Elaboration of Cookies Using Oils and Flours from Seeds and Nuts: Effects on Technological, Nutritional and Consumer Aspects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Cookies Formulation
2.3. Physical Parameters
2.4. Proximate Composition
2.5. Consumer Evaluation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Physical Analysis
3.2. Proximate Composition
3.3. Consumer Evaluation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xu, J.; Zhang, Y.; Wang, W.; Li, Y. Advanced properties of gluten-free cookies, cakes, and crackers: A review. Trends Food Sci. Technol. 2020, 103, 200–213. [Google Scholar] [CrossRef]
- Fattore, E.; Massa, E. Dietary fats and cardiovascular health: A summary of the scientific evidence and current debate. Int. J. Food Sci. Nutr. 2018, 69, 916–927. [Google Scholar] [CrossRef] [PubMed]
- Viera, M.V.; Oliveira, S.M.; Amado, I.R.; Fasolin, L.H.; Vicente, A.A.; Pastrana, L.M.; Fuciños, P. 3D printed functional cookies fortified with Arthrospira platensis: Evaluation of its antioxidant potential and physical-chemical characterization. Food Hydrocoll. 2020, 107, 105893. [Google Scholar] [CrossRef]
- Maestri, D.; Cittadini, M.C.; Bodoira, R.; Martínez, M. Tree Nut Oils: Chemical Profiles, Extraction, Stability, and Quality Concerns. Eur. J. Lipid Sci. Technol. 2020, 122, 1900450. [Google Scholar] [CrossRef]
- Ghafoor, K.; Mohamed Ahmed, I.A.; Özcan, M.M.; Al-Juhaimi, F.Y.; Babikera, E.E.; Azmi, I.U. An evaluation of bioactive compounds, fatty acid composition and oil quality of chia (Salvia hispanica L.) seed roasted at different temperatures. Food Chem. 2020, 333, 127531. [Google Scholar] [CrossRef] [PubMed]
- Stevens-Barrón, J.C.; de la Rosa, L.A.; Wall-Medrano, A.; Álvarez-Parrilla, E.; Rodríguez-Ramirez, R.; Robles-Cepeda, R.E.; Astiazaran-García, H. Chemical Composition and In Vitro Bioaccessibility of Antioxidant Phytochemicals from Selected Edible Nuts. Nutrients 2019, 11, 2303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wieser, H.; Koehler, P.; Konitzer, K. Celiac Disease and Gluten: Multidisciplinary Challenges and Opportunities; Academic Press: San Diego, CA, USA, 2014. [Google Scholar] [CrossRef]
- Barreira, J.C.M.; Nunes, M.A.; Da Silva, B.V.; Pimentel, F.B.; Costa, A.S.G.; Álvarez-Ortí, M.; Pardo, J.E.; Oliveira, M.B.P.P. Almond cold-pressed oil by-product as ingredient for cookies with potential health benefits: Chemical and sensory evaluation. Food Sci. Hum. Wellness 2019, 8, 292–298. [Google Scholar] [CrossRef]
- Santos, J.; Álvarez-Ortí, M.; Sena-Moreno, E.; Rabadán, A.; Pardo, J.E.; Oliveira, M.B.P.P. Effect of roasting conditions on the composition and antioxidant properties of defatted walnut flour. J. Sci. Food Agric. 2018, 98, 1813–1820. [Google Scholar] [CrossRef]
- Bashir, S.; Yaseen, F.; Sharma, V.; Purohit, S.R.; Barak, S.; Mudgil, D. Rheological and Textural Properties of Gluten Free Cookies based on Perl Millet and Flaxseed. Biointerface Res. Appl. Chem. 2020, 10, 6565–6576. [Google Scholar] [CrossRef]
- Pineli, L.O.; De Aguiar, L.A.; De Oliveira, G.T.; Botelho, R.B.; Ibiapina, D.; De Lima, H.C.; Costa, A.M. Use of Baru (Brazilian almond) waste from physical extraction of oil to produce gluten free cakes. Plant Food Hum. Nutr. 2015, 70, 50–55. [Google Scholar] [CrossRef]
- Rabadán, A.; Álvarez-Ortí, M.; Gómez, R.; Pardo-Giménez, A.; Pardo, J.E. Suitability of Spanish almond cultivars for the industrial production of almond oil and deffated flour. Sci. Hortic. 2017, 225, 539–546. [Google Scholar] [CrossRef]
- Burbano, J.J.; Correa, M.J. Composition and physicochemical characterization of walnut flour, a by-product of oil extraction. Plant Foods Hum. Nutr. 2021, 76, 233–239. [Google Scholar] [CrossRef]
- Coelho, M.S.; Salas-Mellado, M. Effects of substituting chia (Salvia hispanica L.) flour or seeds for wheat flour on the quality of bread. LWT-Food Sci. Technol. 2015, 60, 729–736. [Google Scholar] [CrossRef] [Green Version]
- Levent, H.; Sayaslan, A.; Yesil, S. Physicochemical and sensory quality of gluten-free cakes supplement with grape seed, pomegranate seed, poppy seed, flaxseed, and turmeric. J. Food Process. Preserv. 2020, 45, e15148. [Google Scholar] [CrossRef]
- Rai, S.; Kaur, A.; Singh, B. Quality characteristics of gluten free cookies prepared from different flour combinations. J. Food Sci. Technol. 2014, 51, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabadán, A.; Pardo, J.E.; Gómez, R.; Álvarez-Ortí, M. Evaluation of physical parameters of walnut and walnut products obtained by cold pressing. LWT-Food Sci. Technol. 2018, 91, 308–314. [Google Scholar] [CrossRef]
- CIE. Colorimetry, 2nd ed.; Central Bureau of the International Commission on Illumination: Wien, Austria, 1986. [Google Scholar]
- Ministerio de Agricultura, Pesca y Alimentación (MAPA). Métodos Oficiales de Análisis en la Unión Europea. Tomo I; Secretaría General Técnica: Madrid, Spain, 1998; p. 495.
- ANKOM. Crude Fiber Analysis in Feeds by Filter Bag Technique; ANKOM Technology Method, 7, AOCS Approved Procedure Ba6a-05; ANKOM Technology: Macedom, NY, USA, 2008; p. 3. [Google Scholar]
- FAO. Food Analysis: General Techniques, Additives, Contaminants and Composition. Manuals of Food Quality Control 7; Food and Agriculture Organization of the United Nations: Rome, Italy, 1986; p. 238. [Google Scholar]
- Sullivan, D.M. Proximate and mineral analysis. In Methods of Analysis of Nutrition Labeling; Sullivan, D.M., Carpenter, D.E., Eds.; AOAC International: Arlington, VA, USA, 1993; pp. 105–109. [Google Scholar]
- FAO. Food Energy Methods of Analysis and Conversion Factors; FAO Food and Nutrition. Paper 77; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003; p. 86. [Google Scholar]
- Pardo, J.E.; Alvarruiz, A.; Pérez, J.I.; Gómez, R.; Varón, R. Physical-chemical and sensory quality evaluation of potato varieties (Solanum tuberosum L.). J. Food Qual. 2000, 23, 149–160. [Google Scholar] [CrossRef]
- Pliner, P.; Hobden, K. Development of a scale to measure the trait of food neophobia in humans. Appetite 1992, 19, 105–120. [Google Scholar] [CrossRef]
- Gaines, C.S. Influence of chemical and physical modification of soft wheat protein on sugar-snap cookie dough consistency, cookie size and hardness. Cereal Chem. 1990, 63, 73–77. [Google Scholar]
- Yamsaengsung, R.; Berghofer, E.; Schoenlechner, R. Physical properties and sensory acceptability of cookies made from chickpea addition to white wheat or whole wheat flour compared to gluten-free amaranth or buckwheat flour. Int. J. Food Sci. Technol. 2012, 47, 2221–2227. [Google Scholar] [CrossRef]
- Ganorkar, P.; Jain, R. Effect of flaxseed incorporation on physical, sensorial, textural and chemical attributes of cookies. Int. Food Res. J. 2014, 21, 1515–1521. [Google Scholar]
- Rafiq, S.I.; Muzaffar, K.; Rafiq, S.M.; Saxena, D.C.; Dar, B.N. Underutilized horse chestnut (Aesculus indica) flour and its utilization for development of gluten-free pasta. Ital. J. Food Sci. 2021, 33, 137–149. [Google Scholar] [CrossRef]
- Martínez, E.; García-Martínez, R.; Álvarez-Ortí, M.; Rabadán, A.; Pardo-Giménez, A.; Pardo, J.E. Elaboration of gluten-free cookies with defatted seed flours: Effects on technological, nutritional, and consumer aspects. Foods 2021, 10, 1213. [Google Scholar] [CrossRef] [PubMed]
- Curti, E.; Federeci, E.; Diantom, A.; Carini, E.; Pizzigalli, E.; Symon, V.; Pellegrini, N.; Vittadini, E. Structured emulsions as butter substitutes: Effects on physicochemical and sensory attributes of shortbread cookies. J. Sci. Food Agric. 2018, 98, 3836–3842. [Google Scholar] [CrossRef]
- Gervenka, L.; Brožková, I.; Vytřasová, J. Effects of the principal ingredients of biscuits upon water activity. J. Food Nutr. Res. 2006, 45, 39–43. [Google Scholar]
- Kurniadi, M.; Khasanah, Y.; Kusumaningrum, A.; Angwar, M.; Rachmawanti, D.; Parnanto, N.H.R.; Pratiwi, L.D. Formulation and shelf-life prediction of cookies from modified cassava flour (Mocaf) in flexible packaging. Earth Environ. Sci. 2019, 251, 012034. [Google Scholar] [CrossRef] [Green Version]
- Culetu, A.; Susman, I.E.; Duta, D.E.; Belc, N. Nutritional and functional properties of gluten-free flours. Appl. Sci. 2021, 11, 6283. [Google Scholar] [CrossRef]
- Alasavar, C.; Chang, S.K.; Bolling, B.; Oh, W.Y.; Shahidi, F. Specialty seeds: Nutrients, bioactives, bioavailability, and health benefits: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2382–2427. [Google Scholar] [CrossRef]
- Anderson, J.W.; Baird, P.; Davis, R.H.; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C.L. Health benefits of dietary fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef]
- Yildiz, E.; Gocmen, D. Use of almond flour and stevia in rice-based gluten-free cookie production. J. Food Sci. Technol. 2020, 58, 940–951. [Google Scholar] [CrossRef]
- Fernández-Ruiz, V.; Claret, A.; Chaya, C. Testing a Spanish-version of the Food Neophobia Scale. Food Qual. Prefer. 2013, 28, 222–225. [Google Scholar] [CrossRef]
- Ojinnaka, M.C.; Agubolum, F.U. Nutritional and sensory properties of cashew nut-wheat based cookies. Am. J. Food. Nutr. 2013, 3, 127–134. [Google Scholar] [CrossRef]
- Rabadán, A.; Álvarez-Ortí, M.; Martínez, E.; Pardo-Giménez, A.; Zied, D.C.; Pardo, J.E. Effect of replacing traditional ingredients for oils and flours from nuts and seeds on the characteristics and consumer preferences of lamb meat burgers. LWT 2021, 136, 110307. [Google Scholar] [CrossRef]
Chia | Poppy | Almond | Walnut | |
---|---|---|---|---|
Moisture (%) | 7.52 ± 0.15 | 8.01 ± 0.13 | 8.36 ± 0.59 | 11.39 ± 0.41 |
Ash (%) | 6.17 ± 0.90 | 11.01 ± 0.14 | 6.10 ± 0.58 | 4.88 ± 0.34 |
Protein (% dw) | 29.99 ± 1.82 | 28.05 ± 0.25 | 45.46 ± 6.77 | 37.89 ± 3.25 |
Total dietary fibre (% dw) | 35.15 ± 1.45 | 41.02 ± 0.00 | 5.43 ± 0.50 | 3.76 ± 0.20 |
Fat (% dw) | 11.67 ± 0.23 | 11.52 ± 0.18 | 21.11 ± 2.86 | 13.34 ± 4.12 |
Remaining carbohydrates (% dw) | 17.02 ± 0.95 | 8.40 ± 0.41 | 21.90 ± 4.60 | 40.13 ± 6.19 |
Chia | Poppy | Almond | Walnut | |
---|---|---|---|---|
C16:0 Palmitic acid | 6.36 ± 0.03 | 8.29 ± 0.08 | 6.62 ± 0.05 | 5.97 ± 0.01 |
C16:1 Palmitoleic acid | 0.04 ± 0.00 | 0.11 ± 0.01 | 0.50 ± 0.01 | 0.11 ± 0.00 |
C17:0 Margaric acid | 0.04 ± 0.01 | 0.04 ± 0.00 | 0.10 ± 0.00 | 0.05 ± 0.00 |
C18:0 Stearic acid | 2.83 ± 0.00 | 1.85 ± 0.08 | 2.06 ± 0.01 | 2.39 ± 0.01 |
C18:1n9 Oleic acid | 4.98 ± 0.08 | 14.07 ± 0.08 | 70.82 ± 0.18 | 14.47 ± 0.02 |
C18:2n6 Linoleic acid | 17.78 ± 0.12 | 74.80 ± 0.21 | 19.16 ± 0.08 | 61.51 ± 0.12 |
C18:3n3 α-Linolenic acid | 67.66 ± 0.15 | 0.66 ± 0.04 | 0.10 ± 0.00 | 15.14 ± 0.02 |
C20:0 Arachidic acid | 0.14 ± 0.01 | 0.07 ± 0.00 | 0.10 ± 0.00 | 0.08 ± 0.00 |
∑SFA | 9.51 ± 0.04 | 10.31 ± 0.10 | 9.22 ± 0.09 | 8.49 ± 0.08 |
∑MUFA | 5.05 ± 0.08 | 14.24 ± 0.09 | 71.32 ± 0.22 | 14.79 ± 0.09 |
∑PUFA | 85.44 ± 0.10 | 75.45 ± 0.18 | 19.26 ± 0.12 | 76.65 ± 0.21 |
Cookie ID | Flour | Fat | ||
---|---|---|---|---|
Ingredient | % | Ingredient | % | |
Control | Wheat | 100 | Butter | 100 |
AWP | Maize | 50 | Walnut Poppy | 70 30 |
Almond | 33 | |||
Walnut | 14 | |||
Poppy | 3 | |||
AW | Maize | 60 | Walnut | 100 |
Almond | 28 | |||
Walnut | 12 | |||
AWC | Maize | 60 | Walnut Almond | 50 50 |
Almond | 23 | |||
Walnut | 12 | |||
Chia | 5 | |||
AWB | Maize | 82 | Butter Walnut | 50 50 |
Walnut | 12 | |||
Almond | 6 |
Item | Statements |
---|---|
1 | I am constantly sampling new and different foods (R) |
2 | I do not trust new foods |
3 | I do not know what a food is, I will not try it |
4 | I like foods from different cultures (R) |
5 | Ethnic food looks weird to eat |
6 | At dinner parties, I will try new foods |
7 | I am afraid to eat things I have never had before (R) |
8 | I am very particular about the foods I eat |
9 | I will eat almost anything |
10 | I like to try ethnic restaurants (R) |
Diameter (mm) | Thickness (mm) | Spread factor | |
---|---|---|---|
Control | 45.769 ± 0.93 c | 8.932 ± 0.59 a | 7.70 ± 0.44 d |
AWP | 49.130 ± 0.63 a | 7.192 ± 0.20 b | 10.25 ± 0.28 b |
AW | 49.291 ± 0.68 a | 7.464 ± 0.43 b | 9.88 ± 0.47 c |
AWC | 47.914 ± 1.07 b | 6.056 ± 0.91 c | 11.91 ± 1.40 a |
AWB | 48.436 ± 0.92 b | 6.852 ± 0.51 c | 10.64 ± 0.66 b |
Control | AWP | AW | AWC | AWB | |
---|---|---|---|---|---|
Moisture (%) | 5.8 ± 0.2 c | 8.4 ± 0.4 b | 9.0 ± 0.2 b | 10.6 ± 0.5 a | 7.6 ± 0.3 bc |
Proteins (%) | 9.31 ± 0.28 b | 15.44 ± 0.77 a | 14.94 ± 0.30 a | 14.63 ± 0.73 a | 9.88 ± 0.29 b |
Crude fiber (%) | 0.38 ± 0.01 c | 1.58 ± 0.08 b | 1.30 ± 0.03 b | 2.33 ± 0.11 a | 0.89 ± 0.03 c |
Crude fat (%) | 19.77 ± 0.59 b | 26.41 ± 1.32 a | 26.50 ± 0.53 a | 24.18 ± 1.21 a | 21.78 ± 0.65 b |
Total carbohydrates (%) | 70.24 ± 2.11 a | 55.93 ± 2.80 b | 56.46 ± 1.13 b | 59.06 ± 2.95 b | 67.02 ± 2.01 a |
Digestive carbohydrates (%) | 69.86 ± 2.10 a | 54.35 ± 2.72 b | 55.16 ± 1.10 b | 56.73 ± 2.83 b | 66.13 ± 1.98 a |
Energy value (Kcal/100 g dm) | 496 ± 15 | 523 ± 26 | 524 ± 11 | 512 ± 26 | 504 ± 15 |
Sample | Total Consumers Valuation | Consumer Segmentation | |
---|---|---|---|
Neophobics | Non-Neophobics | ||
Aspect | |||
Control | 2.21 ± 1.18 b | 1.72 ± 1.13 b | 2.54 ± 1.14 a |
AWP | 2.16 ± 1.31 b | 1.83 ± 1.29 | 2.50 ± 1.22 |
AW | 2.70 ± 0.86 a | 2.44 ± 0.78 b | 2.96 ± 0.81 a |
AWC | 2.09 ± 1.19 b | 1.94 ± 1.21 | 2.25 ± 1.19 |
AWB | 2.31 ± 1.19 b | 1.67 ± 1.24 b | 3.04 ± 0.91 a |
Texture | |||
Control | 2.81 ± 1.18 a | 2.33 ± 1.46 b | 3.17 ± 0.82 a |
AWP | 0.65 ± 0.78 c | 0.50 ± 0.79 | 0.79 ± 0.78 |
AW | 1.21 ± 1.09 b | 1.33 ± 1.41 | 1.13 ± 0.80 |
AWC | 1.19 ± 1.03 b | 0.94 ± 1.96 | 1.38 ± 1.10 |
AWB | 2.40 ± 1.00 a | 2.33 ± 0.97 | 2.46 ± 1.06 |
Taste | |||
Control | 2.93 ± 0.99 a | 2.56 ± 1.10 b | 3.21 ± 0.83 a |
AWP | 1.12 ± 1.07 c | 0.67 ± 1.03 b | 1.50 ± 0.98 a |
AW | 1.49 ± 1.18 c | 1.22 ± 1.00 | 1.71 ± 1.30 |
AWC | 1.58 ± 1.20 c | 1.00 ± 1.03 b | 2.08 ± 1.10 a |
AWB | 2.09 ± 1.21 b | 1.56 ± 1.34 b | 2.46 ± 0.98 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez, E.; Álvarez-Ortí, M.; Rabadán, A.; Millán, C.; Pardo, J.E. Elaboration of Cookies Using Oils and Flours from Seeds and Nuts: Effects on Technological, Nutritional and Consumer Aspects. Foods 2022, 11, 2249. https://doi.org/10.3390/foods11152249
Martínez E, Álvarez-Ortí M, Rabadán A, Millán C, Pardo JE. Elaboration of Cookies Using Oils and Flours from Seeds and Nuts: Effects on Technological, Nutritional and Consumer Aspects. Foods. 2022; 11(15):2249. https://doi.org/10.3390/foods11152249
Chicago/Turabian StyleMartínez, Elena, Manuel Álvarez-Ortí, Adrián Rabadán, Cristina Millán, and José E. Pardo. 2022. "Elaboration of Cookies Using Oils and Flours from Seeds and Nuts: Effects on Technological, Nutritional and Consumer Aspects" Foods 11, no. 15: 2249. https://doi.org/10.3390/foods11152249
APA StyleMartínez, E., Álvarez-Ortí, M., Rabadán, A., Millán, C., & Pardo, J. E. (2022). Elaboration of Cookies Using Oils and Flours from Seeds and Nuts: Effects on Technological, Nutritional and Consumer Aspects. Foods, 11(15), 2249. https://doi.org/10.3390/foods11152249