Prediction and Health Risk Assessment of Copper, Lead, Cadmium, Chromium, and Nickel in Tieguanyin Tea: A Case Study from Fujian, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Regents and Materials
2.2. Tea Brewing and Sample Digestion
2.3. Data Analysis and Health Risk Assessment
3. Results and Discussion
3.1. Copper, Lead, Cadmium, Chromium, and Nickel in Tieguanyin Tea
3.2. Transfer Rate of Targeted Elements during Tea Brewing
3.3. Daily Intake Estimation and Risk Assessment
3.4. Uncertainty and Prospect
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chaturvedula, P.S.V.; Prakash, I. The aroma, taste, color and bioactive constituents of tea. J. Med. Plants Res. 2011, 5, 2110–2124. [Google Scholar]
- Lin, S.; Lo, L.; Chen, I.; Chen, P. Effect of shaking process on correlations between catechins and volatiles in oolong tea. J. Food Drug Anal. 2016, 24, 500–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Xiao, Q.; Huang, Y.; Ni, H.; Wu, C.; Xiao, A. Tannase application in secondary enzymatic processing of inferior Tieguanyin oolong tea. Electron. J. Biotechnol. 2017, 28, 87–94. [Google Scholar] [CrossRef]
- Schuh, C.; Schieberle, P. Characterization of the key aroma compounds in the beverage prepared from Darjeeling black tea: Quantitative differences between tea leaves and infusion. J. Agric. Food Chem. 2006, 54, 916–924. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Qu, Z.; Fu, L.; Dong, P.; Zhang, X. Physicochemical properties and antioxidant capacity of 3 polysaccharides from green tea, oolong tea, and black tea. J. Food Sci. 2009, 74, C469–C474. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zuo, H.; Tian, M.; Zhang, L.; Meng, J.; Zhou, X.; Min, N.; Chang, X.; Liu, Y. Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques. Chemosphere 2016, 144, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Wu, P.; Yang, F.; Sun, D.; Zhang, D.; Zhou, Y. Assessment of heavy metal pollution and human health risks in urban soils around an electronics manufacturing facility. Sci. Total Environ. 2018, 630, 53–61. [Google Scholar] [CrossRef]
- Zhou, J.; Du, B.; Hu, Y.; Liang, J.; Liu, H.; Fan, X.; Zhang, L.; Cui, H.; Liu, X.; Zhou, J. A new criterion for the health risk assessment of Se and Pb exposure to residents near a smelter. Environ. Pollut. 2019, 244, 218–227. [Google Scholar] [CrossRef]
- Nkansah, M.; Opoku, F.; Ackumey, A. Risk assessment of mineral and heavy metal content of selected tea products from the Ghanaian market. Environ. Monit. Assess. 2016, 188, 332. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Chen, L.; Liu, T.; Ma, G.; Liu, X. Influence of manufacturing process on the contents of iron, copper, chromium, nickel and manganese elements in Crush, Tear and Curl black tea, their transfer rates and health risk assessment. Food Control. 2018, 89, 241–249. [Google Scholar] [CrossRef]
- Han, W.; Shi, Y.; Ma, L.; Ruan, J. Arsenic, cadmium, chromium, cobalt, and copper in different types of Chinese tea. Bull. Environ. Contam. Toxicol. 2005, 75, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Görür, F.K.; Keser, R.; Akçay, N.; Dizman, S.; Okumuşoğlu, N.T. Radionuclides and heavy metals concentrations in Turkish market tea. Food Control 2011, 22, 2065–2070. [Google Scholar] [CrossRef]
- Cao, H.; Qiao, L.; Zhang, H.; Chen, J. Exposure and risk assessment for aluminium and heavy metals in Puerh tea. Sci. Total Environ. 2010, 408, 2777–2784. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Lin, Z.; Tan, J.; Guo, L. Contents of fluoride, lead, copper, chromium, arsenic and cadmium in Chinese Pu-erh tea. Food Res. Int. 2013, 53, 938–944. [Google Scholar] [CrossRef]
- Yao, Q.; Lin, Q.; Yan, S.; Huang, M.; Chen, L. Dietary risk assessment of fluoride, lead, chromium, and cadmium through consumption of Tieguanyin tea and white tea. Food Sci. Technol. 2021, 41, 782–789. [Google Scholar] [CrossRef]
- Shen, F.; Chen, H. Element composition of tea leaves and tea infusions and its impact on health. Bull. Environ. Contam. Toxicol. 2008, 80, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Fu, Q.; Achal, V.; Liu, Y. A comparison of the potential health risk of aluminum and heavy metals in tea leaves and tea infusion of commercially available green tea in Jiangxi, China. Environ. Monit. Assess. 2015, 187, 228. [Google Scholar] [CrossRef]
- USEPA (United States Environmental Protection Agency). EPA Region III Risk-Based Concentration (RBC) Table 2008 Region III; 1650 Arch Street; USEPA: Philadelphia, PA, USA, 2013.
- Yao, Q.; Li, J.; Yan, S.; Huang, M.; Lin, Q. Occurrence of pesticides in white tea and a corresponding risk exposure assessment for the different residents in Fujian, China. J. Food Sci. 2021, 86, 3743–3754. [Google Scholar] [CrossRef]
- USEPA (United States Environmental Protection Agency). Concepts, Methods and Data Sources for Cumulative Health Risk Assessment of Multiple Chemicals, Exposures and Effects: A Resource Document, EPA/600/R-06/013F; National Center for Environmental Assessment, Office of Research and Development: Cincinnati, OH, USA, 2007.
- Karak, T.; Paul, R.K.; Sonar, I.; Nath, J.R.; Boruah, R.K.; Dutta, A.K. Nickel dynamics influenced by municipal solid waste compost application in tea (Camellia sinensis L.): A cup that cheers. Int. J. Environ. Sci. Technol. 2016, 13, 633–678. [Google Scholar] [CrossRef] [Green Version]
- USEPA (United States Environmental Protection Agency). Integrated Risk Information System (IRIS) Database. 2017. Available online: http://www.epa.gov/iris/ (accessed on 1 March 2022).
- Bamuwamye, M.; Ogwok, P.; Tumuhairwe, V. Cancer and non-cancer risks associated with heavy metal exposures from street foods: Evaluation of roasted meats in an urban setting. J. Environ. Pollut. Hum. Health 2015, 3, 24–30. [Google Scholar]
- USEPA (United States Environmental Protection Agency). Risk-Based Concentration Table. 2010. Available online: http://www.epa.gov/reg3hwmd/risk/human/index (accessed on 26 July 2019).
- Waggoner, D.J.; Bartnikas, T.B.; Gitlin, J.D. The role of copper in neuro-degenerative disease. Neurobiol. Dis. 1999, 6, 221–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: New York, NY, USA, 2007. [Google Scholar]
- Lăcătuşu, R.; Răută, C.; Cărstea, S.; Ghelase, I. Soil–plant–man relationships in heavy metal polluted areas in Romania. Appl. Geochem. 1996, 11, 105–107. [Google Scholar]
- Wilbur, S.B. Toxicological profile for chromium: US Department of Health and Human Services, Public Health Service. Agency Toxic Subst. Dis. Regist. 2000, 67, 1054S–1060S. [Google Scholar]
- Samiee, F.; Vahidinia, A.; Javad, M.T.; Leili, M. Exposure to heavy metals released to the environment through breastfeeding: A probabilistic risk estimation. Sci. Total Environ. 2019, 650, 3075–3083. [Google Scholar] [CrossRef] [PubMed]
- Wróbel, K.; Wróbel, K.; Urbina, E.M.C. Determination of total aluminum, chromium, copper, iron, manganese, and nickel and their fractions leached to the infusions of black tea, green tea, Hibiscus sabdariffa, and Ilex paraguariensis (mate) by ETA-AAS. Biol. Trace Elem. Res. 2000, 78, 271–280. [Google Scholar] [CrossRef]
- Nookabkaew, S.; Rangkadilok, N.; Satayavivad, J. Determination of trace elements in herbal tea products and their infusions consumed in Thailand. J. Agric. Food Chem. 2006, 54, 6939–6944. [Google Scholar] [CrossRef]
- Everhart, J.L.; McNear, D., Jr.; Peltier, E.; Van der Lelie, D.; Chaney, R.L.; Sparks, D.L. Assessing nickel bioavailability in smelter-contaminated soils. Sci. Total Environ. 2006, 367, 732–744. [Google Scholar] [CrossRef]
- Dohnalova, L.; Bucek, P.; Vobornik, P.; Dohnal, V. Determination of nickel in hydrogenated fats and selected chocolate bars in Czech Republic. Food Chem. 2017, 217, 456–460. [Google Scholar] [CrossRef]
- Seenivasan, S.; Manikandan, N.; Muraleedharan, N.N. Chromium contamination in black tea and its transfer into tea brew. Food Chem. 2008, 106, 1066–1069. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, G.; Chen, L.; Liu, T.; Liu, X.; Lu, C. Profiling elements in Puerh tea from Yunnan province, China. Food Addit. Contam. Part B 2017, 10, 155–164. [Google Scholar] [CrossRef]
- Gonzalez-Welleret, D.; Rubio, C.; Gutiérrez, A.J.; Pérez, B.; Hernández-Sánchez, C.; Caballero, J.M.; Revert, C.; Hardisson, A. Dietary content and evaluation of metals in four types of tea (white, black, red, and green) consumed by the population of the Canary Islands. Pharm. Anal. Acta 2015, 6, 1000428. [Google Scholar]
- GB 5479-2006; Hygienic Standard for Drinking Water Quality. Chinese Standard Publishing House: Beijing, China, 2006.
- Natesan, S.; Ranganathan, V. Content of various elements in different parts of the tea plant and in infusions of black tea from southern India. J. Food Sci. Agric. 1990, 51, 125–139. [Google Scholar] [CrossRef]
- Shokrzadeh, M.; Saberyan, M.; Saravi, S.S.S. Assessment of lead (Pb) and cadmium (Cd) in 10 samples of Iranian and foreign consumed tea leaves and dissolved beverages. Toxicol. Environ. Chem. 2008, 90, 879–883. [Google Scholar] [CrossRef]
- Szymczycha-Madeja, A.; Welna, M.; Pohl, P. Elemental analysis of teas and their infusions by spectrometric methods. TrAC Trends Anal. Chem. 2012, 35, 165–181. [Google Scholar] [CrossRef]
- Praveena, S.M.; Omar, N.A. Heavy metal exposure from cooked rice grain ingestion and its potential health risks to humans from total and bioavailable forms analysis. Food Chem. 2017, 235, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Antoine, J.M.R.; Fung, L.A.H.; Grant, C.N. Assessment of the potential health risks associated with the aluminium, arsenic, cadmium and lead content in the selected fruits and vegetables grow in Jamaica. Toxicol. Rep. 2017, 4, 181–187. [Google Scholar] [CrossRef]
- Martín-Domingo, M.C.; Pla, A.; Hernández, A.F.; Olmedo, P.; Navas-Acien, A.; Lozano-Paniagua, D.; Gil, F. Determination of metalloid, metallic and mineral elements in herbal teas. Risk assessment for the consumers. J. Food Compos. Anal. 2017, 60, 81–89. [Google Scholar] [CrossRef]
- Wapnir, R.A. Copper absorption and bioavailability. Am. J. Clin. Nutr. 1998, 67, 1054S–1060S. [Google Scholar] [CrossRef] [Green Version]
- Caussy, D.; Gochfeld, M.; Gurzau, E.; Neagu, C.; Ruedel, H. Lessons from case studies of metals: Investigating exposure, bioavailability, and risk. Ecotoxicol. Environ. Saf. 2003, 56, 45–51. [Google Scholar] [CrossRef]
- Åkesson, A.; Chaney., R.L. Cadmium exposure in the environment: Dietary exposure, bioavailability and renal effects. In Encyclopedia of Environmental Health; Elsevier: Amsterdam, The Netherlands, 2019; pp. 475–484. [Google Scholar]
- USEPA (United States Environmental Protection Agency). Guidance Manual for the Integrated Exposure Uptake Biokinetic Model for Lead in Children; NTIS #PB93-963510, EPA 9285.7-15-1; USEPA: Washington, DC, USA, 1994.
- McDermott, S.; Salzberg, D.C.; Anderson, A.P.; Shaw, T.; Lead, J. Systematic review of chromium and nickel exposure during pregnancy and impact on child outcomes. J. Toxicol. Environ. HealthPart A 2015, 78, 1248–1368. [Google Scholar] [CrossRef]
- USEPA (United States Environmental Protection Agency). Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites Office of Solid Waste and Emergency Response; USEPA: Washington, DC, USA, 2002. Available online: https://rais.ornl.gov/documents/SSG_nonrad_supplemental.pdf (accessed on 1 March 2022).
- Castro-González, N.P.; Calderón-Sánchez, F.; Pérez-Sato, M.; Soní-Guillermo, E.; Reyes-Cervantes, E. Health risk due to chronic heavy metal consumption via cow’s milk produced in Puebla, Mexico, in irrigated wastewater areas. Food Addit. Contam. Part B 2019, 12, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Chai, M.; Li, R.; Gong, Y.; Shen, X.; Yu, L. Bioaccessibility-corrected health risk of heavy metal exposure via shellfish consumption in coastal region of China. Environ. Pollut. 2021, 273, 116529. [Google Scholar] [CrossRef] [PubMed]
- Van Ooijen, H.; Voet, H.; Bakker, M. Identification and Handlingof Uncertainties in Dietary Exposure Assessment. Report 320103004/2009; National Institute for Public Health andthe Environment (RIVM): Utrecht, The Netherlands, 2009. Available online: http://www.rivm.nl/bibliotheek/rapporten/320103004.pdf (accessed on 1 March 2022).
- Pei, F.; Wang, Y.; Fang, Y.; Li, P.; Yang, W.; Ma, N.; Ma, G.; Hu, Q. Concentrations of heavy metals in muscle and edible offal of pork in Nanjing city of China and related health risks. J. Food Sci. 2020, 85, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Zhang, Y.; Quan, X. Health risk assessment of heavy metals and pesticides: A case study in the main drinking water source in Dalian, China. Chemosphere 2020, 242, 125113. [Google Scholar] [CrossRef]
Steps | Temperature (°C) | Time (min) |
---|---|---|
1 | 120 | 5 |
2 | 160 | 10 |
3 | 180 | 10 |
Parameters | Value | Parameters | Value |
---|---|---|---|
Radio frequency power | 1.2 kw | Isotopes monitored | 52Cr |
Plasma gas | 8.0 L/min | 60Ni | |
Auxiliary gas | 1.1 L/min | 65Cu | |
Carrier gas | 0.7 L/min | 114Cd | |
Collision gas | 6.0 L/min | 208Pb |
Element | Certified Reference Tea (Mean ± SD) (μg kg−1) | Recovery for Tea Infusion (%) | LOD (μg L−1) | LOQ (μg L−1) | R2 | |||
---|---|---|---|---|---|---|---|---|
Certified Value | Detected Value | 10 μg L−1 | 50 μg L−1 | 100 μg L−1 | ||||
Cu | 24 ± 1 | 24.4 ± 0.5 | 110.6 | 110.7 | 114.2 | 0.09 | 0.3 | 0.999 |
Ni | 5.4 ± 0.4 | 5.4 ± 0.2 | 103.6 | 96.8 | 98.8 | 0.02 | 0.06 | 0.999 |
Pb | 1.6 ± 0.2 | 1.7 ± 0.1 | 90.1 | 85.9 | 87.2 | 0.01 | 0.03 | 0.999 |
Cd | 0.076 ± 0.004 | 0.077 ± 0.001 | 85.3 | 87.3 | 84.3 | 0.003 | 0.01 | 0.999 |
Cr | 0.92 ± 0.20 | 0.92 ± 0.01 | 100.4 | 94.7 | 96.8 | 0.009 | 0.03 | 0.999 |
Range (mg kg−1) | Mean ± SD | RfD (μg kg−1 bw day−1) a | Sf (mg kg−1 bw Day−1) b | |
---|---|---|---|---|
Cu | 2.65–11.61 | 8.18 ± 2.10 | 40 | |
Pb | 0.21–2.00 | 0.84 ± 0.40 | 3.57 | 0.0085 |
Cr | 0.08–1.38 | 0.51 ± 0.28 | 3 | 0.5 |
Cd | ND-0.11 | 0.04 ± 0.02 | 1 | 6.3 |
Ni | 1.02–2.93 | 1.90 ± 0.70 | 20 |
HQ (%) | Adjusted HQ (%) a | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Male | Female | Urban | Rural | Age 18–40 | Age ≥ 41 | Male | Female | Urban | Rural | Age 18–40 | Age ≥ 41 | |
Cu | 4.7 × 10−3 | 3.1 × 10−3 | 4.0 × 10−3 | 3.7 × 10−3 | 3.7 × 10−3 | 5.0 × 10 3 | 2.0 × 10−3 | 1.2 × 10−3 | 1.6 × 10−3 | 1.5 × 10−3 | 1.5 × 10−3 | 2.0 × 10−3 |
Pb | 1.7 × 10−2 | 1.1 × 10−2 | 1.4 × 10−2 | 1.3 × 10−2 | 1.3 × 10−2 | 1.8 × 10−2 | 1.0 × 10−2 | 6.7 × 10−3 | 8.6 × 10−3 | 8.0 × 10−3 | 8.0 × 10−3 | 1.0 × 10−2 |
Cr | 1.6 × 10−2 | 1.1 × 10−2 | 1.4 × 10−2 | 1.3 × 10−2 | 1.3 × 10−2 | 1.7 × 10−2 | 1.6 × 10−4 | 1.1 × 10−4 | 1.4 × 10−4 | 1.3 × 10−4 | 1.3 × 10−4 | 1.7 × 10−4 |
Cd | 4.9 × 10−3 | 3.2 × 10−3 | 4.2 × 10−3 | 3.8 × 10−3 | 3.8 × 10−3 | 5.1 × 10−3 | 2.4 × 10−3 | 1.6 × 10−3 | 2.1 × 10−3 | 1.9 × 10−3 | 1.9 × 10−3 | 2.5 × 10−3 |
Ni | 1.5 × 10−2 | 1.0 × 10−2 | 1.3 × 10−2 | 1.2 × 10−2 | 1.2 × 10−2 | 1.6 × 10−2 | 1.5 × 10−3 | 1.0 × 10−3 | 1.3 × 10−3 | 1.2 × 10−3 | 1.2 × 10−3 | 1.6 × 10−3 |
HI | 5.8 × 10−2 | 3.8 × 10−2 | 4.9 × 10−2 | 4.6 × 10−2 | 4.6 × 10−2 | 6.1 × 10−2 | 1.6 × 10−2 | 1.1 × 10−2 | 1.4 × 10−2 | 1.3 × 10−2 | 1.3 × 10−2 | 1.7 × 10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Q.; Huang, M.; Zheng, Y.; Chen, M.; Huang, C.; Lin, Q. Prediction and Health Risk Assessment of Copper, Lead, Cadmium, Chromium, and Nickel in Tieguanyin Tea: A Case Study from Fujian, China. Foods 2022, 11, 1593. https://doi.org/10.3390/foods11111593
Yao Q, Huang M, Zheng Y, Chen M, Huang C, Lin Q. Prediction and Health Risk Assessment of Copper, Lead, Cadmium, Chromium, and Nickel in Tieguanyin Tea: A Case Study from Fujian, China. Foods. 2022; 11(11):1593. https://doi.org/10.3390/foods11111593
Chicago/Turabian StyleYao, Qinghua, Minmin Huang, Yunyun Zheng, Meizhen Chen, Chongyao Huang, and Qiu Lin. 2022. "Prediction and Health Risk Assessment of Copper, Lead, Cadmium, Chromium, and Nickel in Tieguanyin Tea: A Case Study from Fujian, China" Foods 11, no. 11: 1593. https://doi.org/10.3390/foods11111593
APA StyleYao, Q., Huang, M., Zheng, Y., Chen, M., Huang, C., & Lin, Q. (2022). Prediction and Health Risk Assessment of Copper, Lead, Cadmium, Chromium, and Nickel in Tieguanyin Tea: A Case Study from Fujian, China. Foods, 11(11), 1593. https://doi.org/10.3390/foods11111593