022. "Effect of Hempseed Cake (Cannabis sativa L.) Incorporation on the Physicochemical and Antioxidant Properties of Reconstructed Potato Chips" Foods 11, no. 2: 211. https://doi.org/10.3390/foods11020211
APA StyleFeng, X., Sun, G., & Fang, Z. (2022). Effect of Hempseed Cake (Cannabis sativa L.) Incorporation on the Physicochemical and Antioxidant Properties of Reconstructed Potato Chips. Foods, 11(2), 211. https://doi.org/10.3390/foods11020211