Pleurotus eryngii Chips—Chemical Characterization and Nutritional Value of an Innovative Healthy Snack
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Mushroom Snack
2.2.2. Proximate Analysis
Crude Protein
Total Lipid
Energy Content
Crude Fibre
2.2.3. Free Amino Acids
2.2.4. Fatty Acid Profile
2.2.5. Ergosterol
2.2.6. Macro and Trace Elements
2.2.7. Quantification of β-Glucans
2.2.8. Detection and Quantification of Water- and Fat-Soluble Vitamins
2.2.9. Sensory Analysis
2.2.10. Nutritional Quality Indices
2.2.11. Antioxidant Capacity and Total Phenolic Content
3. Results and Discussion
3.1. Crude Protein Content
3.2. Total Lipids
3.3. Crude Fibre
3.4. Energy Content
3.5. Free Amino Acids
3.6. Fatty Acids Methyl Esters (FAMEs)
3.7. Ergosterol
3.8. Macro and Trace Elements
3.9. Content in Glucans
3.10. Vitamins Content
3.11. Sensory Analysis Results
3.12. Nutritional Quality Indices
3.13. Antioxidant Power and Total Phenolic Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, A.; Eriksson, G. The making of healthy and moral snacks: A multimodal critical discourse analysis of corporate storytelling. Discourse Context Media 2019, 32, 100347. [Google Scholar] [CrossRef]
- Hess, J.M.; Slavin, J.L. The benefits of defining “snacks”. Physiol. Behav. 2018, 193, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Hess, J.M.; Jonnalagadda, S.S.; Slavin, J.L. What is a snack, why do we snack, and how can we choose better snacks? A review of the definitions of snacking, motivations to snack, contributions to dietary intake, and recommendations for improvement. Adv. Nutr. 2016, 7, 466–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hess, J.; Rao, G.; Slavin, J. Τhe nutrient density of snacks. Glob. Pediatr. Health 2017, 4, 2333794X1769852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hess, J.M.; Slavin, J.L. Healthy Snacks: Using nutrient profiling to evaluate the nutrient-density of common snacks in the United States. J. Food Sci. 2017, 82, 2213–2220. [Google Scholar] [CrossRef]
- Sousa, S.C.; Machado, M.; Freitas, A.C.; Gomes, A.M.; Carvalho, A.P. Can growth of Nannochloropsis oculata under modulated stress enhance its lipid-associated biological properties? Mar. Drugs 2022, 20, 737. [Google Scholar] [CrossRef]
- Mitra, M.; Mishra, S. A comparative analysis of different extraction solvent systems on the extractability of eicosapentaenoic acid from the marine Eustigmatophyte Nannochloropsis oceanica. Algal Res. 2019, 38, 101387. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Balan, V.; Novak, D.; Knudson, W.; Jones, A.D.; Iñiguez-Franco, F.M.; Auras, R.; Cho, S.; Rodgers, A.; Ubanwa, B. Nutritious mushroom protein crisp—Healthy alternative to starchy snack. Food Prod. Process. Nutr. 2021, 3, 33. [Google Scholar] [CrossRef]
- Agarwal, S.; Fulgoni, V.L., III. Nutritional impact of adding a serving of mushrooms to USDA Food Patterns—A dietary modeling analysis. Food Nutr. Res. 2021, 65, 5618. [Google Scholar] [CrossRef]
- Raman, J.; Jang, K.-Y.; Oh, Y.-L.; Oh, M.; Im, J.-H.; Lakshmanan, H.; Sabaratnam, V. Cultivation and nutritional value of prominent Pleurotus spp.: An overview. Mycobiology 2020, 49, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, Y.; Zhang, F.; Linhardt, R.J.; Zeng, G.; Zhang, A. Extraction, structure and bioactivities of the polysaccharides from Pleurotus eryngii: A review. Int. J. Biol. Macromol. 2020, 150, 1342–1347. [Google Scholar] [CrossRef] [PubMed]
- Knight, J.A.; Anderson, S.; Rawle, J.M. Chemical basis of the sulfo-phospho-vanillin reaction for estimating total serum lipids. Clin. Chem. 1972, 18, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.K.; Suh, W.I.; Farooq, W.; Moon, M.; Shrivastav, A.; Park, M.S.; Yang, J.-W. Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresour. Technol. 2014, 155, 330–333. [Google Scholar] [CrossRef]
- Tagkouli, D.; Kaliora, A.; Bekiaris, G.; Koutrotsios, G.; Christea, M.; Zervakis, G.I.; Kalogeropoulos, N. Free amino acids in three Pleurotus species cultivated on agricultural and agro-industrial by-products. Molecules 2020, 25, 4015. [Google Scholar] [CrossRef]
- Alexi, N.; Kogiannou, D.; Oikonomopoulou, I.; Kalogeropoulos, N.; Byrne, D.V.; Grigorakis, K. Culinary preparation effects on lipid and sensory quality of farmed gilthead seabream (Sparus aurata) and meagre (Argyrosomus regius): An inter-species comparison. Food Chem. 2019, 301, 125263. [Google Scholar] [CrossRef]
- Sapozhnikova, Y.; Byrdwell, W.C.; Lobato, A.; Romig, B. Effects of UVB radiation levels on concentrations of phytosterols, ergothioneine, and polyphenolic compounds in mushroom powders used as dietary supplements. J. Agric. Food Chem. 2014, 62, 3034–3042. [Google Scholar] [CrossRef]
- Bekiaris, G.; Tagkouli, D.; Koutrotsios, G.; Kalogeropoulos, N.; Zervakis, G.I. Pleurotus Mushrooms content in glucans and ergosterol assessed by ATR-FTIR spectroscopy and multivariate analysis. Foods 2020, 9, 535. [Google Scholar] [CrossRef]
- Simon, R.R.; Phillips, K.M.; Horst, R.L.; Munro, I.C. Vitamin D Mushrooms: Comparison of the composition of button mushrooms (Agaricus bisporus) treated postharvest with UVB light or sunlight. J. Agric. Food Chem. 2011, 59, 8724–8732. [Google Scholar] [CrossRef]
- Teichmann, A.; Dutta, P.C.; Staffas, A.; Jägerstad, M. Sterol and vitamin D2 concentrations in cultivated and wild grown mushrooms: Effects of UV irradiation. LWT—Food Sci. Technol. 2007, 40, 815–822. [Google Scholar] [CrossRef]
- Grigoriou, C.; Costopoulou, D.; Vassiliadou, I.; Karavoltsos, S.; Sakellari, A.; Bakeas, E.; Leondiadis, L. Polycyclic aromatic hydrocarbons and trace elements dietary intake in inhabitants of Athens, Greece, based on a duplicate portion study. Food Chem. Toxicol. 2022, 165, 113087. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (USEPA). Guidelines establishing test procedures for the analysis of pollutants (App. B, Part 136, definition and procedures for the determination of the method detection limit). In U.S. Code of Federal Regulations; U.S. Government Publishing Office: Washington, DC, USA, 1997; pp. 265–267. [Google Scholar]
- Gentili, A.; Caretti, F. Analysis of Vitamins by Liquid Chromatography, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; ISBN 9780128053928. [Google Scholar]
- Kıvrak, Ş. Determination of B-group vitamins in Turkish honey using ultra-performance liquid chromatography with electrospray ionization coupled to tandem mass spectrometry. J. Liq. Chromatogr. Relat. Technol. 2016, 39, 847–851. [Google Scholar] [CrossRef]
- Ciulu, M.; Solinas, S.; Floris, I.; Panzanelli, A.; Pilo, M.I.; Piu, P.C.; Spano, N.; Sanna, G. RP-HPLC determination of water-soluble vitamins in honey. Talanta 2011, 83, 924–929. [Google Scholar] [CrossRef]
- Katsa, M.; Papalouka, N.; Mavrogianni, T.; Papagiannopoulou, I.; Kostakis, M.; Proestos, C.; Thomaidis, N.S. Comparative study for the determination of fat-soluble vitamins in rice cereal baby foods using HPLC-DAD and UHPLC-APCI-MS/MS. Foods 2021, 10, 648. [Google Scholar] [CrossRef]
- Nölle, N.; Argyropoulos, D.; Ambacher, S.; Müller, J.; Biesalski, H.K. Vitamin D2 enrichment in mushrooms by natural or artificial UV-light during drying. LWT—Food Sci. Technol. 2017, 85, 400–404. [Google Scholar] [CrossRef]
- Krings, U.; Berger, R.G. Dynamics of sterols and fatty acids during UV-B treatment of oyster mushroom. Food Chem. 2014, 149, 10–14. [Google Scholar] [CrossRef]
- Kleftaki, S.-A.; Amerikanou, C.; Gioxari, A.; Lantzouraki, D.Z.; Sotiroudis, G.; Tsiantas, K.; Tsiaka, T.; Tagkouli, D.; Tzavara, C.; Lachouvaris, L.; et al. A Randomized Controlled Trial on Pleurotus eryngii Mushrooms with antioxidant compounds and Vitamin D2 in managing metabolic disorders. Antioxidants 2022, 11, 2113. [Google Scholar] [CrossRef]
- Fulgoni, V.L.; Keast, D.R.; Drewnowski, A. Development and validation of the nutrient-rich foods index: A tool to measure nutritional quality of foods. J. Nutr. 2009, 139, 1549–1554. [Google Scholar] [CrossRef] [Green Version]
- Drewnowski, A. The Nutrient Rich Foods Index helps to identify healthy, affordable foods. Am. J. Clin. Nutr. 2010, 91, 1095S–1101S. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.-Y.; Chung, L.-M.; Lee, S.-J.; Ahn, J.-K.; Kim, E.-H.; Kim, M.-J.; Kim, S.-L.; Moon, H.-I.; Ro, H.-M.; Kang, E.-Y.; et al. Comparison of free amino acid, carbohydrates concentrations in Korean edible and medicinal mushrooms. Food Chem. 2009, 113, 386–393. [Google Scholar] [CrossRef]
- Kalač, P. A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J. Sci. Food Agric. 2012, 93, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Sakellari, A.; Karavoltsos, S.; Tagkouli, D.; Rizou, C.; Sinanoglou, V.J.; Zoumpoulakis, P.; Koutrotsios, G.; Zervakis, G.I.; Kalogeropoulos, N. Trace Elements in Pleurotus Ostreatus, P. Eryngii, and P. Nebrodensis Mushrooms cultivated on various agricultural by-products. Anal. Lett. 2019, 52, 2692–2709. [Google Scholar] [CrossRef]
- Dunlop, E.; Kiely, M.; James, A.P.; Singh, T.; Black, L.J. Efficacy of vitamin D food fortification and biofortification in children and adults: A systematic review protocol. JBI Evid. Synth. 2020, 18, 2694–2703. [Google Scholar] [CrossRef] [PubMed]
- Green, H.; Siwajek, P.; Roulin, A. Use of nutrient profiling to identify healthy versus unhealthy snack foods and whether they can be part of a healthy menu plan. J. Nutr. Intermed. Metab. 2017, 9, 1–5. [Google Scholar] [CrossRef]
- Berryman, C.E.; Lieberman, H.R.; Fulgoni, V.L.; Pasiakos, S.M. Greater protein intake at breakfast or as snacks and less at dinner is associated with cardiometabolic health in adults. Clin. Nutr. 2021, 40, 4301–4308. [Google Scholar] [CrossRef]
- Arciero, P.J.; Ormsbee, M.J.; Gentile, C.L.; Nindl, B.C.; Brestoff, J.R.; Ruby, M. Increased protein intake and meal frequency reduces abdominal fat during energy balance and energy deficit. Obesity 2013, 21, 1357–1366. [Google Scholar] [CrossRef]
- Beaglehole, R.; Bonita, R.; Horton, R.; Adams, C.; Alleyne, G.; Asaria, P.; Baugh, V.; Bekedam, H.; Billo, N.; Casswell, S.; et al. Priority actions for the non-communicable disease crisis. Lancet 2011, 377, 1438–1447. [Google Scholar] [CrossRef]
- Hwang, I.S.; Chon, S.Y.; Bang, W.S.; Kim, M.K. Influence of roasting temperatures on the antioxidant properties, β-Glucan content, and volatile flavor profiles of Shiitake mushroom. Foods 2020, 10, 54. [Google Scholar] [CrossRef]
- Kiss, A.; Grünvald, P.; Ladányi, M.; Papp, V.; Papp, I.; Némedi, E.; Mirmazloum, I. Heat treatment of Reishi medicinal mushroom (Ganoderma lingzhi) Basidiocarp enhanced its β-glucan solubility, antioxidant capacity and lactogenic properties. Foods 2021, 10, 2015. [Google Scholar] [CrossRef]
- Breene, W.M. Nutritional and medicinal value of specialty mushrooms. J. Food Prot. 1990, 53, 883–894. [Google Scholar] [CrossRef]
- Dundar, A.; Acay, H.; Yildiz, A. Yield performances and nutritional contents of three oyster mushroom species cultivated on wheat stalk. Afr. J. Biotechnol. 2008, 7, 3497–3501. [Google Scholar] [CrossRef]
- Papada, E.; Amerikanou, C.; Torović, L.; Kalogeropoulos, N.; Tzavara, C.; Forbes, A.; Kaliora, A.C. Plasma free amino acid profile in quiescent Inflammatory Bowel Disease patients orally administered with Mastiha (Pistacia lentiscus); a randomised clinical trial. Phytomedicine 2019, 56, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Beluhan, S.; Ranogajec, A. Chemical composition and non-volatile components of Croatian wild edible mushrooms. Food Chem. 2011, 124, 1076–1082. [Google Scholar] [CrossRef]
- Miyazawa, N.; Matsuoka, H.; Ozawa, Y. Palatability Characteristics of Pleurotus eryngii var. tuoliensis. Nippon Shokuhin Kagaku Kogaku Kaishi 2012, 59, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Patil, S.S.; Ahmed, S.A.; Telang, S.M.; Baig, M.M.V. The Nutritional value of Pleurotus Ostreatus (Jacq.:Fr.) Kumm cultivated on different lignocellulosic agro-wastes. Innov. Rom. Food Biotechnol. 2010, 7, 66–76. Available online: http://www.bioaliment.ugal.ro/ejournal.htm (accessed on 20 October 2022).
- Yin, C.; Fan, X.; Fan, Z.; Shi, D.; Yao, F.; Gao, H. Comparison of non-volatile and volatile flavor compounds in six Pleurotus mushrooms. J. Sci. Food Agric. 2018, 99, 1691–1699. [Google Scholar] [CrossRef]
- Diana, M.; Quílez, J.; Rafecas, M. Gamma-aminobutyric acid as a bioactive compound in foods: A review. J. Funct. Foods 2014, 10, 407–420. [Google Scholar] [CrossRef]
- Sande, D.; de Oliveira, G.P.; e Moura, M.A.F.; de Almeida Martins, B.; Lima, M.T.N.S.; Takahashi, J.A. Edible mushrooms as a ubiquitous source of essential fatty acids. Food Res. Int. 2019, 125, 108524. [Google Scholar] [CrossRef]
- Nutrition. Limit Fat, Salt and Sugar. Available online: https://www.emro.who.int/nutrition/reduce-fat-salt-and-sugar-intake/index.html (accessed on 20 November 2022).
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef] [PubMed]
- Nantapo, C.T.W.; Muchenje, V.; Hugo, A. Atherogenicity index and health-related fatty acids in different stages of lactation from Friesian, Jersey and Friesian × Jersey cross cow milk under a pasture-based dairy system. Food Chem. 2014, 146, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Attia, Y.A.; Al-Harthi, M.A.; Korish, M.A.; Shiboob, M.M. Fatty acid and cholesterol profiles and hypocholesterolemic, atherogenic, and thrombogenic indices of table eggs in the retail market. Lipids Health Dis. 2015, 14, 136. [Google Scholar] [CrossRef] [Green Version]
- Koutrotsios, G.; Kalogeropoulos, N.; Kaliora, A.C.; Zervakis, G.I. Toward an increased functionality in Oyster (Pleurotus) mushrooms produced on grape marc or olive mill wastes serving as sources of bioactive compounds. J. Agric. Food Chem. 2018, 66, 5971–5983. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D Deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Amrein, K.; Scherkl, M.; Hoffmann, M.; Neuwersch-Sommeregger, S.; Köstenberger, M.; Tmava Berisha, A.; Martucci, G.; Pilz, S.; Malle, O. Vitamin D deficiency 2.0: An update on the current status worldwide. Eur. J. Clin. Nutr. 2020, 74, 1498–1513. [Google Scholar] [CrossRef]
- Parva, N.R.; Tadepalli, S.; Singh, P.; Qian, A.; Joshi, R.; Kandala, H.; Nookala, V.K.; Cheriyath, P. Prevalence of Vitamin D deficiency and associated risk factors in the US population (2011–2012). Cureus 2018, 10, e2741. [Google Scholar] [CrossRef] [Green Version]
- Roth, D.E.; Abrams, S.A.; Aloia, J.; Bergeron, G.; Bourassa, M.W.; Brown, K.H.; Calvo, M.S.; Cashman, K.D.; Combs, G.; De-Regil, L.M.; et al. Global prevalence and disease burden of vitamin D deficiency: A roadmap for action in low- and middle-income countries. Ann. N. Y. Acad. Sci. 2018, 1430, 44–79. [Google Scholar] [CrossRef] [Green Version]
- Uday, S.; Högler, W. Nutritional rickets and osteomalacia in the twenty-first century: Revised concepts, public health, and prevention strategies. Curr. Osteoporos. Rep. 2017, 15, 293–302. [Google Scholar] [CrossRef] [Green Version]
- Manson, J.E.; Cook, N.R.; Lee, I.M.; Christen, W.; Bassuk, S.S.; Mora, S.; Gibson, H.; Gordon, D.; Copeland, T.; D’Agostino, D.; et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. N. Engl. J. Med. 2019, 380, 33–44. [Google Scholar] [CrossRef]
- Niedermaier, T.; Gredner, T.; Kuznia, S.; Schöttker, B.; Mons, U.; Brenner, H. Potential of Vitamin D food fortification in prevention of cancer deaths—A modeling study. Nutrients 2021, 13, 3986. [Google Scholar] [CrossRef]
- Schottker, B.; Jorde, R.; Peasey, A.; Thorand, B.; Jansen, E.H.J.M.; de Groot, L.; Streppel, M.; Gardiner, J.; Ordonez-Mena, J.M.; Perna, L.; et al. Vitamin D and mortality: Meta-analysis of individual participant data from a large consortium of cohort studies from Europe and the United States. BMJ 2014, 348, g3656. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F.; Biancuzzo, R.M.; Chen, T.C.; Klein, E.K.; Young, A.; Bibuld, D.; Reitz, R.; Salameh, W.; Ameri, A.; Tannenbaum, A.D. Vitamin D2 is as effective as Vitamin D3 in maintaining circulating concentrations of 25-Hydroxyvitamin D. J. Clin. Endocrinol. Metab. 2008, 93, 677–681. [Google Scholar] [CrossRef]
- Black, L.J.; Seamans, K.M.; Cashman, K.D.; Kiely, M. An Updated systematic review and meta-analysis of the efficacy of Vitamin D food fortification. J. Nutr. 2012, 142, 1102–1108. [Google Scholar] [CrossRef] [Green Version]
- Niedermaier, T.; Gredner, T.; Kuznia, S.; Schöttker, B.; Mons, U.; Lakerveld, J.; Ahrens, W.; Brenner, H. Vitamin D Food fortification in European countries: The underused potential to prevent cancer deaths. Eur. J. Epidemiol. 2022, 37, 309–320. [Google Scholar] [CrossRef]
- Pilz, S.; März, W.; Cashman, K.D.; Kiely, M.E.; Whiting, S.J.; Holick, M.F.; Grant, W.B.; Pludowski, P.; Hiligsmann, M.; Trummer, C.; et al. Rationale and plan for Vitamin D Food Fortification: A review and guidance paper. Front. Endocrinol. 2018, 9, 373. [Google Scholar] [CrossRef]
- Rizzoli, R. Vitamin D supplementation: Upper limit for safety revisited? Aging Clin. Exp. Res. 2020, 33, 19–24. [Google Scholar] [CrossRef]
- Li, S.; Shah, N.P. Effects of various heat treatments on phenolic profiles and antioxidant activities of Pleurotus eryngii extracts. J. Food Sci. 2013, 78, C1122–C1129. [Google Scholar] [CrossRef]
- Islam, T.; Yu, X.; Xu, B. Phenolic profiles, antioxidant capacities and metal chelating ability of edible mushrooms commonly consumed in China. LWT—Food Sci. Technol. 2016, 72, 423–431. [Google Scholar] [CrossRef]
Treatment | Description |
---|---|
1 | yeast (0.5%) + taste with the tradename Maxagusto S-99 (1%) |
2 | yeast (0.5%) + taste with the tradename Maxagusto S-99 (1%) + salt (1.5%) |
3 | yeast (0.5%) + garlic powder (1%) + salt (1.5%) |
4 | yeast (0.5%) + taste with the tradename Maxavor Key Beef ΒΧ-H (1%) + salt (1.5%) |
Fatty Acids | % (w/w) of Total Fatty Acids | g/100 g of Snack | |||
---|---|---|---|---|---|
Name | Symbol | Mean | SD | Mean | SD |
Linoleic | 18:2ω6 | 67.999 | 0.149 | 0.969 | 0.002 |
Oleic | 18:1ω9 | 12.425 | 0.240 | 0.177 | 0.003 |
Palmitic | 16:0 | 11.902 | 0.301 | 0.170 | 0.004 |
Pentadecanoic | 15:0 | 1.637 | 0.059 | 0.023 | 0.001 |
Stearic | 18:0 | 1.010 | 0.030 | 0.014 | 0.000 |
Vaccenic | 18:1ω7 | 0.671 | 0.010 | 0.010 | 0.000 |
Myristic | 14:0 | 0.359 | 0.013 | 0.005 | 0.000 |
Docosadienoic | 20:2ω6 | 0.212 | 0.113 | 0.003 | 0.002 |
Margaric | 17:0 | 0.168 | 0.011 | 0.002 | 0.000 |
Linolenic | 18:3ω3 | 0.163 | 0.004 | 0.002 | 0.000 |
Palmitoleic | 16:1ω7 | 0.158 | 0.010 | 0.002 | 0.000 |
Gondoic | 20:1ω9 | 0.148 | 0.006 | 0.002 | 0.000 |
Behenic | 22:0 | 0.123 | 0.006 | 0.002 | 0.000 |
Erucic | 22:1ω9 | 0.044 | 0.003 | 0.001 | 0.000 |
Arachidic | 20:0 | 0.041 | 0.013 | 0.001 | 0.000 |
Total | 97.569 | 0.977 | 1.390 | 0.014 | |
SFA | 15.239 | 0.407 | 0.217 | 0.006 | |
MUFA | 13.446 | 0.269 | 0.192 | 0.004 | |
PUFA | 68.373 | 0.274 | 0.975 | 0.004 |
Vitamins | Concentration |
---|---|
Vitamin A (μg/kg) | 37.4 |
Vitamin B1 (mg/kg) | 0.514 |
Vitamin B2 (mg/kg) | 9.1 |
Vitamin B3 (mg/kg) | 363.0 |
Vitamin B5 (mg/kg) | 13,5 |
Vitamin B6 (mg/kg) | 1.77 |
Vitamin B9 (mg/kg) | <0.278 |
Vitamin B12 (μg/kg) | <0.45 |
Vitamin C (mg/100 g) | ND |
Vitamin E (mg/kg) | 0.398 |
Vitamin K1 (mg/kg) | <0.00179 |
Characteristics (1–10, 10 = Maximum) | Treatment | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
Appearance | Colour intensity | 7.1 | 7.4 | 7.7 | 7.6 |
Homogeneity of appearance | 7.3 | 6.8 | 7.1 | 7.3 | |
Homogeneity of shape | 6.7 | 6.7 | 6.4 | 6.7 | |
Visual texture | 6.9 | 6.7 | 6.7 | 6.9 | |
Integrity of samples | 7.4 | 7.4 | 7.2 | 7.0 | |
Defects | 2.3 | 2.0 | 2.9 | 1.8 | |
Odour | Odour intensity | 5.8 | 6.1 | 6.9 | 6.9 |
Defects | 1.9 | 1.5 | 1.8 | 1.4 | |
Texture in hand | Hardness | 6.1 | 6.5 | 6.5 | 6.7 |
Crispiness | 7.0 | 6.6 | 6.0 | 7.1 | |
Texture in mouth | Hardness | 6.1 | 6.8 | 6.9 | 6.8 |
Crispiness | 6.4 | 7.1 | 6.7 | 7.5 | |
Easiness of chewing | 7.1 | 7.6 | 7.1 | 7.5 | |
Defects | 1.9 | 1.6 | 2.1 | 1.6 | |
Taste | Taste intensity | 6.2 | 7.4 | 7.0 | 7.4 |
Saltness | 4.6 | 5.8 | 5.3 | 5.8 | |
Sweetness | 4.1 | 3.9 | 4.1 | 4.1 | |
Bitterness | 1.1 | 1.3 | 1.1 | 1.5 | |
Metallic taste | 1.0 | 1.1 | 1.1 | 1.1 | |
Strange taste | 0.9 | 1.2 | 1.4 | 1.5 | |
Defects | 1.7 | 1.4 | 1.6 | 1.5 | |
Aroma/flavor | Aroma/flavor intensity | 5.8 | 7.4 | 6.8 | 7.7 |
Mushroom aroma/flavor | 6.4 | 6.6 | 6.6 | 6.9 | |
Yeast aroma/flavor | 3.0 | 2.6 | 2.6 | 3.1 | |
Additives aroma/flavor | 1.4 | 2.3 | 1.8 | 2.3 | |
Defects | 1.7 | 1.6 | 1.6 | 1.6 | |
After-taste | 6.1 | 6.9 | 6.6 | 7.1 | |
Overall impression (1–10, 10 = maximum) | 6.6 | 7.7 | 7.0 | 7.2 | |
Order (1 = best, 4 = worst) | 3.1 | 1.6 | 2.7 | 2.6 | |
% of tasters who would consume again samples from each treatment | 29% | 100% | 43% | 71% |
Nutrients | Amount in 100 kcal李of Snack | DRV | PDV | |
---|---|---|---|---|
Protein (g) | 8.28 | 50 | 17.00 | Sum of nutrients to encourage: 153.33 |
Fibre (g) | 11.29 | 25 | 45.16 | |
Vitamin A (IU) | 3.09 | 5000 | 0.06 | |
Vitamin C (mg) | - | 60 | 0.00 | |
Vitamin E [IU (mg)] | 0.01 | 30 (20) | 0.05 | |
Calcium (mg) | 7.43 | 1000 | 0.74 | |
Iron (mg) | 11.39 | 18 | 63.28 | |
Potassium (mg) | 599.43 | 3500 | 17.13 | |
Magnesium (mg) | 39.63 | 400 | 9.91 | |
Saturated fat (g) | 0.054 | 20 | 0.27 | Sum of nutrients to limit: 2.44 |
Added sugar (g) | - | 50 | 0.00 | |
Sodium (mg) | 52.02 | 2400 | 2.17 | |
NRF9.3/100 kcal | 150.89 | |||
NRF9.3/serving | 36.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amerikanou, C.; Tagkouli, D.; Tsiaka, T.; Lantzouraki, D.Z.; Karavoltsos, S.; Sakellari, A.; Kleftaki, S.-A.; Koutrotsios, G.; Giannou, V.; Zervakis, G.I.; et al. Pleurotus eryngii Chips—Chemical Characterization and Nutritional Value of an Innovative Healthy Snack. Foods 2023, 12, 353. https://doi.org/10.3390/foods12020353
Amerikanou C, Tagkouli D, Tsiaka T, Lantzouraki DZ, Karavoltsos S, Sakellari A, Kleftaki S-A, Koutrotsios G, Giannou V, Zervakis GI, et al. Pleurotus eryngii Chips—Chemical Characterization and Nutritional Value of an Innovative Healthy Snack. Foods. 2023; 12(2):353. https://doi.org/10.3390/foods12020353
Chicago/Turabian StyleAmerikanou, Charalampia, Dimitra Tagkouli, Thalia Tsiaka, Dimitra Z. Lantzouraki, Sotirios Karavoltsos, Aikaterini Sakellari, Stamatia-Angeliki Kleftaki, Georgios Koutrotsios, Virginia Giannou, Georgios I. Zervakis, and et al. 2023. "Pleurotus eryngii Chips—Chemical Characterization and Nutritional Value of an Innovative Healthy Snack" Foods 12, no. 2: 353. https://doi.org/10.3390/foods12020353
APA StyleAmerikanou, C., Tagkouli, D., Tsiaka, T., Lantzouraki, D. Z., Karavoltsos, S., Sakellari, A., Kleftaki, S.-A., Koutrotsios, G., Giannou, V., Zervakis, G. I., Zoumpoulakis, P., Kalogeropoulos, N., & Kaliora, A. C. (2023). Pleurotus eryngii Chips—Chemical Characterization and Nutritional Value of an Innovative Healthy Snack. Foods, 12(2), 353. https://doi.org/10.3390/foods12020353