The Use of Sea Buckthorn Processing Products in the Creation of a Functional Biologically Active Food Emulsion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sea Buckthorn Fruits Composition
2.2.1. Sea Buckthorn Fruits Crushing Procedure
- −
- The bottom layer is a clarified juice (65%)
- −
- The middle layer is the middle layer pulp (30%)
- −
- The top layer contains the greatest amount of lipids (5%).
2.2.2. Spectrophotometric Studies of the Sea Buckthorn Fruits
2.2.3. Atomic Emission Analysis of the Sea Buckthorn Fruits
2.3. Sea Buckthorn Oil Composition Analysis
2.3.1. Sea Buckthorn Oil Making
2.3.2. Physical and Chemical Studies of the Sea Buckthorn Oil
2.3.3. Gas-Liquid Chromatography
2.3.4. Spectrophotometric Studies of the Sea Buckthorn Oil
2.4. Preparation of Sample Emulsions
2.5. Sample Emulsions Properties
2.5.1. Colloid and Thermal Stability of the Emulsions
2.5.2. Oxidative and Hydrolytic Stability of the Emulsions
- −
- Sample 1: Lipid phase of emulsion before emulsification (reference);
- −
- Sample 2: Lipid phase of the emulsion containing 1.0% of phospholipids;
- −
- Sample 3: Lipid phase of the emulsion containing 1.5% of phospholipids;
- −
- Sample 4: Lipid phase of the emulsion containing 2.0% of phospholipids.
2.6. Statistical Analysis
3. Results and Discussion
3.1. Composition of the Sea Buckthorn Fruits
3.2. Properties of the Fractions Obtained by Crushing the Sea Buckthorn Fruits of the Chuiskaya Variety
3.3. Properties of the Sea Buckthorn Lipids
3.4. Emulsifier Selection and Rationale
3.5. Colloidal Stability of the Emulsions
3.6. Oxidative and Hydrolytic Stability of the Emulsions
3.7. Emulsion Quality Factors
4. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baboota, R.K.; Bishnoi, M.; Ambalam, P.; Kondepudi, K.K.; Sarma, S.M.; Boparai, R.K.; Podili, K. Functional food ingredients for the management of obesity and associated co-morbidities—A review. J. Funct. Foods 2013, 5, 997–1012. [Google Scholar] [CrossRef]
- Bolori, P.; Setaysh, L.; Rasaei, N.; Jarrahi, F.; Yekaninejad, M.S.; Mirzaei, K. Adherence to a healthy plant diet may reduce inflammatory factors in obese and overweight women—A cross-sectional study. Diabetes Metab. Syndr. J. Clin. Res. Rev. 2019, 13, 2795–2802. [Google Scholar] [CrossRef] [PubMed]
- Kovell, L.C.; Yeung, E.H.; Miller, E.R., III; Appel, L.J.; Christenson, R.H.; Rebuck, H.; Schulman, S.P.; Juraschek, S.P. Healthy diet reduces markers of cardiac injury and inflammation regardless of macronutrients: Results from the OmniHeart trial. Int. J. Cardiol. 2020, 299, 282–288. [Google Scholar] [CrossRef]
- Wang, D.D. Dietary ω-6 polyunsaturated fatty acids and cardiovascular disease: Epidemiologic evidence. Prostaglandins Leukot Essent Fat. Acids 2015, 135, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.S.; Ho, C.-T.; Zhang, J.; Wan, X.; Zhang, K.; Lim, J. Antioxidants: Differing Meanings in Food Science and Health Science. J. Agric. Food Chem. 2018, 66, 3063–3068. [Google Scholar] [CrossRef]
- Szymanska, R.; Pospisil, P.; Kruk, J. Plant-Derived Antioxidants in Disease Prevention. Oxidative Med. Cell. Longev. 2016, 2016, 1920208. [Google Scholar] [CrossRef]
- Tereshchuk, L.; Starovoytova, K.; Babich, O.; Dyshlyuk, L.; Sergeeva, I.; Pavsky, V.; Ivanova, S.; Prosekov, A. Sea Buckthorn and Rosehip Oils with Chokeberry Extract to Prevent Hypercholesterolemia in Mice Caused by a High-Fat Diet In Vivo. Nutrients 2020, 12, 2941. [Google Scholar] [CrossRef]
- Zheng, L.; Shi, L.-K.; Zhao, C.-W.; Jin, Q.-Z.; Wang, X.-G. Fatty acid, phytochemical, oxidative stability and in vitro antioxidant property of sea buckthorn (Hippophaë rhamnoides L.) oils extracted by supercritical and subcritical technologies. LWT 2017, 86, 507–513. [Google Scholar] [CrossRef]
- Olas, B. Sea buckthorn as a source of important bioactive compounds in cardiovascular diseases. Food Chem. Toxicol. 2016, 97, 199–204. [Google Scholar] [CrossRef]
- Xu, Y.-J.; Kaur, M.; Dhillon, R.S.; Tappia, P.S.; Dhalla, N.S. Health benefits of sea buckthorn for the prevention of cardiovascular diseases. J. Funct. Foods 2011, 3, 2–12. [Google Scholar] [CrossRef]
- Olas, B. The beneficial health aspects of sea buckthorn oil. J. Ethnopharmacol. 2018, 213, 183–190. [Google Scholar] [CrossRef]
- Teleszko, M.; Wojdyło, A.; Rudzińska, M.; Oszmiański, J.; Golis, T. Analysis of Lipophilic and Hydrophilic Bioactive Compounds Content in Sea Buckthorn (Hippophaë rhamnoides L.) Berries. J. Agric. Food Chem. 2015, 63, 4120–4129. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, G.P.; Chaurasia, O.P.; Singh, S.B. Phytochemical and Pharmacological Profile of Seabuckthorn Oil: A Review. Res. J. Med. Plant 2011, 5, 491–499. [Google Scholar] [CrossRef]
- Ren, R.; Li, N.; Su, C.; Wang, Y.; Zhao, X.; Yang, L.; Li, Y.; Zhang, B.; Chen, J.; Ma, X. The bioactive components as well as the nutritional and health effects of sea buckthorn. RSC Adv. 2020, 10, 44654–44671. [Google Scholar] [CrossRef]
- Gomes, A.; Furtado, G.d.F.; Cunha, R.L. Bioaccessibility of Lipophilic Compounds Vehiculated in Emulsions: Choice of Lipids and Emulsifiers. J. Agric. Food Chem. 2019, 67, 13–18. [Google Scholar] [CrossRef]
- Chacón-Ordóñez, T.; Carle, R.; Schweiggert, R. Bioaccessibility of carotenoids from plant and animal foods. J. Sci. Food Agric. 2019, 99, 3220–3239. [Google Scholar] [CrossRef]
- Yao, K.; McClements, D.J.; Xiang, J.; Zhang, Z.; Cao, Y.; Xiao, H.; Liu, X. Improvement of carotenoid bioaccessibility from spinach by co-ingesting with excipient nanoemulsions: Impact of the oil phase composition. Food Funct. 2019, 10, 5302–5311. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; McClements, D.J. Improvement of β-Carotene Bioaccessibility from Dietary Supplements Using Excipient Nanoemulsions. J. Agric. Food Chem. 2016, 64, 4639–4647. [Google Scholar] [CrossRef]
- Saberi, A.H.; Fang, Y.; McClements, D.J. Thermal reversibility of vitamin E-enriched emulsion-based delivery systems produced using spontaneous emulsification. Food Chem. 2015, 185, 254–260. [Google Scholar] [CrossRef]
- Dima, Ş.; Dima, C.; Iordăchescu, G. Encapsulation of Functional Lipophilic Food and Drug Biocomponents. Food Eng. Rev. 2015, 7, 417–438. [Google Scholar] [CrossRef]
- Garnero, C.; Zoppi, A.; Aloisio, C.; Longhi, M.R. Technological delivery systems to improve biopharmaceutical properties. In Nanoscale Fabrication, Optimization, Scale-Up and Biological Aspects of Pharmaceutical Nanotechnology; Grumezescu, A.M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2018; pp. 253–299. [Google Scholar] [CrossRef]
- Ashkar, A.; Sosnik, A.; Davidovich-Pinhas, M. Structured edible lipid-based particle systems for oral drug-delivery. Biotechnol. Adv. 2021, 54, 107789. [Google Scholar] [CrossRef]
- Gonçalves, R.F.S.; Martins, J.T.; Duarte, C.M.M.; Vicente, A.A.; Pinheiro, A.C. Advances in nutraceutical delivery systems: From formulation design for bioavailability enhancement to efficacy and safety evaluation. Trends Food Sci. Technol. 2018, 78, 270–291. [Google Scholar] [CrossRef] [Green Version]
- McClements, D.J.; Jafari, S.M. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Adv. Colloid Interface Sci. 2018, 251, 55–79. [Google Scholar] [CrossRef]
- Kumar, D.H.L.; Sarkar, P. Encapsulation of bioactive compounds using nanoemulsions. Environ. Chem. Lett. 2018, 16, 59–70. [Google Scholar] [CrossRef]
- Pandey, V.; Kohli, S. Lipids and Surfactants: The Inside Story of Lipid-Based Drug Delivery Systems. Crit. Rev. Ther. Drug Carr. Syst. 2018, 35, 99–155. [Google Scholar] [CrossRef]
- Chen, L.; Yang, Z.; McClements, D.J.; Jin, Z.; Miao, M. Chapter 20-Biological macromolecules for nutrients delivery. In Biological Macromolecules; Nayak, A.K., Dhara, A.K., Pal, D., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 455–477. [Google Scholar]
- McClements, D.J. Food Emulsions: Principles, Practices, and Techniques, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Ricardo, F.; Pradilla, D.; Cruz, J.; Alvarez, O. Emerging Emulsifiers: Conceptual Basis for the Identification and Rational Design of Peptides with Surface Activity. Int. J. Mol. Sci. 2021, 22, 4615. [Google Scholar] [CrossRef]
- Otto, F.; van Hoogevest, P.; Syrowatka, F.; Heinl, V. Neubert RHH. Assessment of the applicability of HLB values for natural phospholipid emulsifiers for preparation of stable emulsions. Pharmazie 2020, 75, 365–370. [Google Scholar] [PubMed]
- Singh, J.; Ranganathan, R. Mixing of oxidized and bilayer phospholipids. Biochim. Biophys. Acta 2015, 1848, 1472–1480. [Google Scholar] [CrossRef] [Green Version]
- McClements, D.J.; Gumus, C.E. Natural emulsifiers—Biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance. Adv. Colloid Interface Sci. 2016, 234, 3–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClements, D.J.; Bai, L.; Chung, C. Recent Advances in the Utilization of Natural Emulsifiers to Form and Stabilize Emulsions. Annu. Rev. Food Sci. Technol. 2017, 8, 205–236. [Google Scholar] [CrossRef] [PubMed]
- Cassen, A.; Fabre, J.-F.; Lacroux, E.; Cerny, M.; Vaca-Medina, G.; Mouloungui, Z.; Merah, O.; Valentin, R. Aqueous Integrated Process for the Recovery of Oil Bodies or Fatty Acid Emulsions from Sunflower Seeds. Biomolecules 2022, 12, 149. [Google Scholar] [CrossRef]
- McClements, D.J.; Decker, E. Interfacial Antioxidants: A Review of Natural and Synthetic Emulsifiers and Coemulsifiers That Can Inhibit Lipid Oxidation. J. Agric. Food Chem. 2018, 66, 20–35. [Google Scholar] [CrossRef]
- Xu, N.; Shanbhag, A.G.; Li, B.; Angkuratipakorn, T.; Decker, E.A. Impact of Phospholipid-Tocopherol Combinations and Enzyme-Modified Lecithin on the Oxidative Stability of Bulk Oil. J. Agric. Food Chem. 2019, 67, 7954–7960. [Google Scholar] [CrossRef]
- Kwon, Y.; Jo, S.; Na, H.; Kim, S.; Kim, M.-J.; Lee, J. Effects of 1,2-dioleoyl-sn-glycero-3-phosphocholine on moisture content and oxidative stability in soybean oil-water system at different interfaces. Food Sci. Biotechnol. 2019, 29, 479–486. [Google Scholar] [CrossRef]
- Samdani, G.K.; McClements, D.J.; Decker, E.A. Impact of Phospholipids and Tocopherols on the Oxidative Stability of Soybean Oil-in-Water Emulsions. J. Agric. Food Chem. 2018, 66, 3939–3948. [Google Scholar] [CrossRef]
- Ali, A.H.; Zou, X.; Abed, S.M.; Korma, S.A.; Jin, Q.; Wang, X. Natural phospholipids: Occurrence, biosynthesis, separation, identification, and beneficial health aspects. Crit. Rev. Food Sci. Nutr. 2019, 59, 253–275. [Google Scholar] [CrossRef]
- Sreevallabhan, S.; Mohanan, R.; Jose, S.P.; Sukumaran, S.; Jagmag, T.; Tilwani, J.; Kulkarni, A. Hepatoprotective effect of essential phospholipids enriched with virgin coconut oil (Phoscoliv) on paracetamol-induced liver toxicity. J. Food Biochem. 2021, 45, e13606. [Google Scholar] [CrossRef]
- Biswas, S.; Mukherjee, P.K.; Kar, A.; Bannerjee, S.; Charoensub, R.; Duangyod, T. Optimized piperine-phospholipid complex with enhanced bioavailability and hepatoprotective activity. Pharm. Dev. Technol. 2021, 26, 69–80. [Google Scholar] [CrossRef]
- Küllenberg, D.; Taylor, L.A.; Schneider, M.; Massing, U. Health effects of dietary phospholipids. Lipids Health Dis. 2012, 11, 3. [Google Scholar] [CrossRef] [Green Version]
- Ciesarová, Z.; Murkovic, M.; Cejpek, K.; Kreps, F.; Tobolková, B.; Koplík, R.; Belajová, E.; Kukurová, K.; Daško, Ľ.; Panovská, Z.; et al. Why is sea buckthorn (Hippophae rhamnoides L.) so exceptional? A review. Food Res. Int. 2020, 133, 109170. [Google Scholar] [CrossRef]
- Babich, O.; Prosekov, A.; Zaushintsena, A.; Sukhikh, A.; Dyshlyuk, L.; Ivanova, S. Identification and quantification of phenolic compounds of Western Siberia Astragalus danicus in different regions. Heliyon 2019, 5, e02245. [Google Scholar] [CrossRef] [Green Version]
Mass Fraction % | ||||||
---|---|---|---|---|---|---|
Variety | Dry Substances | Titratable Acids (Expressed as Malic Acid) | Total Sugar | Ashes | Protein | Lipids |
Prevoskhodnaya | 13.5 ± 0.2 b | 2.04 ± 0.14 c | 4.48 ± 0.12 d | 0.38 ± 0.02 b | 1.90 ± 0.02 c | 4.73 ± 0.09 a |
Orange | 13.9 ± 0.2 a | 2.54 ± 0.15 b | 3.23 ± 0.18 c | 0.43 ± 0.02 b | 1.88 ± 0.02 c | 5.06 ± 0.11 a |
Chuyskaya | 14.5 ± 0.2 a | 2.26 ± 0.12 a | 4.72 ± 0.16 d | 0.32 ± 0.02 a | 1.92 ± 0.02 c | 5.30 ± 0.12 c |
Vitamins | Content, mg/100 g | ||
---|---|---|---|
Chuyskaya | Orange | Prevoskhodnaya | |
Carotenoids, total | 16.8 ± 0.3 d | 15.5 ± 0.3 a | 15.0 ± 0.3 b |
β-carotene | 5.5 ± 0.1 d | 5.0 ± 0.1 a | 4.8 ± 0.1 b |
Tocopherols, total | 10.5 ± 0.3 c | 9.3 ± 0.3 b | 9.0 ± 0.3 b |
Vitamin C | 172 ± 2 c | 168 ± 2 d | 170 ± 2 d |
Polyphenols | 150 ± 2 d | 143 ± 2 d | 147 ± 1 c |
Property | Sea Buckthorn Pulp Components | ||
---|---|---|---|
Clarified Juice | Top Layer Pulp | Bottom Layer Pulp | |
Moisture mass fraction, % | 94.40 ± 0.3 d | 76.8 ± 0.40 a | 79.20 ± 0.3 b |
Dry matter, % incl. | 5.6 ± 0.3 d | 23.2 ± 0.4 b | 20.8 ± 0.3 c |
lipids, % | 1.1 ± 0.10 d | 10.75 ± 0.30 b | 7.15 ± 0.21 c |
protein, % | 0.06 ± 0.01 c | 1.48 ± 0.03 d | 1.66 ± 0.03 d |
fiber, % | 0.05 ± 0.01 c | 3.90 ± 0.10 d | 4.30 ± 0.10 d |
total sugars, % | 3.20 ± 0.10 | 4.20 ± 0.10 a | 4.60 ± 0.10 b |
ash, % | 0.04 ± 0.01 a | 0.24 ± 0.02 a | 0.36 ± 0.02 a |
titratable acids, mg/100 g | 1.80 ± 0.10 d | 2.50 ± 0.04 d | 2.60 ± 0.05 b |
carotenoids, mg/100 g | - | 27.77 ± 0.15 d | 30.52 ± 0.16 b |
tocopherols, mg/100 g | - | 17.80 ± 0.18 d | 18.90 ± 0.20 b |
flavonoids, mg/100 g | 10.20 ± 0.20 c | 42.70 ± 0.45 b | 67.50 ± 0.53 c |
Ascorbic acid, mg/100 g | 204.80 ± 4.8 c | 61.70 ± 1.1 b | 83.70 ± 1.5 c |
Physical and Chemical Properties | Oil | |
---|---|---|
Fruit Pulp | Seeds | |
Density at 20 °C, kg/m3 | 913.7 | 959.0 |
Acid number, mg KOH/g | 1.5 | 6.5 |
Iodine number, mg J2/100 g | 74.9 | 155.0 |
Unsaponifiable substances | 3.23 | 1.85 |
Carotenoid content, mg/100 g | 320.0 ± 3.0 a | 11.1 ± 0.05 a |
Content of tocopherols, mg/100 g | 90.0 ± 2.0 a | 160.0 ± 0.1 a |
Fatty acid content, % | ||
saturated | 32.8 | 13.4 |
oleic | 50.6 | 16.4 |
linoleic | 15.6 | 47.6 |
linolenic | - | 18.4 |
Phospholipid Fractions | Content, % | |
---|---|---|
Sunflower Phospholipids (SFP) | Soy Phospholipids (SBP) | |
Phosphatidylcholine | 45.5 ± 2.5 b | 48.5 ± 2.5 d |
Lysophosphatidylcholine | 1.0 ± 0.5 b | - |
Phosphatidylinositols | 12.5 ± 2.7 a | 4.5 ± 1.2 d |
Phosphatidylserines | 14.0 ± 1.3 a | 13.6 ± 2.4 c |
Phosphatidylethanolamine | 14.5 ± 2.5 a | 9.8 ± 1.0 d |
Phosphatidic acids | 12.5 ± 1.3 b | 23.6 ± 2.3 a |
Phospholipid Group | Content of Individual Fatty Acids, % | |||||||
---|---|---|---|---|---|---|---|---|
Myristine | Palmitic | Stearic | ΣS* | Palmitoleic | Oleic | Linoleic | ΣUS** | |
Sunflower Phospholipids | ||||||||
Phosphatidylcholines | No | 11.45 | 6.34 | 17.79 | 1.10 | 16.41 | 64.70 | 82.21 |
Phosphatidylinositols | Traces | 23.51 | 7.34 | 30.85 | 1.50 | 15.42 | 52.23 | 69.15 |
Phosphatidylserines | No | 12.62 | 7.12 | 19.74 | 0.22 | 15.00 | 65.04 | 80.26 |
Phosphatidylethanolamines | Traces | 25.45 | 5.90 | 31.35 | 1.31 | 18.32 | 49.02 | 68.65 |
Phosphatidic acids | No | 19.01 | 7.34 | 26.35 | 1.90 | 18.14 | 53.61 | 73.65 |
Diphosphatidylglycerols | No | 20.01 | 8.50 | 28.51 | 0.59 | 16.22 | 54.68 | 71.49 |
Polyphosphatid acids | No | 16.26 | 6.84 | 23.10 | 1.50 | 16.81 | 58.60 | 76.90 |
Soy phospholipids | ||||||||
Phosphatidylcholines | No | 17.91 | 5.70 | 23.61 | 19.30 | 49.39 | 7.70 | 76.39 |
Phosphatidylinositols | 0.30 | 27.85 | 6.80 | 34.35 | 18.70 | 40.35 | 6.00 | 65.05 |
Phosphatidylserines | 0.30 | 28.52 | 8.53 | 37.35 | 14.30 | 42.20 | 6.15 | 62.65 |
Phosphatidylethanolamines | No | 18.50 | 6.40 | 24.90 | 23.97 | 45.18 | 5.95 | 75.10 |
Phosphatidic acids | No | 26.40 | 5.15 | 31.55 | 18.81 | 43.34 | 6.30 | 58.45 |
Diphosphatidylglycerols | No | 27.05 | 5.17 | 32.22 | 16.28 | 4535 | 6.15 | 67.78 |
Polyphosphatid acids | No | 22.17 | 6.05 | 28.22 | 21.50 | 43.43 | 6.85 | 71.78 |
Emulsion Sample Number | Emulsifier Mass Fraction, % | Emulsifier Hydrophilic-Lipophilic Balance | Intact Emulsion, % | |
---|---|---|---|---|
Hydrolyzed Soy Phospholipids | Fractionated Soybean Phospholipids | |||
1 | 1 | - * | 7 | 94.5 |
2 | - ** | 1 | 3 | 98.5 |
3 | 0.5 | 0.5 | 5 | 96.0 |
5 | 0.6 | 0.4 | 5.4 | 95.5 |
6 | 0.4 | 0.6 | 4.6 | 99.5 |
Factor | Value |
---|---|
Mass fraction of lipids, % | 47.0 ± 0.5 |
Mass fraction of moisture, %, | 52.0 ± 0.5 |
Stability of emulsion, % of intact substance | 99.0 ± 0.5 |
Hydrogen index (pH) at 20 °C | 4.2 ± 0.2 |
Viscosity at 20 °C, mm2/s | 36.2 ± 0.05 |
Peroxide number of the emulsion fat phase, mEqO2/kg | 1.5 ± 0.2 |
The acid number of the emulsion fat phase, mg KOH/100 g | 0.55 ± 0.05 |
Carotenoid content, mg/100 g | 128 |
Tocopherol content, mg/100 g | 64 |
Phospholipid content, mg/100 g | 1500 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tereshchuk, L.V.; Starovoitova, K.V.; Vyushinsky, P.A.; Zagorodnikov, K.A. The Use of Sea Buckthorn Processing Products in the Creation of a Functional Biologically Active Food Emulsion. Foods 2022, 11, 2226. https://doi.org/10.3390/foods11152226
Tereshchuk LV, Starovoitova KV, Vyushinsky PA, Zagorodnikov KA. The Use of Sea Buckthorn Processing Products in the Creation of a Functional Biologically Active Food Emulsion. Foods. 2022; 11(15):2226. https://doi.org/10.3390/foods11152226
Chicago/Turabian StyleTereshchuk, Lyubov V., Ksenia V. Starovoitova, Pavel A. Vyushinsky, and Konstantin A. Zagorodnikov. 2022. "The Use of Sea Buckthorn Processing Products in the Creation of a Functional Biologically Active Food Emulsion" Foods 11, no. 15: 2226. https://doi.org/10.3390/foods11152226
APA StyleTereshchuk, L. V., Starovoitova, K. V., Vyushinsky, P. A., & Zagorodnikov, K. A. (2022). The Use of Sea Buckthorn Processing Products in the Creation of a Functional Biologically Active Food Emulsion. Foods, 11(15), 2226. https://doi.org/10.3390/foods11152226