Analysis of Volatile Compounds, Composition, and Thermal Behavior of Coffee Beans According to Variety and Roasting Intensity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coffee Varieties and Sample Preparation
2.2. Thermal Analysis
2.3. Chemical Analysis
2.4. Data Analysis
3. Results
3.1. Thermal Behavior
3.2. HS-SPME GC-MS Analysis of Volatile Organic Compounds
3.3. Mineral Compositions and Total Polyphenol Contents
4. Discussion
4.1. Thermal Behavior
4.2. Volatile Organic Compounds
4.3. Mineral Compositions and Total Polyphenol Contents
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yashin, A.; Yashin, Y.; Xia, X.; Nemzer, B. Chromatographic Methods for Coffee Analysis: A review. J. Food Res. 2017, 6, 60–82. [Google Scholar] [CrossRef] [Green Version]
- Olechno, E.; Puscion-Jakubik, A.; Socha, K.; Zujko, M.E. Coffee brews: Are they a source of macroelements in human nutrition? Foods 2021, 10, 1328. [Google Scholar] [CrossRef]
- Labbe, D.; Ferrage, A.; Rytz, A.; Pace, J.; Martin, N. Pleasantness, emotions and perception induced by coffee beverage experience depend on the consumption motivation (hedonic or utilitarian). Food Qual. Prefer. 2015, 44, 56–61. [Google Scholar] [CrossRef]
- Carlstrom, M.; Larsson, S.C. Coffee consumption and reduced risk of developing type 2 diabetes: A systematicreview with meta-analysis. Nutr. Rev. 2018, 76, 395–417. [Google Scholar] [CrossRef] [PubMed]
- Popat, R.A.; Van Den Eeden, S.K.; Tanner, C.M.; Kamel, F.; Umbach, D.M.; Marder, K.; Mayeux, R.; Ritz, B.; Ross, G.W.; Petrovitch, H.; et al. Coffee, ADORA2A, and CYP1A2: The caffeine connection in Parkinson’s disease. Eur. J. Neurol. 2011, 18, 756–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tugnolo, A.; Beghi, R.; Giovenzana, V.; Guidetti, R. Characterization of green, roasted beans, and ground coffee using near infrared spectroscopy: A comparison of two devices. J. Near Infrared Spectrosc. 2019, 27, 93–104. [Google Scholar] [CrossRef]
- Debastiani, R.; Iochims dos Santos, C.E.; Ramos, M.M.; Sousa, V.S.; Amaral, L.; Yoneama, M.L.; Dias, J.F. Elemental analysis of Brazilian coffee with ion beam techniques: From ground coffee to the final beverage. Food Res. Int. 2019, 119, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Janda, K.; Jakubczyk, K.; Baranowska-Bosiacka, I.; Kapczuk, P.; Kochman, J.; Rebacz-Maron, E.; Gutowska, I. Mineral Composition and Antioxidant Potential of Coffee Beverages Depending on the Brewing Method. Foods 2020, 9, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayat, U.; Siddiqui, A.A.; Okut, H.; Afroz, S.; Tasleem, S.; Haris, A. The effect of coffee consumption on the non-alcoholic fatty liver disease and liver fibrosis: A meta-analysis of 11 epidemiological studies. Ann. Hepatol. 2021, 20, 100254. [Google Scholar] [CrossRef]
- Dranoff, J.A. Coffee consumption and prevention of cirrhosis: In support of the caffeine hypothesis. Gene Expr. 2018, 18, 1–3. [Google Scholar] [CrossRef]
- Kennedy, O.J.; Fallowfield, J.A.; Poole, R.; Hayes, P.C.; Parkes, J.; Roderick, P.J. All coffee types decrease the risk of adverse clinical outcomes in chronic liver diseases: A UK Biobank study. BMC Public Health 2021, 21, 970. [Google Scholar] [CrossRef]
- Tamura, T.; Hishida, A.; Wakai, K. Coffee consumption and liver cancer risk in Japan: A meta-analysis of six prospective cohort studies. Nagoya J. Med. Sci. 2019, 81, 143–150. [Google Scholar]
- Ferraro, P.M.; Taylor, E.N.; Gambaro, G.; Curhan, G.C. caffeine intake and the risk of kidney stones. Am. J. Clin. Nutr. 2014, 100, 1596–1603. [Google Scholar] [CrossRef] [Green Version]
- Samoggia, A.; Del Prete, M.; Argenti, C. Functional needs, emotions, and perceptions of coffee consumers and non-consumers. Sustainability 2020, 12, 5694. [Google Scholar] [CrossRef]
- Barahona, I.; Jaimes, E.M.S.; Yang, J.B. Sensory attributes of coffee beverages and their relation to price and package information: A case study of Colombian customers’ preferences. Food Sci. Nutr. 2020, 8, 1173–1186. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.ico.org/prices/po-production.pdf (accessed on 11 September 2022).
- Craig, A.P.; Botelho, B.G.; Oliveira, L.S.; Franca, A.S. Mid infrared spectroscopy and chemometrics as tools for the classification of roasted coffees by cup quality. Food Chem. 2018, 245, 1052–1061. [Google Scholar] [CrossRef] [PubMed]
- Santini, A.; Ferracane, R.; Mikušová, P.; Eged, S.; Srobárová, A.; Meca, G.; Mañes, J.; Ritieni, A. Influence of different coffee drink preparations on ochratoxin A content and evaluation of the antioxidant activity and caffeine variations. Food Control 2011, 22, 1240–1245. [Google Scholar] [CrossRef]
- De Vivo, A.; Genovese, A.; Tricarico, M.C.; Aprea, A.; Sacchi, R.; Sarghini, F. Volatile compounds in espresso resulting from a refined selection of particle size of coffee powder. J. Food Comp. Anal. 2022, 114, 104779. [Google Scholar] [CrossRef]
- Yu, J.M.; Chu, M.; Park, H.; Park, J.; Lee, K.G. Analysis of Volatile Compounds in Coffee Prepared by Various Brewing and Roasting Methods. Foods 2021, 10, 1347. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Cheng, J.; Hong, Q.; Dong, W.; Chen, X.; Wu, G.; Zhang, Z. Identification of changes in the volatile compounds of robusta coffee beans during drying based on HS-SPME/GC-MS and E-nose analyses with the aid of chemometrics. LWT-Food Sci. Technol. 2022, 161, 113317. [Google Scholar] [CrossRef]
- Houessou, J.K.; Maloug, S.; Leveque, A.S.; Delteil, C.; Heyd, B.; Camel, V. Effect of roasting conditions on the polycyclic aromatic hydrocarbon content in ground arabica coffee and coffee brew. J. Agric. Food Chem 2007, 55, 9719–9726. [Google Scholar] [CrossRef]
- Muniz-Valencia, R.; Jurado, J.M.; Ceballos-Magana, S.G.; Alcazar, A.; Hernandez-Diaz, J. Characterization of Mexican coffee according to mineral contents by means of multilayer perceptrons artificial neural networks. J. Food Comp. Anal. 2014, 34, 7–11. [Google Scholar] [CrossRef]
- Kalschne, D.L.; Silva, N.K.; Canan, C.; de Toledo Benassi, M.; Moraes Flores, E.L.; Leite, O.D. Main minerals and organic compounds in commercial roasted and ground coffee: An exploratory data analysis. Quim. Nova. 2021, 44, 70–75. [Google Scholar] [CrossRef]
- Miclean, M.; Cadar, O.; Levei, E.A.; Roman, R.; Ozunu, A.; Levei, L. Metal (Pb, Cu, Cd, and Zn) Transfer along food chain and health risk assessment through raw milk consumption from free-range cows. Int. J. Environ. Res. Public Health 2019, 16, 4064. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, R.M.; Batista, B.L.; Varrique, R.M.; Coelho, V.A.; Campiglia, A.D.; Barbosa, F. The use of advanced chemometric techniques and trace element levels for controlling the authenticity of organic coffee. Food Res. Int. 2014, 61, 246–251. [Google Scholar] [CrossRef]
- Dong, W.; Hu, R.; Long, Y.; Li, H.; Zhang, Y.; Zhu, K.; Chu, Z. Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose, electronic tongue, and HS-SPME-GC-MS. Food Chem. 2019, 272, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Paui, S.; Clincon, L.; Peresson, C.; Zancani, M.; Conte, L.; Del Terra, L.; Navarini, L.; Vianello, A.; Braidot, E. Lipase activity and antioxidant capacity in coffee (Coffea arabica L.) seeds during germination. Plant Sci. 2014, 219–220, 19–25. [Google Scholar]
- Corso, M.P.; Benassi, M.T. Packaging attributes of antioxidant-rich instant coffee and their influence on the purchase intent. Beverages 2015, 1, 273–291. [Google Scholar] [CrossRef] [Green Version]
- Bressani, A.P.P.; Martinez, S.J.; Batista, N.N.; Simao, J.B.P.; Schwan, R.F. Into the minds of coffee consumers: Perception, preference, and impact of information in the sensory analysis of specialty coffee. Food Sci. Technol. 2021, 41, 667–675. [Google Scholar] [CrossRef]
- Nielsen, S.D.; Crafack, M.; Jespersen, L.; Jakobsen, M. The Microbiology of Cacao Fermentation. In Chocolate in Health and Nutrition; Humana Press: Totowa, NJ, USA, 2012; Volume 7, pp. 39–60. [Google Scholar]
- Thammarat, P.; Kulsing, C.; Wongravee, K.; Leepipatpiboon, N.; Nhujak, T. Identification of volatile compounds and selection of discriminant markers for elephant dung coffee using static headspace gas chromatography—Mass spectrometry and chemometrics. Molecules 2018, 23, 1910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Good Sense Company. Available online: http://www.thegoodscentscompany.com (accessed on 21 August 2022).
- Toci, A.T.; Farah, A. Volatile compounds as potential defective coffee beans’ markers. Food Chem. 2008, 108, 1133–1141. [Google Scholar] [CrossRef]
- Cheong, M.W.; Tong, K.H.; Ong, J.J.M.; Liu, S.Q.; Curran, P.; Yu, B. Volatile composition and antioxidant capacity of Arabica coffee. Food Res. Int. 2013, 51, 388–396. [Google Scholar] [CrossRef]
- Ochiai, N.; Tsunokawa, J.; Sasamoto, K.; Hoffmann, A. Multi-volatile method for aroma analysis using sequential dynamic headspace sampling with an application to brewed coffee. J. Chromatogr. A 2014, 1371, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Genovese, A.; de Vivo, A.; Aprea, A.; Tricarico, M.C.; Sacchi, R.; Sarghini, F. Particle size and variety of coffee used as variables in mitigation of furan and 2-methylfuran content in expresso coffee. Food Chem. 2021, 361, 130037. [Google Scholar] [CrossRef]
- Sunarharum, W.B.; Williams, D.J.; Smyth, H.E. Complexity of coffee flavor: A compositional and sensory perspective. Food Res. Int. 2014, 62, 315–325. [Google Scholar] [CrossRef]
- Kim, Y.J.; Choi, J.; Lee, G.; Lee, K.G. Analysis of furan and monosaccharides in various coffee beans. J. Food Sci. Technol. 2021, 58, 862–869. [Google Scholar] [CrossRef]
- Arisseto, A.P.; Vicente, E.; Ueno, M.S.; Tfouni, S.A.V.; Toledo, M.C.F. Furan levels in coffee as influenced by species, roast degree, and brewing procedures. J. Agric. Food Chem. 2011, 59, 3118–3124. [Google Scholar] [CrossRef]
- Toci, T.A.; Neto, V.J.M.F.; Torres, A.G.; Farah, A. Changes in triacylglycerols and free fatty acids composition during storage of roasted coffee. LWT-Food Sci. Technol. 2013, 50, 581–590. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.W.; Chung, H.; Kim, S.Y. Effects of dicarbonyl trapping agents, antioxidants, and reducing agents on the formation of furan and other volatile components in canned-coffee model systems. Food Res. Int. 2015, 75, 328–336. [Google Scholar] [CrossRef]
- Knysak, D. Volatile compounds profiles in unroasted Coffea arabica and Coffea canephora beans from different countries. Food Sci. Technol. 2017, 37, 444–448. [Google Scholar] [CrossRef] [Green Version]
- Daglia, M.; Papetti, A.; Aceti, C.; Sordelli, B.; Spini, V.; Gazzani, G. Isolation and determination of α-dicarbonyl compounds by RP-HPLC-DAD in green and roasted coffee. J. Agric. Food Chem. 2007, 55, 8877–8882. [Google Scholar] [CrossRef]
- Heo, J.; Adhikari, K.; Choi, K.S.; Lee, J. Analysis of caffeine, chlorogenic acid, trigonelline, and volatile compounds in cold brew coffee using high-performance liquid chromatography and solid-phase microextraction—Gas chromatography-mass spectrometry. Foods 2020, 9, 1746. [Google Scholar] [CrossRef]
- Hasbullah, U.H.A.; Umiyati, D.R. Antioxidant activity and total phenolic compounds of arabica and robusta coffee at different roasting levels. J. Phys. Conf. Ser. 2021, 1764, 012033. [Google Scholar] [CrossRef]
- Budryn, G.; Nebesny, E.; Zyzelewicz, D.; Oracz, J.; Miskiewicz, K.; Rosicka-Kaczmarek, J. Influence of roasting conditions on fatty acids and oxidative changes of Robusta coffee oil. Eur. J. Lipid Sci. Technol. 2012, 114, 1052–1061. [Google Scholar] [CrossRef]
- Masresha Feleke, H.; Srinivasulu, A.; Surendra, K.; Aruna, B.; Biswas, J.; Sudershan, M.; Rao, A.D.P.; Narayana, P.V.L. Estimation of elemental concentrations of Ethiopia Coffee Arabica on different coffee bean varieties (subspecies) using energy dispersive X-ray florescence. Int. J. Sci. Eng. Res. 2018, 9, 149–166. [Google Scholar]
- Vignoli, J.A.; Viegas, M.C.; Bassoli, D.G.; Benassi, M.D.T. Roasting process affects differently the bioactive compounds and the antioxidant activity of arabica and robusta coffees. Food Res. Int. 2014, 61, 279–285. [Google Scholar] [CrossRef] [Green Version]
- Marek, G.; Dobrzański, B., Jr.; Oniszczuk, T.; Combrzyński, M.; Ćwikła, D.; Rusinek, R. Detection and differentiation of volatile compound profiles in roasted coffee arabica beans from different countries using an electronic nose and GC-MS. Sensors 2020, 20, 2124. [Google Scholar] [CrossRef]
Peak No. | Compound Name | Group | Odor Characteristic | Samples | |||||
---|---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | C6 | ||||
1 | 2-Butanone | Ketones | Ethereal | 6.2 | 12.5 | 8.9 | 6.7 | 11.2 | 9.3 |
2 | Furan | Furans | Ethereal | 5.8 | 10.9 | 10.1 | 9.3 | 13.7 | 10.9 |
3 | 2-Oxopropanal | Aldehydes | Caramelly | 0.4 | 0.3 | 1.5 | 0.5 | 0.9 | 0.5 |
4 | 2-Butanol | Alcohol | Fruity | 0.2 | 0.1 | 0.3 | 1.3 | 1.5 | 1.9 |
5 | 2-Methylfuran | Furans | Chocolatey | 9.3 | 15.2 | 22.8 | 13.8 | 16.8 | 13.7 |
6 | 2-Methylbutanal | Aldehydes | Chocolatey | 0.5 | 0.4 | 1.4 | 1.2 | 1.2 | 0.8 |
7 | Methyl formate | Esters | Fruity | 6.7 | 5.8 | 5.2 | 5.8 | 4.2 | 1.3 |
8 | 2,3-Butanedione | Ketones | Buttery | 0.5 | 0.4 | 3.6 | 1.1 | 1.2 | 0.6 |
9 | 2-Methyl-3-buten-2-ol | Alcohol | Herby | 0.7 | 0.9 | 4.2 | 6.4 | 4.1 | 6.4 |
10 | 3-Pentanone | Ketones | Ethereal | 0.4 | 0.4 | 0.5 | 0 | 1.2 | 1.1 |
11 | 2,3-Pentanedione | Ketones | Buttery | 9.1 | 11.2 | 8.8 | 5.7 | 10.8 | 10.3 |
12 | Hexanal | Aldehydes | Green | 0.6 | 0.7 | 0.5 | 0.2 | 0 | 0.5 |
13 | 2-Methyl-2-butenal | Aldehydes | Green | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
14 | 3-Penten-2-one | Ketones | Fruity | 0.3 | 0.3 | 0.2 | 0.3 | 0.3 | 0.4 |
15 | 3,4-Hexanedione | Ketones | Buttery | 0.3 | 0.3 | 0.3 | 0.5 | 0.3 | 0.4 |
16 | 2-Methyl-1-butanol | Alcohol | Roasted | 0.3 | 0.3 | 0.2 | 0.2 | 0.3 | 0.4 |
17 | Furfuryl methyl ether | Furans | Coffee | 0.4 | 0.4 | 0.1 | 0.2 | 0.7 | 0.5 |
18 | Trimethyloxazole | Oxazoles | Nutty | 0.5 | 0.4 | 0.1 | 0 | 0 | 0.4 |
19 | Methylpyrazine | Pyrazines | Nutty | 6.3 | 6.1 | 1.3 | 4.2 | 1.5 | 0.7 |
20 | 3-Hydroxybutanone | Ketones | Buttery | 2.6 | 0 | 0.4 | 0 | 0.8 | 3.1 |
21 | 1-Hydroxy-2-propanone | Ketones | Caramelly | 0.4 | 0.3 | 0.5 | 9.7 | 1.6 | 0.5 |
22 | 3-Methyl-2-buten-1-ol | Alcohol | Fruity | 0.6 | 0.5 | 0.2 | 0.1 | 0.2 | 0.8 |
23 | Acetic acid | Carboxylic acid | Acidic | 5.8 | 7.3 | 2.4 | 2.9 | 3.5 | 3.3 |
24 | Furfural | Furans | Bready | 7.7 | 10.3 | 19.6 | 11.8 | 15.5 | 4.7 |
25 | 1-Ethyl-2-pyrrolecarbaldehyde | Pyrroles | Roasted | 0.4 | 0.5 | 0.1 | 3.2 | 2.1 | 0.1 |
26 | 2-Acetylfuran | Furans | Balsamic | 0.2 | 0.3 | 0.1 | 0.1 | 0.1 | 0.2 |
27 | Furfuryl ether | Furans | Coffee | 0.5 | 0.5 | 0.3 | 0.2 | 0.2 | 0.2 |
28 | 5-Ethyl-2.3-dimethylpyrazine | Pyrazines | Burnt | 0.4 | 0.5 | 0.6 | 0.3 | 1.6 | 0.6 |
29 | Furfuryl propionate | Furans | Fruity | 0.2 | 0 | 0 | 3.3 | 1.3 | 0.2 |
30 | Furfuryl acetate | Furans | Fruity | 2.3 | 1.1 | 0.4 | 0.1 | 0.5 | 1.3 |
31 | 2-Ethyl-2.3-dimethylpyrazine | Pyrazines | Nutty | 2.7 | 0.2 | 0 | 0 | 0 | 1.6 |
32 | 5-Methyl furfural | Furans | Caramelly | 8.4 | 1.9 | 0.7 | 2.4 | 0.6 | 5.8 |
33 | 2-Furanmethanol | Furans | Bready | 11.6 | 3.4 | 1.2 | 3.1 | 1.2 | 9.6 |
34 | Benzaldehyde | Aldehydes | Fruity | 2.6 | 1.6 | 0.5 | 3.7 | 0.3 | 3.7 |
35 | Guaiacol | Phenolic compounds | Phenolic | 0.5 | 0 | 0 | 0.2 | 0 | 0.6 |
36 | γ-Butyrolactone | Furans | Creamy | 2.6 | 1.5 | 0.3 | 0.2 | 0.2 | 1.8 |
37 | 2-Acetyl-5-methylfuran | Furans | Nutty | 0.4 | 2.8 | 1.5 | 0 | 0 | 0.5 |
38 | 2-Formyl-1-methylpyrrole | Pyrroles | Roasted | 0.9 | 0.4 | 0.1 | 0.5 | 0.1 | 0.7 |
39 | 5-Methyl--cyclopentapyrazine | Pyrazines | Earthy | 0.5 | 0.1 | 0.9 | 0.6 | 0.1 | 0.4 |
Sample | C1 | C2 | C3 | C4 | C5 | C6 |
---|---|---|---|---|---|---|
Na (mg/kg) | 68.9 ± 5.5 b | 89.4 ± 7.4 a | 74.3 ± 6.9 ab | 70.1 ± 6.0 b | 69.6 ± 6.3 b | 64.3 ± 5.6 b |
K (mg/kg) | 20,034 ± 567 ab | 21,536 ± 866 a | 20,123 ± 434 ab | 16,562 ± 788 c | 18,002 ± 880 bc | 20,088 ± 984 ab |
Ca (mg/kg) | 1332 ± 86 a | 1411 ± 75 a | 1342 ± 84 a | 889 ± 60 b | 934 ± 63 b | 1348 ± 77 a |
Mg (mg/kg) | 2112 ± 127 bc | 2645 ± 117 a | 2301 ± 160 ab | 1734 ± 114 cd | 1815 ± 137 d | 2335 ± 150 ab |
Fe (mg/kg) | 54.3 ± 5.1 bc | 69.2 ± 5.6 a | 60.7 ± 5.3 ab | 35.5 ± 3.6 d | 39.6 ± 3.7 cd | 58.7 ± 4.8 ab |
Cu (mg/kg) | 12.3 ± 1.2 bc | 24.1 ± 2.3 a | 14.9 ± 1.3 bc | 11.2 ± 1.1 bc | 12.3 ± 1.2 c | 16.2 ± 1.5 b |
Mn (mg/kg) | 20.4 ± 2.2 a | 25.3 ± 2.8 a | 23.4 ± 2.5 a | 19.6 ± 2.1 a | 20.1 ± 1.9 a | 20.9 ± 1.9 a |
Zn (mg/kg) | 6.94 ± 0.74 b | 8.96 ± 0.92 a | 7.08 ± 0.73 ab | 7.34 ± 0.69 ab | 7.03 ± 0.65 b | 5.95 ± 0.59 ab |
P (mg/kg) | 1524 ± 111 b | 1953 ± 150 a | 1652 ± 127 ab | 1356 ± 101 b | 1455 ± 109 b | 1863 ± 124 a |
C (%) | 48.9 ± 0.65 a | 50.4 ± 0.68 a | 49.6 ± 0.72 a | 48.9 ± 0.59 a | 49.0 ± 0.67 a | 49.4 ± 0.64 a |
H (%) | 5.78 ± 0.18 bc | 6.45 ± 0.20 a | 5.94 ± 0.16 cd | 5.11 ± 0.16 d | 5.68 ± 0.19 bc | 5.93 ± 0.17 b |
N (%) | 2.96 ± 0.10 a | 3.05 ± 0.10 a | 2.99 ± 0.08 a | 1.64 ± 0.06 b | 1.76 ± 0.05 b | 3.05 ± 0.09 a |
S (%) | 0.084 ± 0.005 b | 0.121 ± 0.007 b | 0.094 ± 0.005 b | 0.054 ± 0.003 c | 0.064 ± 0.003 c | 0.088 ± 0.005 b |
Polyphenol content (g GA/kg) | 14.5 ± 0.5 cd | 18.9 ± 0.6 a | 16.4 ± 0.7 b | 13.3 ± 0.5 d | 14.8 ± 0.6 cd | 15.7 ± 0.5 bc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dippong, T.; Dan, M.; Kovacs, M.H.; Kovacs, E.D.; Levei, E.A.; Cadar, O. Analysis of Volatile Compounds, Composition, and Thermal Behavior of Coffee Beans According to Variety and Roasting Intensity. Foods 2022, 11, 3146. https://doi.org/10.3390/foods11193146
Dippong T, Dan M, Kovacs MH, Kovacs ED, Levei EA, Cadar O. Analysis of Volatile Compounds, Composition, and Thermal Behavior of Coffee Beans According to Variety and Roasting Intensity. Foods. 2022; 11(19):3146. https://doi.org/10.3390/foods11193146
Chicago/Turabian StyleDippong, Thomas, Monica Dan, Melinda Haydee Kovacs, Emoke Dalma Kovacs, Erika Andrea Levei, and Oana Cadar. 2022. "Analysis of Volatile Compounds, Composition, and Thermal Behavior of Coffee Beans According to Variety and Roasting Intensity" Foods 11, no. 19: 3146. https://doi.org/10.3390/foods11193146