Effects of Processing on Starch Structure, Textural, and Digestive Property of “Horisenbada”, a Traditional Mongolian Food
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Horisenbada
2.3. Molecular Size Distribution
2.4. Chain Length Distribution
2.5. X-ray Diffraction (XRD)
2.6. Scanning Electron Microscopy (SEM)
2.7. Textural Profile Analysis (TPA)
2.8. Millet Digestion
2.9. Fitting to First-Order Kinetics
2.10. Statistical Analysis
3. Results
3.1. Molecular Size of Millet Starch
3.1.1. Molecular Size Distribution of Branched Starch
3.1.2. CLDs of Debranched Starch
3.2. The Crystalline Structure of Different Processed Millets
3.3. The Granule Structure of Different Processed Millets
3.4. Textural Property of Different Processed Millets
3.5. Millet Starch of Digestion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yousaf, L.; Hou, D.; Liaqat, H.; Shen, Q. Millet: A review of its nutritional and functional changes during processing. Food Res. Int. 2021, 142, 110197. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Purewal, S.S.; Sandhu, K.S.; Kaur, M.; Salar, R.K. Millets: A cereal grain with potent antioxidants and health benefits. J. Food Meas. Charact. 2018, 13, 793–806. [Google Scholar] [CrossRef]
- Saleh, A.S.; Zhang, Q.; Chen, J.; Shen, Q. Millet Grains: Nutritional Quality, Processing, and Potential Health Benefitsb. Compr. Rev. Food Sci. Food Saf. 2013, 12, 281–295. [Google Scholar] [CrossRef]
- Kumar, S.R.; Sadiq, M.B.; Anal, A.K. Comparative study of physicochemical and functional properties of pan and microwave cooked underutilized millets (proso and little). LWT-Food Sci. Technol. 2020, 128, 109465. [Google Scholar] [CrossRef]
- Adebiyi, J.A.; Obadina, A.O.; Adebo, O.A.; Kayitesi, E. Fermented and malted millet products in Africa: Expedition from traditional/ethnic foods to industrial value-added products. Crit. Rev. Food Sci. Nutr. 2018, 58, 463–474. [Google Scholar] [CrossRef] [PubMed]
- Adebiyi, J.A.; Obadina, A.O.; Adebo, O.A.; Kayitesi, E. Comparison of nutritional quality and sensory acceptability of biscuits obtained from native, fermented, and malted pearl millet (Pennisetum glaucum) flour. Food Chem. 2017, 232, 210–217. [Google Scholar] [CrossRef]
- Muramatsu, A.T.; Sakaguchi, E.; Kasai, T. Water Absorption Characteristics and Volume Changes of Milled and Brown Rice During Soaking. J. Cereal Sci. 2006, 83, 624–631. [Google Scholar] [CrossRef]
- Hu, Z.; Yang, Y.; Lu, L.; Chen, Y.; Zhu, Z.; Huang, J. Kinetics of water absorption expansion of rice during soaking at different temperatures and correlation analysis upon the influential factors. Food Chem. 2021, 346, 128912. [Google Scholar] [CrossRef]
- Zhang, N.; Wen, Y.; Yan, S.; Mao, H.; Lei, N.; Li, H.; Wang, J.; Chen, H.; Sun, B. The increased stickiness of non-glutinous rice by alkali soaking and its molecular causes. Int. J. Biol. Macromol. 2019, 135, 394–399. [Google Scholar] [CrossRef] [PubMed]
- Carmona-García, R.; Osorio-Díaz, P.; Agama-Acevedo, E.; Tovar, J.; Bello-Pérez, L.A. Composition and effect of soaking on starch digestibility of Phaseolus vulgaris (L.) cv. ‘Mayocoba’. Int. J. Food Sci. Technol. 2007, 42, 296–302. [Google Scholar] [CrossRef]
- Bhattacharyya, U.G.; Chowdhuri, U.R.; Chattopadhyay, P.; Gangopadhyay, H. Effects of different treatments on physico-chemical properties of rice starch. J. Sci. Ind. Res. 2004, 63, 826–829. [Google Scholar]
- Dias-Martins, A.M.; Cappato, L.P.; da Costa Mattos, M.; Rodrigues, F.N.; Pacheco, S.; Carvalho, C.W. Impacts of ohmic heating on decorticated and whole pearl millet grains compared to open-pan cookin. J. Cereal Sci. 2019, 85, 120–129. [Google Scholar] [CrossRef]
- Siqueira, B.D.S.; Vianello, R.P.; Fernandes, K.F.; Bassinello, P.Z. Hardness of carioca beans (Phaseolus vulgaris L.) as affected by cooking methods. LWT-Food Sci. Technol. 2013, 54, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Mundo, A.M.D. Sensory and instrumental evaluation of texture of cooked and raw milled rices with similar starch properties. J. Texture Stud. 1989, 20, 97–110. [Google Scholar] [CrossRef]
- Li, H.; Yu, L.; Yu, W.; Li, H.; Gilbert, R. Autoclaved rice: The textural property and its relation to starch leaching and the molecular structure of leached starch. Food Chem. 2019, 283, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Lei, N.; Yan, S.; Gao, M.; Yang, J.; Wang, J.; Sun, B. Molecular causes for the effect of cooking methods on rice stickiness: A mechanism explanation from the view of starch leaching. Int. J. Biol. Macromol. 2019, 128, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Thuengtung, S.; Matsushita, Y.; Ogawa, Y. Comparison between microwave-cooking and steam-cooking on starch properties and in vitro starch digestibility of cooked pigmented rice. J. Food Process Eng. 2019, 42, 1–9. [Google Scholar] [CrossRef]
- Bi, S.; Wang, A.; Wang, Y.; Xu, X.; Luo, D.; Shen, Q.; Wu, J. Effect of cooking on aroma profiles of Chinese foxtail millet (Setaria italica) and correlation with sensory quality. Food Chem. 2019, 289, 680–692. [Google Scholar] [CrossRef]
- Lei, N.; Chai, S.; Xu, M.; Ji, J.; Mao, H.; Yan, S.; Gao, Y.; Li, H.; Wang, J.; Sun, B. Effect of dry heating treatment on multi-levels of structure and physicochemical properties of maize starch: A thermodynamic study. Int. J. Biol. Macromol. 2020, 147, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Alcântara, R.G.D.; Fukumasu, H.; Raspantini, P.C.F.; Raspantini, L.E.R.; Steel, C.J.; Oliveira, L.D.C.; de Carvalho, R.A.; Vanin, F.M. Baking Effect on Resistant Starch Digestion from Composite Bread Produced with Partial Wheat Flour Substitution. J. Food Qual. 2020, 2020, 1–13. [Google Scholar] [CrossRef]
- Li, H.; Prakash, S.; Nicholson, T.M.; Fitzgerald, M.A.; Gilbert, R.G. The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains. Food Chem. 2016, 196, 702–711. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wen, Y.; Wang, J.; Sun, B. Relations between chain-length distribution, molecular size, and amylose content of rice starches. Int. J. Biol. Macromol. 2018, 120, 2017–2025. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Sissons, M.; Gidley, M.J.; Gilbert, R.G.; Warren, F.J. Combined techniques for characterising pasta structure reveals how the gluten network slows enzymic digestion rate. Food Chem. 2015, 188, 559–568. [Google Scholar] [CrossRef] [Green Version]
- Poulsen, B.R.; Ruiter, G.; Visser, J.; Iversen, J.J.L. Determination of first order rate constants by natural logarithm of the slope plot exemplified by analysis of Aspergillus niger in batch culture. Biotechnol. Lett. 2003, 25, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yan, S.; Yang, L.; Xu, M.; Ji, J.; Liu, Y.; Wang, J.; Sun, B. High-pressure homogenization thinned starch paste and its application in improving the stickiness of cooked non-glutinous rice. LWT-Food Sci. Technol. 2020, 131, 109750. [Google Scholar] [CrossRef]
- Li, H.; Xu, M.; Chen, Z.; Li, J.; Wen, Y.; Liu, Y.; Wang, J. Effects of the degree of milling on starch leaching characteristics and its relation to rice stickines. J. Cereal Sci. 2021, 98, 103163. [Google Scholar] [CrossRef]
- Li, H.; Yan, S.; Yang, L.; Xu, M.; Ji, J.; Mao, H.; Song, Y.; Wang, J.; Sun, B. Starch gelatinization in the surface layer of rice grains is crucial in reducing the stickiness of parboiled rice. Food Chem. 2021, 341, 128. [Google Scholar] [CrossRef]
- Mao, H.; Chen, Z.; Li, J.; Zhai, X.; Li, H.; Wen, Y.; Wang, J.; Sun, B. Structural comparisons of pyrodextrins during thermal degradation process: The role of hydrochloric acid. Food Chem. 2021, 349, 129174. [Google Scholar] [CrossRef]
- Li, H.; Yan, S.; Mao, H.; Ji, J.; Xu, M.; Zhang, S.; Wang, J.; Liu, Y.; Sun, B. Insights into maize starch degradation by sulfuric acid from molecular structure changes. Carbohydr. Polym. 2020, 229, 115542. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Song, J.; Zhang, B.; Zhao, L.; Hu, Z.; Wang, K. The impacts of particle size on starch structural characteristics and oil-binding ability of rice flour subjected to dry heating treatment. Carbohydr. Polym. 2019, 223, 115053. [Google Scholar] [CrossRef]
- Zou, J.; Xu, M.J.; Tian, J.; Li, B. Impact of continuous and repeated dry heating treatments on the physicochemical and structural properties of waxy corn starch. Int. J. Biol. Macromol. 2019, 135, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Gilbert, R.G. Starch molecular structure: The basis for an improved understanding of cooked rice texture. Carbohydr. Polym. 2018, 195, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.D.A.; Kaur, L. Starch digestibility in food matrix: A review. Trends Food Sci. Technol. 2010, 21, 168–180. [Google Scholar] [CrossRef]
Millet Cultivar/Processing Methods | Am | AP CLD | AM CLD | LOS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
6 < X ≤ 12 | 13 < X ≤ 24 | 24 < X ≤ 36 | 36 < X ≤ 100 | 100 < X ≤ 1000 | 1000 < X ≤ 5000 | 5000 < X ≤ 20,000 | k min−1 | C∞% | ||||
M1 | Raw | 11.9 ± 0.8 d | 34.3 ± 2.2 a | 16.2 ± 1.7 gh | 26.9 ± 0.7 g | 9.6 ± 0.3 ef | 13.7 ± 0.1 def | 21.3 ± 0.3 ab | 11.1 ± 0.2 ab | 0.9 ± 0.0 a | 0.019 ± 0.001 cd | 50 ± 0.2 cd |
Soaked | 11.4 ± 0.9 d | 34 ± 1.3 b | 16.7 ± 0.5 hi | 26.5 ± 0.2 g | 9.6 ± 0.1 ef | 14.2 ± 0.1 fg | 20.9 ± 0.1 a | 10.6 ± 0.0 a | 1.4 ± 0.1 a | 0.0201 ± 0.005 d | 51 ± 0.4 d | |
Steamed | 9.7 ± 0.7 c | 36.6 ± 1.5 d | 17 ± 0.2 i | 24.8 ± 1.0 e | 9 ± 0.4 e | 12.6 ± 0.2 c | 23.6 ± 0.0 c | 11.4 ± 0.0 b | 1.5 ± 0.1 ab | 0.024 ± 0.004 a | 60 ± 1.0 fg | |
Baked | 7.7 ± 0.1 a | 63 ± 5.6 h | 8.9 ± 0.3 b | 14.3 ± 0.7 b | 5.1 ± 0.6 b | 8.7 ± 0.5 a | 42 ± 1.3 f | 18.4 ± 0.2 f | 2.5 ± 0.0 c | 0.0114 ± 0.002 a | 25 ± 0.5 a | |
M2 | Raw | 13.3 ± 0.1 e | 33.5 ± 1.6 b | 14.8 ± 0.3 e | 25.5 ± 1.3 f | 9.0 ± 0.7 e | 13.8 ± 2.1 efg | 23.2 ± 1.2 c | 12.5 ± 0.1 c | 1.3 ± 0.0 a | 0.016 ± 0.002 bc | 58 ± 1.2 efg |
Soaked | 13.2 ± 0.8 e | 34 ± 0.9 b | 14.6 ± 0.1 e | 25.6 ± 0.9 f | 9.0 ± 0.3 e | 13.2 ± 1.2 d | 23.0 ± 0.9 c | 13.3 ± 0.6 d | 1.2 ± 0.1 a | 0.0156 ± 0.0005 bc | 62 ± 1.9 g | |
Steamed | 10.2 ± 0.5 c | 40.9 ± 2.7 f | 13.6 ± 0.1 d | 23.5 ± 2.3 cd | 8.2 ± 0.1 d | 13.8 ± 0.9 efg | 25.9 ± 0.7 d | 13.8 ± 0.4 d | 1.2 ± 0.2 a | 0.0208 ± 0.003 d | 82 ± 2.5 h | |
Baked | 8.9 ± 0.4 b | 58.3 ± 2.2 g | 9.6 ± 0.2 c | 15.6 ± 2.0 d | 6.0 ± 0.1 c | 10.5 ± 1.2 b | 39.8 ± 1.8 e | 16.3 ± 0.2 e | 2.2 ± 0.0 bc | 0.013 ± 0.004 ab | 42 ± 1.2 b | |
M3 | Raw | 14.9 ± 1.1 f | 32.5 ± 0.7 b | 15.7 ± 1.1 fg | 27.2 ± 2.9 c | 9.9 ± 0.4 f | 13.7 ± 1.2 def | 21.0 ± 0.6 a | 11.6 ± 0.1 b | 0.9 ± 0.1 a | 0.0187 ± 0.0015 cd | 55 ± 0.7 def |
Soaked | 14.8 ± 0.7 f | 32.3 ± 0.3 b | 15.8 ± 0.8 fg | 26.8 ± 1.8 a | 9.9 ± 0.2 f | 14.3 ± 1.0 g | 20.9 ± 2.2 a | 11.6 ± 0.1 b | 0.9 ± 0.0 a | 0.0194 ± 0.001 cd | 54 ± 0.6 de | |
Steamed | 11.7 ± 0.2 d | 35.8 ± 1.2 c | 15.2 ± 0.6 ef | 26.2 ± 1.9 c | 9.4 ± 1.0 ef | 13.5 ± 2.1 de | 21.9 ± 1.2 b | 12.5 ± 0.0 c | 1.3 ± 0.3 a | 0.0276 ± 0.002 e | 80 ± 1.2 h | |
Baked | 9.9 ± 0.2 c | 67.9 ± 2.4 i | 7.1 ± 0.2 a | 11.9 ± 0.7 a | 4.3 ± 0.5 a | 8.7 ± 1.9 a | 45.4 ± 1.4 g | 19.1 ± 0.2 g | 3.4 ± 0.0 d | 0.0103 ± 0.0007 a | 45 ± 0.5 bc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Chen, Z.; Mu, Y.; Ma, R.; Namujila, L.; Fu, M. Effects of Processing on Starch Structure, Textural, and Digestive Property of “Horisenbada”, a Traditional Mongolian Food. Foods 2022, 11, 212. https://doi.org/10.3390/foods11020212
Li H, Chen Z, Mu Y, Ma R, Namujila L, Fu M. Effects of Processing on Starch Structure, Textural, and Digestive Property of “Horisenbada”, a Traditional Mongolian Food. Foods. 2022; 11(2):212. https://doi.org/10.3390/foods11020212
Chicago/Turabian StyleLi, Hongyan, Zhijun Chen, Yifan Mu, Ruolan Ma, Laxi Namujila, and Minghai Fu. 2022. "Effects of Processing on Starch Structure, Textural, and Digestive Property of “Horisenbada”, a Traditional Mongolian Food" Foods 11, no. 2: 212. https://doi.org/10.3390/foods11020212
APA StyleLi, H., Chen, Z., Mu, Y., Ma, R., Namujila, L., & Fu, M. (2022). Effects of Processing on Starch Structure, Textural, and Digestive Property of “Horisenbada”, a Traditional Mongolian Food. Foods, 11(2), 212. https://doi.org/10.3390/foods11020212