Dietary Schizochytrium Microalgae Affect the Fatty Acid Profile of Goat Milk: Quantification of Docosahexaenoic Acid (DHA) and Its Distribution at Sn-2 Position
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Collection and the Detection of Milk Composition
2.3. Determination of Fatty Acids Profiles
2.4. Detection for Sn-2 Fatty Acids
2.5. Statistical Analysis
3. Results
3.1. Quantification of DHA and Other Chemical Compositions in Goat Milk
3.2. Milk Fatty Acids Composition
3.3. Milk Sn-2 Fatty Acid Composition
4. Discussion
4.1. Milk Chemical Compositions and Dry Matter Intake
4.2. The Content and Absolute Concentration of DHA
4.3. Fatty Acid Profile of Goat Milk
4.4. Profile of Sn-2 Fatty Acids in Goat Milk
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dineshbabu, G.; Goswami, G.; Kumar, R.; Sinha, A.; Das, D. Microalgae–nutritious, sustainable aqua- and animal feed source. J. Funct. Foods 2019, 62, 103545. [Google Scholar] [CrossRef]
- Wang, Q.; Han, W.; Jin, W.-B.; Gao, S.; Zhou, X. Docosahexaenoic acid production by Schizochytrium sp.: Review and prospect. Food Biotechnol. 2021, 35, 111–135. [Google Scholar] [CrossRef]
- Polbrat, T.; Konkol, D.; Korczynski, M. Optimization of docosahexaenoic acid production by Schizochytrium SP.—A review. Biocatal. Agric. Biotechnol. 2021, 35, 102076. [Google Scholar] [CrossRef]
- Adarme-Vega, T.C.; Lim, D.K.Y.; Timmins, M.; Vernen, F.; Li, Y.; Schenk, P.M. Microalgal biofactories: A promising approach towards sustainable omega-3 fatty acid production. Microb. Cell Factories 2012, 11, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, G.Y.; Simonyi, A.; Fritsche, K.L.; Chuang, D.Y.; Hannink, M.; Gu, Z.; Greenlief, C.M.; Yao, J.K.; Lee, J.C.; Beversdorf, D.Q. Docosahexaenoic acid (DHA): An essential nutrient and a nutraceutical for brain health and diseases. Prostaglandins Leukot. Essent. Fat. Acids 2018, 136, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Jensen, C.L.; Voigt, R.G.; Prager, T.C.; Zou, Y.L.; Fraley, J.K.; Rozelle, J.C.; Turcich, M.R.; Llorente, A.M.; Anderson, R.E.; Heird, W.C. Effects of maternal docosahexaenoic acid intake on visual function and neurodevelopment in breastfed term infants. Am. J. Clin. Nutr. 2005, 82, 125–132. [Google Scholar] [CrossRef]
- Forsyth, J.S.; Carlson, S.E. Long-chain polyunsaturated fatty acids in infant nutrition: Effects on infant development. Curr. Opin. Clin. Nutr. Metab. Care 2001, 4, 123–126. [Google Scholar] [CrossRef]
- Birch, E.E.; Hoffman, D.R.; Uauy, R.; Birch, D.G.; Prestidge, C. Visual acuity and the essentiality of docosahexaenoic acid and arachidonic acid in the diet of term infants. Pediatric Res. 1998, 44, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, D.R.; Boettcher, J.A.; Diersen-Schade, D.A. Toward optimizing vision and cognition in term infants by dietary docosahexaenoic and arachidonic acid supplementation: A review of randomized controlled trials. Prostaglandins Leukot. Essent. Fat. Acids 2009, 81, 151–158. [Google Scholar] [CrossRef]
- Hibbeln, J.R.; Davis, J.M. Considerations regarding neuropsychiatric nutritional requirements for intakes of omega-3 highly unsaturated fatty acids. Prostaglandins Leukot. Essent. Fat. Acids 2009, 81, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Altomonte, I.; Salari, F.; Licitra, R.; Martini, M. Use of microalgae in ruminant nutrition and implications on milk quality—A review. Livest. Sci. 2018, 214, 25–35. [Google Scholar] [CrossRef]
- Franklin, S.T.; Martin, K.R.; Baer, R.J.; Schingoethe, D.J.; Hippen, A.R. Dietary marine algae (Schizochytrium sp.) increases concentrations of conjugated linoleic, docosahexaenoic and transvaccenic acids in milk of dairy cows. J. Nutr. 1999, 129, 2048–2054. [Google Scholar] [CrossRef] [PubMed]
- Vahmani, P.; Fredeen, A.H.; Glover, K.E. Effect of supplementation with fish oil or microalgae on fatty acid composition of milk from cows managed in confinement or pasture systems. J. Dairy Sci. 2013, 96, 6660–6670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.; Yu, X.; Li, S.; Shao, W.; Zhang, N. Effects of dietary microalgae (Schizochytrium spp.) supplement on milk performance, blood parameters, and milk fatty acid composition in dairy cows. Czech J. Anim. Sci. 2020, 65, 162–171. [Google Scholar] [CrossRef]
- Póti, P.; Pajor, F.; Bodnár, Á.; Penksza, K.; Köles, P. Effect of micro-alga supplementation on goat and cow milk fatty acid composition. Chil. J. Agric. Res. 2015, 75, 259–263. [Google Scholar] [CrossRef]
- Pajor, F.; Egerszegi, I.; Steiber, O.; Bodnár, Á.; Póti, P. Effect of marine algae supplementation on the fatty acid profile of milk of dairy goats kept indoor and on pasture. J. Anim. Feed Sci. 2019, 28, 169–176. [Google Scholar] [CrossRef]
- Mohan, M.S.; O’Callaghan, T.F.; Kelly, P.; Hogan, S.A. Milk fat: Opportunities, challenges and innovation. Crit. Rev. Food Sci. Nutr. 2021, 61, 2411–2443. [Google Scholar] [CrossRef]
- Huang, G.; Zhang, Y.; Xu, Q.; Zheng, N.; Zhao, S.; Liu, K.; Qu, X.; Yu, J.; Wang, J. DHA content in milk and biohydrogenation pathway in rumen: A review. PeerJ 2020, 8, e10230. [Google Scholar] [CrossRef]
- Cruz-Hernandez, C.; Goeuriot, S.; Giuffrida, F.; Thakkar, S.K.; Destaillats, F. Direct quantification of fatty acids in human milk by gas chromatography. J. Chromatogr. A 2013, 1284, 174–179. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G.H.S. A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Qi, C.; Sun, J.; Xia, Y.; Yu, R.; Wei, W.; Xiang, J.; Jin, Q.; Xiao, H.; Wang, X. Fatty Acid Profile and the sn-2 Position Distribution in Triacylglycerols of Breast Milk during Different Lactation Stages. J. Agric. Food Chem. 2018, 66, 3118–3126. [Google Scholar] [CrossRef] [PubMed]
- Sahin, N.; Akoh, C.C.; Karaali, A. Lipase-Catalyzed Acidolysis of Tripalmitin with Hazelnut Oil Fatty Acids and Stearic Acid To Produce Human Milk Fat Substitutes. J. Agric. Food Chem. 2005, 53, 5779–5783. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, C.; Cannon, V.; Loerch, S. Effects of forage source and supplementation with soybean and marine algal oil on milk fatty acid composition of ewes. Anim. Feed Sci. Technol. 2006, 131, 333–357. [Google Scholar] [CrossRef]
- Moate, P.J.; Williams, S.R.O.; Hannah, M.C.; Eckard, R.J.; Auldist, M.J.; Ribaux, B.E.; Jacobs, J.L.; Wales, W.J. Effects of feeding algal meal high in docosahexaenoic acid on feed intake, milk production, and methane emissions in dairy cows. J. Dairy Sci. 2013, 96, 3177–3188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques, J.A.; Del Valle, T.A.; Ghizzi, L.G.; Zilio, E.M.; Gheller, L.S.; Nunes, A.T.; Silva, T.B.; Dias, M.S.d.S.; Grigoletto, N.T.; Koontz, A.F. Increasing dietary levels of docosahexaenoic acid-rich microalgae: Ruminal fermentation, animal performance, and milk fatty acid profile of mid-lactating dairy cows. J. Dairy Sci. 2019, 102, 5054–5065. [Google Scholar] [CrossRef]
- Lamminen, M.; Halmemies-Beauchet-Filleau, A.; Kokkonen, T.; Simpura, I.; Jaakkola, S.; Vanhatalo, A. Comparison of microalgae and rapeseed meal as supplementary protein in the grass silage based nutrition of dairy cows. Anim. Feed Sci. Technol. 2017, 234, 295–311. [Google Scholar] [CrossRef] [Green Version]
- Toral, P.G.; Hervás, G.; Gómez-Cortés, P.; Frutos, P.; Juárez, M.; de la Fuente, M.A. Milk fatty acid profile and dairy sheep performance in response to diet supplementation with sunflower oil plus incremental levels of marine algae. J. Dairy Sci. 2010, 93, 1655–1667. [Google Scholar] [CrossRef]
- Boeckaert, C.; Vlaeminck, B.; Dijkstra, J.; Issa-Zacharia, A.; Nespen, T.V.; Straalen, W.V.; Fievez, V. Effect Of Dietary Starch Or Micro Algae Supplementation On Rumen Fermentation And Milk Fatty Acid Composition Of Dairy Cows. J. Dairy Sci. 2008, 91, 4714–4727. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, G.; Goulas, C.; Apostolaki, E.; Abril, R. Effects of dietary supplements of algae, containing polyunsaturated fatty acids, on milk yield and the composition of milk products in dairy ewes. J. Dairy Res. 2002, 69, 357. [Google Scholar] [CrossRef]
- Tsiplakou, E.; Abdullah, M.A.; Alexandros, M.; Chatzikonstantinou, M.; Skliros, D.; Sotirakoglou, K.; Flemetakis, E.; Labrou, N.E.; Zervas, G. The effect of dietary Chlorella pyrenoidosa inclusion on goats milk chemical composition, fatty acids profile and enzymes activities related to oxidation. Livest. Sci. 2017, 197, 106–111. [Google Scholar] [CrossRef]
- Bichi, E.; Hervás, G.; Toral, P.G.; Loor, J.J.; Frutos, P. Milk fat depression induced by dietary marine algae in dairy ewes: Persistency of milk fatty acid composition and animal performance responses. J. Dairy Sci. 2013, 96, 524–532. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, G.G.; Ferreira de Jesus, E.; Takiya, C.S.; Del Valle, T.A.; da Silva, T.H.; Vendramini, T.H.A.; Yu, E.J.; Rennó, F.P. Short communication: Partial replacement of ground corn with algae meal in a dairy cow diet: Milk yield and composition, nutrient digestibility, and metabolic profile. J. Dairy Sci. 2016, 99, 8880–8884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mavrommatis, A.; Chronopoulou, E.G.; Sotirakoglou, K.; Labrou, N.E.; Zervas, G.; Tsiplakou, E. The impact of the dietary supplementation level with schizochytrium sp, on the oxidative capacity of both goats’ organism and milk. Livest. Sci. 2018, 218, 37–43. [Google Scholar] [CrossRef]
- Shingfield, K.J.; Lee, M.R.; Humphries, D.J.; Scollan, N.D.; Toivonen, V.; Beever, D.E.; Reynolds, C.K. Effect of linseed oil and fish oil alone or as an equal mixture on ruminal fatty acid metabolism in growing steers fed maize silage-based diets. J. Anim. Sci. 2011, 89, 3728–3741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kairenius, P.; Leskinen, H.; Toivonen, V.; Muetzel, S.; Ahvenjärvi, S.; Vanhatalo, A.; Huhtanen, P.; Wallace, R.J.; Shingfield, K.J. Effect of dietary fish oil supplements alone or in combination with sunflower and linseed oil on ruminal lipid metabolism and bacterial populations in lactating cows. J. Dairy Sci. 2018, 101, 3021–3035. [Google Scholar] [CrossRef] [Green Version]
- Mattos, R.; Staples, C.R.; Arteche, A.; Wiltbank, M.C.; Diaz, F.J.; Jenkins, T.C.; Thatcher, W.W. The effects of feeding fish oil on uterine secretion of PGF2alpha, milk composition, and metabolic status of periparturient Holstein cows. J. Dairy Sci. 2004, 87, 921–932. [Google Scholar] [CrossRef] [Green Version]
- Shingfield, K.J.; Bonnet, M.; Scollan, N.D. Recent developments in altering the fatty acid composition of ruminant-derived foods. Anim. Int. J. Anim. Biosci. 2013, 7 (Suppl. 1), 132–162. [Google Scholar] [CrossRef]
- Moran, C.A.; Morlacchini, M.; Keegan, J.D.; Fusconi, G. The effect of dietary supplementation with Aurantiochytrium limacinum on lactating dairy cows in terms of animal health, productivity and milk composition. J. Anim. Physiol. Anim. Nutr. 2018, 102, 576–590. [Google Scholar] [CrossRef] [Green Version]
- Sinedino, L.D.; Honda, P.M.; Souza, L.R.; Lock, A.L.; Boland, M.P.; Staples, C.R.; Thatcher, W.W.; Santos, J.E. Effects of supplementation with docosahexaenoic acid on reproduction of dairy cows. Reproduction 2017, 153, 707–723. [Google Scholar] [CrossRef] [Green Version]
- Till, B.E.; Huntington, J.A.; Posri, W.; Early, R.; Taylor-Pickard, J.; Sinclair, L.A. Influence of rate of inclusion of microalgae on the sensory characteristics and fatty acid composition of cheese and performance of dairy cows. J. Dairy Sci. 2019, 102, 10934–10946. [Google Scholar] [CrossRef]
- Mavrommatis, A.; Tsiplakou, E. The impact of the dietary supplementation level with Schizochytrium sp. on milk chemical composition and fatty acid profile, of both blood plasma and milk of goats. Small Rumin. Res. 2020, 193, 106252. [Google Scholar] [CrossRef]
- Zhang, T.-T.; Xu, J.; Wang, Y.-M.; Xue, C.-H. Health benefits of dietary marine DHA/EPA-enriched glycerophospholipids. Prog. Lipid Res. 2019, 75, 100997. [Google Scholar] [CrossRef] [PubMed]
- Steffens, W. Effects of variation in essential fatty acids in fish feeds on nutritive value of freshwater fish for humans. Aquaculture 1997, 151, 97–119. [Google Scholar] [CrossRef]
- Serra, A.; Conte, G.; Ciucci, F.; Bulleri, E.; Corrales-Retana, L.; Cappucci, A.; Buccioni, A.; Mele, M. Dietary linseed supplementation affects the fatty acid composition of the sn-2 position of triglycerides in sheep milk. J. Dairy Sci. 2018, 101, 6742–6751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yen, C.-L.E.; Stone, S.J.; Koliwad, S.; Harris, C.; Farese, R.V. Thematic review series: Glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J. Lipid Res. 2008, 49, 2283–2301. [Google Scholar] [CrossRef] [Green Version]
- Christensen, M.S.; Høy, C.; Becker, C.C.; Redgrave, T.G. Intestinal absorption and lymphatic transport of eicosapentaenoic (EPA), docosahexaenoic (DHA), and decanoic acids: Dependence on intramolecular triacylglycerol structure. Am. J. Clin. Nutr. 1995, 61, 56–61. [Google Scholar] [CrossRef]
- Valenzuela, A.; Valenzuela, V.; Sanhueza, J.; Nieto, S. Effect of supplementation with docosahexaenoic acid ethyl ester and sn-2 docosahexaenyl monoacylglyceride on plasma and erythrocyte fatty acids in rats. Ann. Nutr. Metab. 2005, 49, 49–53. [Google Scholar] [CrossRef]
- Banno, F.; DOIsAKI, S.; Shimizu, N.; Fujimoto, K. Lymphatic absorption of docosahexaenoic acid given as monoglyceride, diglyceride, triglyceride, and ethyl ester in rats. J. Nutr. Sci. Vitaminol. 2002, 48, 30–35. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Cortés, P.; Juárez, M.; de la Fuente, M.A. Milk fatty acids and potential health benefits: An updated vision. Trends Food Sci. Technol. 2018, 81, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Bohl, M.; Bjørnshave, A.; Larsen, M.; Gregersen, S.; Hermansen, K. The effects of proteins and medium-chain fatty acids from milk on body composition, insulin sensitivity and blood pressure in abdominally obese adults. Eur. J. Clin. Nutr. 2017, 71, 76–82. [Google Scholar] [CrossRef]
Item | Content (%) |
---|---|
Corn | 48.10 |
Wheat bran | 10.20 |
Soybean meal | 13.60 |
Dry Alfalfa hay | 22.00 |
NaHCO3 | 1.00 |
NaCl | 0.60 |
Limestone | 0.50 |
Premix | 4.00 |
Total | 100.00 |
Dry Matter (DM) | 87.24 |
Crude Protein (CP) | 13.62 |
Ether Extract (EE) | 2.37 |
Neutral Detergent Fiber (NDF) | 47.62 |
Acid Detergent Fiber (ADF) | 22.73 |
Lignin | 5.66 |
Item | Content (%) | Item | Content (%) |
---|---|---|---|
C4:0 | 0.16 | C18:1n9c | 7.7 |
C6:0 | 0.02 | C18:2n6c | 0.52 |
C8:0 | 0.88 | C18:3n6 | 0.03 |
C10:0 | 0.03 | C18:3n3 | 0.06 |
C11:0 | 0.01 | C20:0 | 0.06 |
C12:0 | 0.06 | C20:1n9 | 0.02 |
C14:0 | 0.35 | C21:0 | 0.05 |
C14:1 | 0.02 | C20:3n6 | 0.33 |
C15:0 | 0.04 | C20:4n6 | 0.05 |
C15:1 | 0.19 | C22:0 | 0.27 |
C16:0 | 6.74 | C20:5n3 | 0.09 |
C16:1 | 0.16 | C23:0 | 0.05 |
C17:0 | 0.03 | C24:0 | 0.06 |
C17:1 | 0.12 | C22:6n3 | 17.63 |
C18:0 | 0.67 | C24:1 | 0.16 |
Fatty Acids | Test Group | SEM | p-Value | Effect | |||
---|---|---|---|---|---|---|---|
C | LM | MM | HM | ||||
DMI (kg/day) | 2.070 | 2.110 | 2.090 | 2.130 | 0.106 | 0.341 | NS |
Protein (%) | 2.974 | 3.286 | 3.173 | 3.095 | 0.333 | 0.054 | NS |
Lipid (%) | 3.067 a | 3.708 b | 3.357 ab | 3.017 a | 0.652 | 0.000 | ** |
Lactose (%) | 4.630 a | 4.713 a | 4.420 b | 4.745 a | 0.373 | 0.003 | ** |
SCC (106/mL) | 1.898 | 1.880 | 1.969 | 1.573 | 1.218 | 0.924 | NS |
Milk yield (kg/day) | 1.633 | 1.806 | 1.502 | 1.802 | 0.714 | 0.307 | NS |
Concentration of DHA (mg/100 g raw material) | 4.486 a | 29.485 b | 32.351 b | 24.817 b | 16.130 | 0.000 | ** |
Fatty Acids | Test Group | SEM | p-Value | Effect | |||
---|---|---|---|---|---|---|---|
C | LM | MM | HM | ||||
C4:0 | 0.805 | 0.828 | 0.918 | 0.939 | 0.255 | 0.300 | NS |
C6:0 | 1.815 a | 2.089 b | 2.013 b | 2.180 b | 0.307 | 0.010 | * |
C8:0 | 6.101 a | 3.424 b | 3.461 b | 3.742 b | 1.844 | 0.000 | ** |
C10:0 | 9.466 a | 11.654 b | 11.154 b | 11.273 b | 1.670 | 0.002 | ** |
C11:0 | 0.172 | 0.193 | 0.148 | 0.171 | 0.094 | 0.388 | NS |
C12:0 | 4.446 a | 5.601 b | 5.644 b | 5.318 b | 1.138 | 0.017 | * |
C14:0 | 10.452 | 11.027 | 11.157 | 10.401 | 1.252 | 0.117 | NS |
C14:1 | 0.235 | 0.189 | 0.189 | 0.209 | 0.089 | 0.444 | NS |
C15:0 | 1.006 | 1.054 | 0.962 | 1.039 | 0.225 | 0.467 | NS |
C15:1 | 0.221 a | 0.279 b | 0.275 b | 0.266 b | 0.060 | 0.042 | * |
C16:0 | 32.696 | 30.269 | 30.855 | 30.969 | 2.915 | 0.147 | NS |
C16:1 | 0.874 | 0.699 | 0.689 | 0.849 | 0.266 | 0.053 | NS |
C17:0 | 0.490 a | 0.585 b | 0.589 b | 0.553 b | 0.094 | 0.014 | * |
C17:1 | 0.231 | 0.192 | 0.186 | 0.203 | 0.067 | 0.275 | NS |
C18:0 | 5.894 ab | 6.559 b | 6.605 b | 5.126 a | 1.738 | 0.012 | * |
C18:1n7t | 1.400 a | 3.686 b | 3.568 b | 5.315 c | 2.042 | 0.000 | ** |
C18:1n9c | 18.305 a | 15.274 b | 15.340 b | 14.821 b | 3.177 | 0.019 | * |
C18:2n6t | 0.468 a | 0.596 b | 0.582 b | 0.540 ab | 0.120 | 0.016 | * |
C18:2n6c | 3.932 b | 3.883 b | 3.355 a | 3.824 b | 0.762 | 0.001 | ** |
C18:3n3 | 0.128 a | 0.176 b | 0.154 ab | 0.144 a | 0.043 | 0.006 | ** |
C20:0 | 0.135 a | 0.154 ab | 0.173 b | 0.135 a | 0.038 | 0.001 | ** |
C20:4n6 | 0.255 | 0.218 | 0.259 | 0.210 | 0.074 | 0.067 | NS |
C22:0 | 0.000 a | 0.061 b | 0.120 c | 0.109 c | 0.065 | 0.000 | ** |
C20:5n3 | 0.163 a | 0.222 b | 0.256 b | 0.228 b | 0.080 | 0.011 | * |
C23:0 | 0.133 a | 0.254 bc | 0.308 c | 0.192 ab | 0.113 | 0.000 | ** |
C24:0 | 0.069 a | 0.140 b | 0.189 c | 0.142 b | 0.070 | 0.000 | ** |
C22:6n3 | 0.108 a | 0.623 b | 0.759 c | 0.585 b | 0.282 | 0.000 | ** |
C24:1 | 0.000 a | 0.072 b | 0.094 b | 0.175 c | 0.103 | 0.000 | ** |
SFA | 73.680 | 73.892 | 74.294 | 72.290 | 3.724 | 0.311 | NS |
SC-SFA | 2.620 a | 2.917 b | 2.931 b | 3.120 b | 0.382 | 0.005 | ** |
MC-SFA | 30.636 | 31.899 | 31.563 | 30.906 | 3.794 | 0.744 | NS |
LC-SFA | 40.424 | 39.077 | 39.800 | 38.265 | 2.609 | 0.091 | NS |
MUFA | 21.374 | 20.941 | 21.006 | 22.247 | 3.215 | 0.523 | NS |
PUFA | 4.946 ab | 5.167 ab | 4.701 a | 5.463 b | 0.841 | 0.014 | * |
n3 | 0.399 a | 1.021 b | 1.170 c | 0.957 b | 0.325 | 0.000 | ** |
n6 | 4.655 ab | 4.697 ab | 4.195 a | 4.916 b | 0.782 | 0.009 | ** |
n6/n3 | 11.916 a | 4.905 b | 3.675 c | 5.419 b | 1.408 | 0.000 | ** |
Fatty Acids | Test Group | SEM | p-Value | Effect | |||
---|---|---|---|---|---|---|---|
C | LM | MM | HM | ||||
C4:0 | 0.097 | 0.053 | 0.086 | 0.123 | 0.051 | 0.466 | NS |
C6:0 | 0.105 | 0.052 | 0.086 | 0.110 | 0.036 | 0.174 | NS |
C8:0 | 0.483 b | 0.212 a | 0.301 a | 0.364 ab | 0.124 | 0.018 | * |
C10:0 | 1.462 a | 4.043 b | 6.648 c | 5.565 c | 2.117 | 0.000 | ** |
C11:0 | 0.154 | 0.177 | 0.123 | 0.161 | 0.030 | 0.151 | NS |
C12:0 | 3.326 a | 6.280 b | 6.262 b | 4.691 c | 1.338 | 0.000 | ** |
C14:0 | 14.887 a | 19.282 b | 18.612 b | 14.947 a | 2.28 | 0.001 | ** |
C14:1 | 0.316 a | 0.470b | 0.128 c | 0.156 c | 0.152 | 0.000 | ** |
C15:0 | 1.016 | 1.187 | 1.071 | 0.999 | 0.101 | 0.066 | NS |
C15:1 | 8.678 | 3.704 | 3.909 | 6.676 | 3.179 | 0.158 | NS |
C16:0 | 40.235 | 36.210 | 36.128 | 35.492 | 2.582 | 0.064 | NS |
C16:1 | 0.673 | 0.428 | 0.607 | 0.666 | 0.190 | 0.397 | NS |
C17:0 | 0.454 | 0.500 | 0.572 | 0.471 | 0.080 | 0.308 | NS |
C17:1 | 0.317 c | 0.128 a | 0.236 b | 0.254 b | 0.075 | 0.000 | ** |
C18:0 | 10.397 | 7.953 | 8.954 | 10.060 | 1.664 | 0.279 | NS |
C18:1n7t | 1.429 a | 2.611 ab | 2.606 ab | 3.945 b | 1.133 | 0.024 | * |
C18:1n9c | 11.392 a | 7.668 b | 9.568 b | 10.357 ab | 2.197 | 0.027 | * |
C18:2n6t | 0.191 | 0.252 | 0.358 | 0.281 | 0.108 | 0.321 | NS |
C18:2n6c | 2.975 | 1.755 | 1.531 | 2.257 | 0.852 | 0.155 | NS |
C18:3n3 | 0.103 a | 0.053 b | 0.029 b | 0.033 b | 0.033 | 0.001 | ** |
C20:0 | 0.266 a | 0.361 b | 0.322 b | 0.348 b | 0.045 | 0.018 | * |
C20:4n6 | 0.630 a | 0.463 a | 0.973 b | 0.614 a | 0.223 | 0.006 | ** |
C22:0 | 0.000 a | 0.000 a | 0.017 a | 0.063 b | 0.029 | 0.001 | ** |
C20:5n3 | 0.073 a | 0.098 ab | 0.138 b | 0.139 b | 0.038 | 0.048 | * |
C23:0 | 0.147 a | 0.164 a | 0.148 a | 0.502 b | 0.168 | 0.000 | ** |
C24:0 | 0.027 | 0.077 | 0.046 | 0.074 | 0.029 | 0.074 | NS |
C22:6n3 | 0.166 a | 0.104 b | 0.354 c | 0.429 c | 0.056 | 0.032 | * |
C24:1 | 0.000 a | 0.065 c | 0.024 b | 0.04 b | 0.027 | 0.001 | ** |
SFA | 73.057 a | 76.549 ab | 79.374 b | 73.968 a | 3.268 | 0.044 | * |
SC-SFA | 0.203 | 0.105 | 0.171 | 0.233 | 0.079 | 0.234 | NS |
MC-SFA | 20.312 a | 29.993 c | 31.945 c | 25.727 b | 4.900 | 0.000 | ** |
LC-SFA | 52.542 a | 46.451 b | 47.258 b | 48.008 b | 2.949 | 0.017 | * |
MUFA | 22.97 b | 15.113 a | 17.409 a | 22.484 b | 3.984 | 0.007 | ** |
PUFA | 3.972 | 2.686 | 3.053 | 3.364 | 0.822 | 0.288 | NS |
n3 | 0.176 | 0.216 | 0.191 | 0.212 | 0.042 | 0.667 | NS |
n6 | 3.796 | 2.470 | 2.863 | 3.152 | 0.846 | 0.292 | NS |
n6/n3 | 22.752 a | 11.727 b | 15.011 b | 15.239 b | 3.424 | 0.027 | * |
Reference a | Species | Feeding Time | Addition of Microalgae (g) | Addition of DHA (g) | Content (%) | Absolute Concentration (mg/100 g raw milk) | Increase Ratio of DHA (%) |
---|---|---|---|---|---|---|---|
Franklin (1999) [12] | cow (n = 30) | 6 weeks | 910 | - | 0.76 | - | 760 |
PAPADOPOULOS (2002) [29] | ewes (n = 32) | 6 weeks | 23.5 | - | 0.43 | - | 460 |
6 weeks | 47 | - | 0.69 | - | 430 | ||
6 weeks | 94 | - | 1.24 | - | 690 | ||
Moate (2013) [24] | cow (n = 32) | 30 days | 125 | 25.00 | 0.36 | - | 1240 |
30 days | 250 | 50.00 | 0.60 | - | 500 | ||
30 days | 375 | 75.00 | 0.91 | - | 900 | ||
Vahmani (2013) [13] | cow (n = 48) | 125 days | 200 | 48.50 | 0.20 | - | 1417 |
Póti (2015) [15] | goat (n = 20) | 17 days | 30 | - | 0.04 | - | 900 |
cow (n = 16) | 17 days | 266.4 | - | 0.02 | - | 100 | |
Moran (2018) [38] | cow (n = 12) | 84 days | 100 | 16.00 | 0.10 | - | 100 |
Sinedino (2017) [39] | cow (n = 366) | 174 days | 100 | 10.00 | 0.24 | - | 100 |
Pajor (2019) [16] | goat (n = 10) | 31 days | 15 | 2.00 | 0.40 | 15.70 | 242 |
Till (2019) [40] | cow (n = 60) | 14 weeks | 100 | - | 0.22 | - | 400 |
Liu (2020) [14] | cow (n = 36) | 60 days | 170 | 30.00 | 0.37 | - | 450 |
60 days | 255 | 45.00 | 0.53 | - | 370 | ||
Mavrommatis (2020) [41] | goat (n = 24) | 74 days | 20 | 4.16 | 0.70 | - | 530 |
74 days | 40 | 8.44 | 1.30 | - | 700 | ||
74 days | 60 | 8.20 | 1.51 | - | 1300 | ||
This study | goat (n = 120) | 65 days | 15 | 2.64 | 0.62 | 29.49 | 1510 |
65 days | 25 | 4.41 | 0.76 | 32.35 | 477 | ||
65 days | 35 | 6.17 | 0.59 | 24.88 | 603 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Wang, X.; Zhang, W.; Zhang, Y.; Zhang, S.; Pang, X.; Lu, J.; Lv, J. Dietary Schizochytrium Microalgae Affect the Fatty Acid Profile of Goat Milk: Quantification of Docosahexaenoic Acid (DHA) and Its Distribution at Sn-2 Position. Foods 2022, 11, 2087. https://doi.org/10.3390/foods11142087
Zhu H, Wang X, Zhang W, Zhang Y, Zhang S, Pang X, Lu J, Lv J. Dietary Schizochytrium Microalgae Affect the Fatty Acid Profile of Goat Milk: Quantification of Docosahexaenoic Acid (DHA) and Its Distribution at Sn-2 Position. Foods. 2022; 11(14):2087. https://doi.org/10.3390/foods11142087
Chicago/Turabian StyleZhu, Huiquan, Xiaodan Wang, Wenyuan Zhang, Yumeng Zhang, Shuwen Zhang, Xiaoyang Pang, Jing Lu, and Jiaping Lv. 2022. "Dietary Schizochytrium Microalgae Affect the Fatty Acid Profile of Goat Milk: Quantification of Docosahexaenoic Acid (DHA) and Its Distribution at Sn-2 Position" Foods 11, no. 14: 2087. https://doi.org/10.3390/foods11142087
APA StyleZhu, H., Wang, X., Zhang, W., Zhang, Y., Zhang, S., Pang, X., Lu, J., & Lv, J. (2022). Dietary Schizochytrium Microalgae Affect the Fatty Acid Profile of Goat Milk: Quantification of Docosahexaenoic Acid (DHA) and Its Distribution at Sn-2 Position. Foods, 11(14), 2087. https://doi.org/10.3390/foods11142087