Phytochemical Characterization of Citrus-Based Products Supporting Their Antioxidant Effect and Sensory Quality
Abstract
:1. Introduction
2. Materials and Method
2.1. Chemicals and Reagents
2.2. Citrus Fruits and Commercial Products
2.2.1. Fruit Origin and Product Composition
2.2.2. Product Preparation
2.3. Preparation of Extracts
2.4. Total Polyphenol Content
2.5. Antioxidant Activity
2.6. Chemical Characterization by UHPLC-ESI-HR-MS/Orbitrap Analysis
2.7. Headspace-Solid Phase Microextraction (HS-SPME) Analysis
2.8. GC-MS Analyses
2.9. Sensorial Evaluation and Physicochemical Analysis
2.10. Statistical Analysis
3. Results
3.1. Total Polyphenol Content and Antioxidant Potential Evaluation
3.2. Chemical Characterization and Amount of Bioactive Molecules
3.3. Aroma Composition
3.4. Sensorial Properties and Physicochemical Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santeramo, F.G.; Carlucci, D.; De Devitiis, B.; Seccia, A.; Stasi, A.; Viscecchia, R.; Nardone, G. Emerging trends in European food, diets and food industry. Food Res. Int. 2018, 104, 39–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality—A systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef] [PubMed]
- Miller, V.; Mente, A.; Dehghan, M.; Rangarajan, S.; Zhang, X.; Swaminathan, S.; Dagenais, G.; Gupta, R.; Mohan, V.; Lear, S.; et al. Fruit, vegetable, and legume intake, and cardiovascular disease and deaths in 18 countries (PURE): A prospective cohort study. Lancet 2017, 390, 2037–2049. [Google Scholar] [CrossRef] [Green Version]
- Nöthlings, U.; Schulze, M.B.; Weikert, C.; Boeing, H.; van der Schouw, Y.T.; Bamia, C.; Benetou, V.; Lagiou, P.; Krogh, V.; Beulens, J.W.J.; et al. Intake of Vegetables, Legumes, and Fruit, and Risk for All-Cause, Cardiovascular, and Cancer Mortality in a European Diabetic Population. J. Nutr. 2008, 138, 775–781. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ouyang, Y.; Liu, J.; Zhu, M.; Zhao, G.; Bao, W.; Hu, F.B. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2014, 349, g4490. [Google Scholar] [CrossRef] [Green Version]
- Yip, C.S.C.; Chan, W.; Fielding, R. The Associations of Fruit and Vegetable Intakes with Burden of Diseases: A Systematic Review of Meta-Analyses. J. Acad. Nutr. Diet. 2019, 119, 464–481. [Google Scholar] [CrossRef]
- Noncommunicable Diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 23 December 2021).
- Healthy Diet. Available online: https://www.who.int/news-room/fact-sheets/detail/healthy-diet (accessed on 23 December 2021).
- Septembre-Malaterre, A.; Remize, F.; Poucheret, P. Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Res. Int. 2018, 104, 86–99. [Google Scholar] [CrossRef]
- Pennington, J.A.T.; Fisher, R.A. Food component profiles for fruit and vegetable subgroups. J. Food Compos. Anal. 2010, 23, 411–418. [Google Scholar] [CrossRef]
- Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary Polyphenols and the Prevention of Diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef]
- Han, X.; Shen, T.; Lou, H. Dietary Polyphenols and Their Biological Significance. Int. J. Mol. Sci. 2007, 8, 950–988. [Google Scholar] [CrossRef] [Green Version]
- Cases, J.; Romain, C.; Dallas, C.; Gerbi, A.; Cloarec, M. Regular consumption of Fiit-ns, a polyphenol extract from fruit and vegetables frequently consumed within the Mediterranean diet, improves metabolic ageing of obese volunteers: A randomized, double-blind, parallel trial. Int. J. Food Sci. Nutr. 2015, 66, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Stoclet, J.-C.; Chataigneau, T.; Ndiaye, M.; Oak, M.-H.; El Bedoui, J.; Chataigneau, M.; Schini-Kerth, V.B. Vascular protection by dietary polyphenols. Eur. J. Pharmacol. 2004, 500, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Pennington, J.A.T.; Fisher, R.A. Classification of fruits and vegetables. J. Food Compos. Anal. 2009, 22, S23–S31. [Google Scholar] [CrossRef]
- FAO. Citrus Fruit Statistical Compendium 2020. Rome; FAO: Rome, Italy, 2021. [Google Scholar]
- Liu, Y.; Heying, E.; Tanumihardjo, S.A. History, Global Distribution, and Nutritional Importance of Citrus Fruits. Compr. Rev. Food Sci. Food Saf. 2012, 11, 530–545. [Google Scholar] [CrossRef]
- Gattuso, G.; Barreca, D.; Gargiulli, C.; Leuzzi, U.; Caristi, C. Flavonoid Composition of Citrus Juices. Molecules 2007, 12, 1641–1673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barreca, D.; Gattuso, G.; Bellocco, E.; Calderaro, A.; Trombetta, D.; Smeriglio, A.; Laganà, G.; Daglia, M.; Meneghini, S.; Nabavi, S.M. Flavanones: Citrus phytochemical with health-promoting properties. BioFactors 2017, 43, 495–506. [Google Scholar] [CrossRef]
- Alam, M.A.; Subhan, N.; Rahman, M.M.; Uddin, S.J.; Reza, H.M.; Sarker, S.D. Effect of Citrus Flavonoids, Naringin and Naringenin, on Metabolic Syndrome and Their Mechanisms of Action. Adv. Nutr. 2014, 5, 404–417. [Google Scholar] [CrossRef]
- Tripoli, E.; La Guardia, M.; Giammanco, S.; Di Majo, D.; Giammanco, M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem. 2007, 104, 466–479. [Google Scholar] [CrossRef]
- Benavente-García, O.; Castillo, J. Update on Uses and Properties of Citrus Flavonoids: New Findings in Anticancer, Cardiovascular, and Anti-inflammatory Activity. J. Agric. Food Chem. 2008, 56, 6185–6205. [Google Scholar] [CrossRef]
- Manners, G.D. Citrus Limonoids: Analysis, Bioactivity, and Biomedical Prospects. J. Agric. Food Chem. 2007, 55, 8285–8294. [Google Scholar] [CrossRef]
- Gualdani, R.; Cavalluzzi, M.; Lentini, G.; Habtemariam, S. The Chemistry and Pharmacology of Citrus Limonoids. Molecules 2016, 21, 1530. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Mahato, N.; Cho, M.H.; Lee, Y.R. Converting citrus wastes into value-added products: Economic and environmently friendly approaches. Nutrition 2017, 34, 29–46. [Google Scholar] [CrossRef]
- Estaji, M.; Mohammadi-Moghaddam, T.; Gholizade-Eshan, L.; Firoozzare, A.; Hooshmand-Dalir, M.-A.-R. Physicochemical characteristics, sensory attributes, and antioxidant activity of marmalade prepared from black plum peel. Int. J. Food Prop. 2020, 23, 1979–1992. [Google Scholar] [CrossRef]
- Castelló, M.L.; Heredia, A.; Domínguez, E.; Ortolá, M.D.; Tarrazó, J. Influence of thermal treatment and storage on astringency and quality of a spreadable product from persimmon fruit. Food Chem. 2011, 128, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Mazur, S.P.; Nes, A.; Wold, A.-B.; Remberg, S.F.; Martinsen, B.K.; Aaby, K. Effects of ripeness and cultivar on chemical composition of strawberry (Fragaria × ananassa Duch.) fruits and their suitability for jam production as a stable product at different storage temperatures. Food Chem. 2014, 146, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Güder, A.; Engİn, M.S.; Yolcu, M.; Gür, M. Effect of Processing Temperature on the Chemical Composition and Antioxidant Activity of Vaccinium Arctostaphylos Fruit and Their Jam. J. Food Process. Preserv. 2014, 38, 1696–1704. [Google Scholar] [CrossRef]
- Rosa, A.; Atzeri, A.; Deiana, M.; Scano, P.; Incani, A.; Piras, C.; Cesare Marincola, F. Comparative antioxidant activity and 1H NMR profiling of Mediterranean fruit products. Food Res. Int. 2015, 69, 322–330. [Google Scholar] [CrossRef]
- Rababah, T.M.; Al-Mahasneh, M.A.; Kilani, I.; Yang, W.; Alhamad, M.N.; Ereifej, K.; Al-u’datt, M. Effect of jam processing and storage on total phenolics, antioxidant activity, and anthocyanins of different fruits. J. Sci. Food Agric. 2011, 91, 1096–1102. [Google Scholar] [CrossRef]
- Donno, D.; Mellano, M.; Hassani, S.; De Biaggi, M.; Riondato, I.; Gamba, G.; Giacoma, C.; Beccaro, G. Assessing Nutritional Traits and Phytochemical Composition of Artisan Jams Produced in Comoros Islands: Using Indigenous Fruits with High Health-Impact as an Example of Biodiversity Integration and Food Security in Rural Development. Molecules 2018, 23, 2707. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, F.; dos Santos, B.A.; Nunes, G.; Soares, J.M.; do Amaral, L.A.; de Souza, G.H.O.; de Resende, J.T.V.; Menegassi, B.; Rafacho, B.P.M.; Schwarz, K.; et al. Addition of Orange Peel in Orange Jam: Evaluation of Sensory, Physicochemical, and Nutritional Characteristics. Molecules 2020, 25, 1670. [Google Scholar] [CrossRef] [Green Version]
- Sicari, V.; Pellicanò, T.M.; Laganà, V.; Poiana, M. Use of orange by-products (dry peel) as an alternative gelling agent for marmalade production: Evaluation of antioxidant activity and inhibition of HMF formation during different storage temperature. J. Food Process. Preserv. 2018, 42, e13429. [Google Scholar] [CrossRef]
- Ascrizzi, R.; Taglieri, I.; Sgherri, C.; Flamini, G.; Macaluso, M.; Sanmartin, C.; Venturi, F.; Quartacci, M.; Pistelli, L.; Zinnai, A. Nutraceutical Oils Produced by Olives and Citrus Peel of Tuscany Varieties as Sources of Functional Ingredients. Molecules 2018, 24, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanmartin, C.; Taglieri, I.; Macaluso, M.; Sgherri, C.; Ascrizzi, R.; Flamini, G.; Venturi, F.; Quartacci, M.F.; Luro, F.; Curk, F.; et al. Cold-Pressing Olive Oil in the Presence of Cryomacerated Leaves of Olea or Citrus: Nutraceutical and Sensorial Features. Molecules 2019, 24, 2625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flori, L.; Macaluso, M.; Taglieri, I.; Sanmartin, C.; Sgherri, C.; De Leo, M.; Ciccone, V.; Donnini, S.; Venturi, F.; Pistelli, L.; et al. Development of Fortified Citrus Olive Oils: From Their Production to Their Nutraceutical Properties on the Cardiovascular System. Nutrients 2020, 12, 1557. [Google Scholar] [CrossRef] [PubMed]
- Taglieri, I.; Sanmartin, C.; Venturi, F.; Macaluso, M.; Bianchi, A.; Sgherri, C.; Quartacci, M.F.; De Leo, M.; Pistelli, L.; Palla, F.; et al. Bread Fortified with Cooked Purple Potato Flour and Citrus Albedo: An Evaluation of Its Compositional and Sensorial Properties. Foods 2021, 10, 942. [Google Scholar] [CrossRef] [PubMed]
- Da Pozzo, E.; De Leo, M.; Faraone, I.; Milella, L.; Cavallini, C.; Piragine, E.; Testai, L.; Calderone, V.; Pistelli, L.; Braca, A.; et al. Antioxidant and Antisenescence Effects of Bergamot Juice. Oxid. Med. Cell. Longev. 2018, 2018, 9395804. [Google Scholar] [CrossRef]
- Flamini, G.; Pistelli, L.; Nardoni, S.; Ebani, V.; Zinnai, A.; Mancianti, F.; Ascrizzi, R.; Pistelli, L. Essential Oil Composition and Biological Activity of “Pompia”, a Sardinian Citrus Ecotype. Molecules 2019, 24, 908. [Google Scholar] [CrossRef] [Green Version]
- Giovanelli, S.; Ciccarelli, D.; Giusti, G.; Mancianti, F.; Nardoni, S.; Pistelli, L. Comparative assessment of volatiles in juices and essential oils from minor Citrus fruits (Rutaceae). Flavour Fragr. J. 2020, 35, 639–652. [Google Scholar] [CrossRef]
- De Leo, M.; Piragine, E.; Pirone, A.; Braca, A.; Pistelli, L.; Calderone, V.; Miragliotta, V.; Testai, L. Protective Effects of Bergamot (Citrus bergamia Risso & Poiteau) Juice in Rats Fed with High-Fat Diet. Planta Med. 2020, 86, 180–189. [Google Scholar] [CrossRef]
- Testai, L.; De Leo, M.; Flori, L.; Polini, B.; Braca, A.; Nieri, P.; Pistelli, L.; Calderone, V. Contribution of irisin pathway in protective effects of mandarin juice (Citrus reticulata Blanco) on metabolic syndrome in rats fed with high fat diet. Phyther. Res. 2021, 35, 4324–4333. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A.J. Colorimetry to total phenolics with phosphomolybdic acid reagents. Am. J. Enol. Vinic. 1965, 16, 144–158. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy; Allured Publishing Corporation: Carol Stream, IL, USA, 1995. [Google Scholar]
- Davies, N.W. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on Methyl Silicon and Carbowax 20M phases. J. Chromatogr. A 1990, 503, 1–24. [Google Scholar] [CrossRef]
- Jennings, W.; Shibamoto, T. Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas Chromatography; Academic Press: New York, NY, USA, 1982; Volume 26. [Google Scholar]
- Masada, Y. Analysis of Essential Oils By Gas Chromatography And Mass Spectrometry; John Wiley & Sons, Inc.: New York, NY, USA, 1976; ISBN 047015019X. [Google Scholar]
- Stenhagen, E.; Abrahamsson, S.; McLafferty, F.W. Registry of Mass Spectral Data; Wiley & Sons: New York, NY, USA, 1974. [Google Scholar]
- Swigar, A.A.; Silverstein, R.M. Monoterpenes; Aldrich Chemical Company: Milwaukee, WI, USA, 1981. [Google Scholar]
- Emelike, N.; Akusu, O. Quality Attributes of Jams and Marmalades Produced from Some Selected Tropical Fruits. J. Food Process. Technol. 2019, 10, 790. [Google Scholar] [CrossRef]
- Ye, X.; Cao, D.; Song, F.; Fan, G.; Wu, F. Preparative separation of nine flavonoids from Pericarpium Citri Reticulatae by preparative-HPLC and HSCCC. Sep. Sci. Technol. 2016, 51, 807–815. [Google Scholar] [CrossRef]
- Mencherini, T.; Campone, L.; Piccinelli, A.L.; García Mesa, M.; Sánchez, D.M.; Aquino, R.P.; Rastrelli, L. HPLC-PDA-MS and NMR Characterization of a Hydroalcoholic Extract of Citrus aurantium L. var. amara Peel with Antiedematogenic Activity. J. Agric. Food Chem. 2013, 61, 1686–1693. [Google Scholar] [CrossRef]
- Caristi, C.; Bellocco, E.; Panzera, V.; Toscano, G.; Vadalà, R.; Leuzzi, U. Flavonoids Detection by HPLC-DAD-MS-MS in Lemon Juices from Sicilian Cultivars. J. Agric. Food Chem. 2003, 51, 3528–3534. [Google Scholar] [CrossRef]
- Gentili, B.; Horowitz, R.M. Flavonoids of citrus. IX. C-Glycosylflavones and a nuclear magnetic resonance method for differentiating 6- and 8-C-glycosyl isomers. J. Org. Chem. 1968, 33, 1571–1577. [Google Scholar] [CrossRef]
- Masao, N.; Shintaro, K.; Sachiko, E.; Fumiko, I. Flavonoids in Citrus and Related Genera. Agric. Biol. Chem. 1971, 35, 1683–1706. [Google Scholar] [CrossRef] [Green Version]
- Dunlap, W.J.; Wender, S.H. Purification and identification of flavanone glycosides in the peel of the sweet orange. Arch. Biochem. Biophys. 1960, 87, 228–231. [Google Scholar] [CrossRef]
- Matsubara, Y.; Sawabe, A.; Iizuka, Y. Structures of New Limonoid Glycosides in Lemon (Citrus limon Burm. f.) Peelings. Agric. Biol. Chem. 1990, 54, 1143–1148. [Google Scholar] [CrossRef]
- Khalil, A.T.; Maatooq, G.T.; El Sayed, K.A. Limonoids from Citrus reticulata. Z. Naturforsch. C 2003, 58, 165–170. [Google Scholar] [CrossRef]
- Bennett, R.D.; Hasegawa, S.; Herman, Z. Glucosides of acidic limonoids in citrus. Phytochemistry 1989, 28, 2777–2781. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Rivera, M.P.; Lugo-Cervantes, E.; Winterhalter, P.; Jerz, G. Metabolite profiling of polyphenols in peels of Citrus limetta Risso by combination of preparative high-speed countercurrent chromatography and LC–ESI–MS/MS. Food Chem. 2014, 158, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, Y.; Sawabe, A.; Iizuka, Y.; Okamoto, K. Studies on physiologically active substances in citrus fruit peel. Part XII. Structures of monoterpenoid glycosides in orange (Citrus sinensis Osbeck.), hassaku (Citrus hassaku Hort.) and yuzu (Citrus junos Sier.) peelings. Yukagaku 1988, 37, 13–18. [Google Scholar]
- Masike, K.; Mhlongo, M.I.; Mudau, S.P.; Nobela, O.; Ncube, E.N.; Tugizimana, F.; George, M.J.; Madala, N.E. Highlighting mass spectrometric fragmentation differences and similarities between hydroxycinnamoyl-quinic acids and hydroxycinnamoyl-isocitric acids. Chem. Cent. J. 2017, 11, 29. [Google Scholar] [CrossRef] [PubMed]
- Anagnostopoulou, M.A.; Kefalas, P.; Kokkalou, E.; Assimopoulou, A.N.; Papageorgiou, V.P. Analysis of antioxidant compounds in sweet orange peel by HPLC-diode array detection-electrospray ionization mass spectrometry. Biomed. Chromatogr. 2005, 19, 138–148. [Google Scholar] [CrossRef]
- Luo, Y.; Zeng, W.; Huang, K.-E.; Li, D.-X.; Chen, W.; Yu, X.-Q.; Ke, X.-H. Discrimination of Citrus reticulata Blanco and Citrus reticulata ‘Chachi’ as well as the Citrus reticulata ‘Chachi’ within different storage years using ultra high performance liquid chromatography quadrupole/time-of-flight mass spect. J. Pharm. Biomed. Anal. 2019, 171, 218–231. [Google Scholar] [CrossRef]
- Fayek, N.M.; Farag, M.A.; Abdel Monem, A.R.; Moussa, M.Y.; Abd-Elwahab, S.M.; El-Tanbouly, N.D. Comparative Metabolite Profiling of Four Citrus Peel Cultivars via Ultra-Performance Liquid Chromatography Coupled with Quadrupole-Time-of-Flight-Mass Spectrometry and Multivariate Data Analyses. J. Chromatogr. Sci. 2019, 57, 349–360. [Google Scholar] [CrossRef]
- Chen, J.; Shen, Y.; Chen, C.; Wan, C. Inhibition of Key Citrus Postharvest Fungal Strains by Plant Extracts In Vitro and In Vivo: A Review. Plants 2019, 8, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, D.M.; Liu, Z.; Chen, H.; Xue, J.T.; Yang, Y.; Chen, C.; Ye, L.M. Profiling the dynamics of abscisic acid and ABA-glucose ester after using the glucosyltransferase UGT71C5 to mediate abscisic acid homeostasis in Arabidopsis thaliana by HPLC-ESI-MS/MS. J. Pharm. Anal. 2014, 4, 190–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mannina, L.; Sobolev, A.P.; Di Lorenzo, A.; Vista, S.; Tenore, G.C.; Daglia, M. Chemical Composition of Different Botanical Origin Honeys Produced by Sicilian Black Honeybees (Apis mellifera ssp. sicula). J. Agric. Food Chem. 2015, 63, 5864–5874. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, Y.; Yusa, T.; Sawabe, A.; Iizuka, Y.; Takekuma, S.I.; Yoshida, Y. Structures of New Cyclic Peptides in Young Unshiu (Citrus unshiu MARCOV.), Orange (Citrus sinensis OSBECK.) and Amanatsu (Citrus natsudaidai) Peelings. Agric. Biol. Chem. 1991, 55, 2923–2929. [Google Scholar] [CrossRef] [PubMed]
- Avula, B.; Sagi, S.; Wang, Y.-H.; Wang, M.; Gafner, S.; Manthey, J.; Khan, I. Liquid Chromatography-Electrospray Ionization Mass Spectrometry Analysis of Limonoids and Flavonoids in Seeds of Grapefruits, Other Citrus Species, and Dietary Supplements. Planta Med. 2016, 82, 1058–1069. [Google Scholar] [CrossRef] [PubMed]
- Wichchukit, S.; O’Mahony, M. The 9-point hedonic scale and hedonic ranking in food science: Some reappraisals and alternatives. J. Sci. Food Agric. 2015, 95, 2167–2178. [Google Scholar] [CrossRef]
- Peterson, J.J.; Dwyer, J.T.; Beecher, G.R.; Bhagwat, S.A.; Gebhardt, S.E.; Haytowitz, D.B.; Holden, J.M. Flavanones in oranges, tangerines (mandarins), tangors, and tangelos: A compilation and review of the data from the analytical literature. J. Food Compos. Anal. 2006, 19, S66–S73. [Google Scholar] [CrossRef]
- Khan, M.K.; Zill-E-Huma; Dangles, O. A comprehensive review on flavanones, the major citrus polyphenols. J. Food Compos. Anal. 2014, 33, 85–104. [Google Scholar] [CrossRef]
- Hertog, M.G.; Feskens, E.J.; Kromhout, D.; Hertog, M.G.; Hollman, P.C.; Hertog, M.G.; Katan, M. Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen Elderly Study. Lancet 1993, 342, 1007–1011. [Google Scholar] [CrossRef]
- Zou, Z.; Xi, W.; Hu, Y.; Nie, C.; Zhou, Z. Antioxidant activity of Citrus fruits. Food Chem. 2016, 196, 885–896. [Google Scholar] [CrossRef]
- Chanet, A.; Milenkovic, D.; Manach, C.; Mazur, A.; Morand, C. Citrus Flavanones: What Is Their Role in Cardiovascular Protection? J. Agric. Food Chem. 2012, 60, 8809–8822. [Google Scholar] [CrossRef] [PubMed]
- Kurowska, E.M.; Banh, C.; Hasegawa, S.; Manners, G.D. Regulation of Apo B Production in HepG2 Cells by Citrus Limonoids. In Citrus Limonoids: Functional Chemicals in Agriculture and Food; Berhow, M.A., Hasegawa, S., Manners, G.D., Eds.; American Chemical Society: Washington, DC, USA, 2000; Volume 758, pp. 175–184. [Google Scholar]
- Balestrieri, E.; Pizzimenti, F.; Ferlazzo, A.; Giofrè, S.V.; Iannazzo, D.; Piperno, A.; Romeo, R.; Chiacchio, M.A.; Mastino, A.; Macchi, B. Antiviral activity of seed extract from Citrus bergamia towards human retroviruses. Bioorg. Med. Chem. 2011, 19, 2084–2089. [Google Scholar] [CrossRef] [PubMed]
- Tao, N.G.; Liu, Y.J.; Tang, Y.F.; Zhang, J.H.; Zhang, M.L.; Zeng, H.Y. Essential oil composition and antimicrobial activity of Citrus reticulata. Chem. Nat. Compd. 2009, 45, 437–438. [Google Scholar] [CrossRef]
- Settanni, L.; Randazzo, W.; Palazzolo, E.; Moschetti, M.; Aleo, A.; Guarrasi, V.; Mammina, C.; San Biagio, P.L.; Marra, F.P.; Moschetti, G.; et al. Seasonal variations of antimicrobial activity and chemical composition of essential oils extracted from three Citrus limon L. Burm. cultivars. Nat. Prod. Res. 2014, 28, 383–391. [Google Scholar] [CrossRef]
- Alvarez, R.Q.; Passaro, C.C.; Lara, O.G.; Londono, J.L. Relationship between chromatographic profiling by HS- SPME and sensory quality of mandarin juices: Effect of squeeze technology. Procedia Food Sci. 2011, 1, 1396–1403. [Google Scholar] [CrossRef] [Green Version]
- Obenland, D.; Collin, S.; Sievert, J.; Arpaia, M.L. Mandarin flavor and aroma volatile composition are strongly influenced by holding temperature. Postharvest Biol. Technol. 2013, 82, 6–14. [Google Scholar] [CrossRef]
- Espina, L.; Somolinos, M.; Lorán, S.; Conchello, P.; García, D.; Pagán, R. Chemical composition of commercial citrus fruit essential oils and evaluation of their antimicrobial activity acting alone or in combined processes. Food Control 2011, 22, 896–902. [Google Scholar] [CrossRef]
- Sun, J.; Sun, B.; Ren, F.; Chen, H.; Zhang, N.; Zhang, Y.; Zhang, H. Effects of storage conditions on the flavor stability of fried pepper (Zanthoxylum bungeanum) oil. Foods 2021, 10, 1292. [Google Scholar] [CrossRef]
- Pérez-López, A.J.; Saura, D.; Lorente, J.; Carbonell-Barrachina, Á.A. Limonene, linalool, α-terpineol, and terpinen-4-ol as quality control parameters in mandarin juice processing. Eur. Food Res. Technol. 2006, 222, 281–285. [Google Scholar] [CrossRef]
- Pieracci, Y.; Ascrizzi, R.; Pistelli, L.; Flamini, G. Comparison of the Chemical and Sensorial Evaluation of Dark Chocolate Bars. Appl. Sci. 2021, 11, 9964. [Google Scholar] [CrossRef]
- Mounjouenpou, P.; Ngono Eyenga, S.N.N.; Kamsu, E.J.; Bongseh Kari, P.; Ehabe, E.E.; Ndjouenkeu, R. Effect of fortification with baobab (Adansonia digitata L.) pulp flour on sensorial acceptability and nutrient composition of rice cookies. Sci. Afr. 2018, 1, e00002. [Google Scholar] [CrossRef]
- Maina, J.W. Analysis of the factors that determine food acceptability. Pharma Innov. J. 2018, 7, 253–257. [Google Scholar]
Coctura® Products | Fruits (Pulp and Peel) | Cane Sugar |
---|---|---|
Mixed Citrus | Sweet oranges 37.5%, Femminello Santa Teresa lemons 9.5%, Avana mandarins 8.5% | 44% |
Lemon | Femminello Santa Teresa lemons 55% | 44% |
Extract Weight (g) | ||
---|---|---|
Sample (15 g) | MeOH | n-BuOH |
Coctura® Mixed Citrus | 5.78 | 0.16 |
Coctura® Lemon | 5.70 | 0.27 |
Orange peel | 1.18 | 0.12 |
Mandarin peel | 1.28 | 0.16 |
Lemon peel | 0.95 | 0.16 |
Orange pulp | 1.16 | 0.07 |
Mandarin pulp | 1.14 | 0.09 |
Lemon pulp | 0.79 | 0.23 |
TPC (mg GAE/100 g) | DPPH IC50 (mg/mL) | ABTS (TEAC mM/100 g) | |
---|---|---|---|
Lemon pulp | 19.24 ± 0.27 DE | 0.70 ± 0.037 C | 1.85 ± 0.08 C |
Lemon peels | 59.45 ± 1.23 B | 0.14 ± 0.008 D | 11.77 ± 2.30 A |
Mandarin pulp | 18.45 ± 0.59 DE | 1.14 ± 0.068 A | 1.75 ± 0.01 C |
Mandarin peels | 68.24 ± 1.49 A | 0.21 ± 0.001 D | 13.36 ± 0.52 A |
Orange pulp | 13.47 ± 0.56 E | 0.81 ± 0.053 C | 1.57 ± 0.14 C |
Orange peels | 41.21 ± 3.03 C | 0.20 ± 0.002 D | 6.93 ± 0.22 B |
Coctura® Mixed Citrus | 15.79 ± 0.85 E | 1.00 ± 0.011 B | 3.34 ± 0.42 BC |
Coctura® Lemon | 24.28 ± 0.95 D | 0.26 ± 0.003 D | 3.61 ± 0.17 BC |
Peak | Compound a | tR (min) | HR-[M − H]− (m/z) | HR-MS/MS Product Ions (m/z) b | Molecular Formula | Mass Error (ppm) | Extract | Ref. |
---|---|---|---|---|---|---|---|---|
Organic acid and derivatives | ||||||||
1 | Citric acid | 0.5 | 191.0193 | 173.01, 111.01, 87.01, 85.03 | C6H8O7 | −2.25 | C, D, E, F, G, H | [39] |
9 | Aconitic acid | 7.3 | 173.0086 | 129.09, 111.01, 85.03 | C6H6O6 | −3.23 | H | |
11 | Citric acid derivative | 7.7 | 247. 0821 | 185.08, 173.01, 111.01, 87.01, 85.03 | C10H16O7 | −0.93 | H | [65] |
Phenolic acid | ||||||||
2a, 2b | cis/trans Coumaroyl acid glucoside | 4.4, 4.8 | 325.0929 | 145.03, 117.03 | C15H18O8 | +0.03 | F | [66,67] |
3a, 3b | cis/trans Coumaroylisocitric acid | 4.5 | 337.0567 | 191.01, 163.04, 129.02, 119.05, 85.03 | C15H14O9 | +0.59 | C, D, E | [65] |
4 | Feruloylisocitric acid | 5.3 | 367.0670 | 193.05, 147.03, 134.04, 85.03 | C16H16O10 | −0.27 | C, D | [65] |
5a, 5b | cis/trans Feruloyl glucoside | 6.2, 6.3 | 355.1035 | 193.05, 175.04 | C16H20O9 | +0.11 | F, G, H | [66,67] |
7 | p-Coumaric acid | 6.5 | 163.0396 | 119.05, 104.03 | C9H8O3 | −2.88 | C, D, E | [66,67] |
8a, 8b | cis/trans Sinapoyl glucoside | 6.8 | 385.1142 | 223.06, 205.05, 119.01, 91.01 | C17H22O10 | +0.47 | F, G, H | [66,67] |
12 | Dihydroxyhydrocinnamic acid hexoside | 7.9 | 357.1190 | 195.07, 151.08, 121.03 | C16H22O9 | +0.31 | A, B, E | [68] |
13 | Ferulic acid | 8.2 | 193.0501 | 178.03, 149.06, 134.04 | C10H10O4 | −2.75 | C, D, E | [66,67] |
Phenylpropanoid | ||||||||
15 | Xanthoxylin | 9.0 | 195.0658 | 177.05, 151.08, 136.05, 121.03 | C10H12O4 | +2.46 | E | [69] |
Terpenoids | ||||||||
6 | Roseoside | 6.2 | ([M + HCOO]− 431.1923) | 385.19, 223.13, 205.12, 153.09 | C19H30O8 | A, C, D, E, F | [67] | |
16 | Abscisic acid glucose ester | 9.6 | 425.1819 | 263.13, 219.14, 151.08 | C21H30O9 | −0.45 | F | [70] |
21 | Abscisic acid | 11.6 | 263.1288 | 219.14, 204.11, 201.13, 151.08 | C15H20O4 | +0.30 | C, D, E, F | [71] |
Flavone C-glucosides | ||||||||
10 | Vicenin-2 (apigenin 6,8-di-C-glucoside) | 7.3 | 593.1515 | 503.12, 473.11, 383.08, 353.07 | C27H30O15 | +0.51 | A–H | [39,43] |
14 | Lucenin-2 4′-methyl ether (diosmetin 6,8-di-C-glucoside) | 8.9 | 623.1618 | 503.12, 413.09, 383.08 | C28H32O16 | 0.00 | A, B, C, D, F, G, H | [39,43] |
18 | Diosmetin 8-C-glucoside or 6-C-glucoside | 10.5 | 461.1091 | 371.08, 341.07, 298.05 | C22H22O11 | +0.43 | A, B, C, D, E, G, H | [43] |
19 | Diosmetin 8-C-glucoside or 6-C-glucoside | 10.9 | 461.1091 | 371.08, 341.07, 298.05 | C22H22O11 | +0.43 | A, B, C, D, E, G, H | [43] |
Flavanone O-glycosides | ||||||||
17 | Eriocitrin/neoeriotricin | 9.8 | 595.1672 | 287.05, 151.00, 135.04 | C27H32O15 | −0.34 | A–H | [39,43] |
20 | Narirutin/naringin | 11.2 | 579.1716 ([M + HCOO]− 625.1772) | 271.06, 151.00, 119.05 | C27H32O14 | −0.52 | A–H | [39,43] |
25 | Hesperidin/neohesperidin | 12.5 | 609.1824 ([M + HCOO]− 645.1593) | 301.07, 286.05, 151.00 | C28H34O15 | −0.16 | A–H | [39,43] |
27 | Poncirin | 15.1 | 593.1875 ([M + HCOO]− 639.1933) | 285.08, 270.05 | C28H34O14 | −0.13 | A, F, G | [43] |
Methoxyflavonoids | ||||||||
22 | Limocitrin O-3-hdroxy-3-methylglutaryl (HMG)- glucoside- | 12.0 | 651.1569 | 507.11, 345.06, 329.03 | A, B, E | [67] | ||
24 | Tetramethoxyflavonoid O-HMG-glucoside- | 12.2 | 681.1673 | 537.12, 375.07, 359.04, 345.02 | E | [67] | ||
Ciclopeptydes | ||||||||
26 | Citrusin III | 14.2 | 726.3830 ([M + HCOO]− 772.3892) | 696.37, 590.33, 119.05 | C36H53N7O9 | +0.28 | C, D, F, G | [72] |
Limonoids | ||||||||
23 | Nomilinic acid glucoside | 12.1 | 711.2872 | 651.27, 607.28, 370.36, 59.01 | C34H48O16 | +0.28 | A–H | [39] |
28 | Ichangin | 16.4 | 487.1978 ([M + HCOO]− 533.2028) | 469.19, 411.15, 381.21, 147.08 | C26H32O9 | +0.90 | F, G | [73] |
29 | Limonin | 16.9 | 469.1861 ([M + HCOO]− 515.1920) | 321.11, 229.12, 199.11 | C26H30O8 | +0.43 | A–H | [37,73] |
30 | Deacetyl nomilin/isobacunonic acid/limonol | 17.3 | 471.2021 ([M + HCOO]− 517.2078) | 471.20, 453.19, 429.19, 303.72 c | C26H32O8 | −0.72 | A, C, D, E, F, G, H | [62,73] |
31 | Nomilinic acid | 18.0 | 531.2233 | 471.20, 427.21, 369.17, 59.01 | C28H36O10 | −0.56 | A, B, C, E, F, G, H | [37,73] |
Amount (mg/100 g of Fresh Weight) | ||||||||
---|---|---|---|---|---|---|---|---|
Coctura Products | Peel | Pulp | ||||||
Peak | Mixed Citrus | Lemon | Orange | Mandarin | Lemon | Orange | Mandarin | Lemon |
Flavonoids | ||||||||
10 | 0.729 ± 0.024 | 1.08 ± 0.13 | 7.57 ± 0.62 | 7.60 ± 0.63 | 1.38 ± 0.126 | 3.15 ± 0.35 | 1.26 ± 0.15 | 3.68 ± 0.53 |
14 | 0.431 ± 0.019 | 1.10 ± 0.13 | 0.456 ± 0.019 | 2.79 ± 0.34 | nd | 0.00390 ± 0.0024 | 0.163 ± 0.021 | 4.15 ± 0.60 |
18 | 0.527 ± 0.0084 | 1.36 ± 0.16 | 0.794 ± 0.028 | 2.48 ± 0.20 | 2.17 ± 0.043 | nd | 0.293 ± 0.027 | 2.59 ± 0.043 |
19 | 0.876 ± 0.015 | 2.13 ± 0.24 | 1.01 ± 0.11 | 6.82 ± 0.64 | 2.08 ± 0.19 | nd | 0.587 ± 0.063 | 4.90 ± 0.095 |
17 | 5.08 ± 0.081 | 16.4 ± 1.74 | 0.610 ± 0.034 | 0.706 ± 0.074 | 35.4 ± 1.5 | 0.0590 ± 0.067 | 0.266 ± 0.024 | 53.5 ± 5.6 |
20 | 2.10 ± 0.070 | 0.482 ± 0.055 | 6.44 ± 0.052 | 20.6 ± 2.3 | 0.734 ± 0.023 | 63.7 ± 6.1 | 34.2 ± 4.1 | 7.79 ± 1.3 |
25 | 7.48 ± 0.23 | 6.40 ± 0.69 | 78.2 ± 3.1 | 96.6 ± 4.9 | 24.9 ± 1.4 | 41.5 ± 3.0 | 49.9 ± 4.0 | 91.1 ± 11 |
Total | 17.2 ± 0.45 | 28.9 ± 3.14 | 95.0 ± 4.4 | 138 ± 9.1 | 66.7 ± 3.4 | 109 ± 9.5 | 86.7 ± 8.4 | 168 ± 19 |
Limonoids | ||||||||
23 | 1.79 ± 0.048 | 3.30 ± 0.37 | 0.467 ± 0.023 | 0.18 ± 0.016 | 1.09 ± 0.094 | 0.193 ± 0.020 | 0.587 ± 0.066 | 4.27 ± 0.59 |
29 | 1.66 ± 0.043 | 2.60 ± 0.26 | 13.2 ± 0.062 | 14.0 ± 1.1 | 86.5 ± 4.2 | 15.7 ± 1.4 | 35.4 ± 3.4 | 17.3 ± 2.1 |
31 | 1.50 ± 0.32 | 2.95 ± 0.31 | 0.182 ± 0.0088 | nd | 11.1 ± 0.34 | 0.392 ± 0.044 | 5.29 ± 0.44 | 3.06 ± 0.42 |
Total | 4.95 ± 0.41 | 8.85 ± 0.94 | 13.9 ± 0.65 | 14.2 ± 1.1 | 98.6 ± 4.6 | 16.3 ± 1.4 | 41.3 ± 3.9 | 24.6 ± 3.1 |
Compounds | l.r.i. 1 | Class | Relative Abundance (%) ± Standard Deviation | |
---|---|---|---|---|
Mixed Citrus | Lemon | |||
α-Pinene | 933 | mh | 0.5 ± 0.07 | 0.6 ± 0.11 |
Camphene | 948 | mh | 0.1 ± 0.08 B | 0.3 ± 0.03 A |
β-Pinene | 977 | mh | 0.5 ± 0.15 | 0.8 ± 0.14 |
Myrcene | 991 | mh | 1.3 ± 0.09 | 1.2 ± 0.07 |
Octanal | 1003 | nt | 0.1 ± 0.03 A | - B |
α-Phellandrene | 1006 | mh | 0.1 ± 0.02 B | 0.2 ± 0.01 A |
1,4-Cineole | 1015 | om | - B | 0.2 ± 0.04 A |
α-Terpinene | 1017 | mh | 0.6 ± 0.08 | 0.5 ± 0.09 |
p-Cymene | 1025 | mh | 0.9 ± 0.22 | 1.1 ± 0.15 |
Limonene | 1029 | mh | 80.8 ± 1.76 A | 70.5 ± 3.29 B |
(E)-β-Ocimene | 1047 | mh | 0.2 ± 0.17 | 0.2 ± 0.02 |
γ-Terpinene | 1058 | mh | 10.4 ± 1.05 | 12.2 ± 0.66 |
Terpinolene | 1089 | mh | 1.4 ± 0.06 | 2.2 ± 0.35 |
Linalool | 1101 | om | 0.2 ± 0.03 | 0.3 ± 0.12 |
Nonanal | 1105 | nt | 0.1 ± 0.07 | 0.2 ± 0.08 |
Fenchol | 1114 | om | 0.2 ± 0.01 | 0.8 ± 0.33 |
Borneol | 1165 | om | - B | 0.3 ± 0.13 A |
4-Terpineol | 1177 | om | 0.7 ± 0.09 | 2.2 ± 0.92 |
α-Terpineol | 1191 | om | 1.7 ± 0.33 | 5.8 ± 2.35 |
Safranal | 1201 | ac | - B | 0.2 ± 0.07 A |
Monoterpene hydrocarbons (mh) | 96.9 ± 0.48 | 89.9 ± 4.11 | ||
Oxygenated monoterpenes (om) | 2.9 ± 0.47 | 9.7 ± 3.88 | ||
Apocarotenoids (ac) | - B | 0.2 ± 0.07 A | ||
Other non-terpene derivatives (nt) | 0.2 ± 0.10 | 0.2 ± 0.16 | ||
Total identified (%) | 100 ± 0.01 | 100 ± 0.02 |
Compounds | l.r.i. 1 | Class. | Relative Abundance (%) ± Standard Deviation | ||
---|---|---|---|---|---|
Lemon | Mandarin | Orange | |||
α-Thujene | 926 | mh | 0.7 ± 0.00 | 1.0 ± 0.15 | - |
α-Pinene | 933 | mh | 3.1 ± 0.11 | 2.3 ± 0.43 | 0.8 ± 0.03 |
Sabinene | 973 | mh | 3.3 ± 0.08 | 0.3 ± 0.04 | 2.2 ± 0.11 |
β-Pinene | 979 | mh | 14.8 ± 0.12 | 1.8 ± 0.27 | 0.2 ± 0.11 |
Myrcene | 991 | mh | 1.9 ± 0.11 | 1.8 ± 0.38 | 2.7 ± 0.05 |
Octanal | 1003 | nt | - | 0.6 ± 0.32 | - |
α-Phellandrene | 1006 | mh | 0.1 ± 0.01 | 0.1 ± 0.03 | - |
α-Terpinene | 1017 | mh | 0.7 ± 0.02 | 1.3 ± 0.03 | - |
p-Cymene | 1024 | mh | 0.2 ± 0.09 | 3.3 ± 0.60 | - |
Limonene | 1029 | mh | 60.6 ± 0.12 | 66.8 ± 2.29 | 93.3 ± 0.12 |
(E)-β-Ocimene | 1047 | mh | 0.2 ± 0.01 | - | - |
γ-Terpinene | 1058 | mh | 13.3 ± 0.01 | 18.9 ± 2.23 | 0.2 ± 0.17 |
Terpinolene | 1089 | mh | 0.8 ± 0.03 | 1.1 ± 0.15 | 0.2 ± 0.01 |
Linalool | 1101 | om | - | 0.2 ± 0.1 | 0.2 ± 0.02 |
4-Terpineol | 1177 | om | - | 0.1 ± 0.06 | - |
α-Terpineol | 1191 | om | - | 0.2 ± 0.12 | - |
β-Caryophyllene | 1419 | sh | 0.1 ± 0.01 | - | - |
Methyl N-methylanthranilate | 1408 | nt | - | 0.2 ± 0.16 | - |
trans-α-Bergamotene | 1436 | sh | 0.1 ± 0.01 | - | - |
Valencene | 1493 | sh | - | - | 0.2 ± 0.03 |
Monoterpene hydrocarbons (mh) | 99.8 ± 0.01 | 98.0 ± 0.87 | 99.6 ± 0.05 | ||
Oxygenated monoterpenes (om) | - | 0.7 ± 0.32 | 0.2 ± 0.02 | ||
Sesquiterpene hydrocarbons (sh) | 0.2 ± 0.02 | - | 0.2 ± 0.03 | ||
Other non-terpene derivatives (nt) | - | 1.3 ± 0.55 | - | ||
Total identified (%) | 100.0 ± 0.01 | 100.0 ± 0.01 | 100.0 ± 0.01 |
Sensorial Attributes | Mixed Citrus | Lemon |
---|---|---|
Colour | 7.84 ± 0.14 A | 5.53 ± 0.14 B |
Aroma | 6.40 ± 0.26 A | 5.64 ± 0.08 B |
Taste | 7.52 ± 0.10 A | 6.56 ± 0.14 B |
Flavour | 7.02 ± 0.25 A | 6.22 ± 0.12 B |
Texture | 6.33 ± 0.27 A | 5.54 ± 0.15 B |
Spreadability | 6.88 ± 0.30 A | 5.33 ± 0.20 B |
Overall acceptability | 7.42 ± 0.16 A | 6.18 ± 0.05 B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pieracci, Y.; Pistelli, L.; Cecchi, M.; Pistelli, L.; De Leo, M. Phytochemical Characterization of Citrus-Based Products Supporting Their Antioxidant Effect and Sensory Quality. Foods 2022, 11, 1550. https://doi.org/10.3390/foods11111550
Pieracci Y, Pistelli L, Cecchi M, Pistelli L, De Leo M. Phytochemical Characterization of Citrus-Based Products Supporting Their Antioxidant Effect and Sensory Quality. Foods. 2022; 11(11):1550. https://doi.org/10.3390/foods11111550
Chicago/Turabian StylePieracci, Ylenia, Laura Pistelli, Massimiliano Cecchi, Luisa Pistelli, and Marinella De Leo. 2022. "Phytochemical Characterization of Citrus-Based Products Supporting Their Antioxidant Effect and Sensory Quality" Foods 11, no. 11: 1550. https://doi.org/10.3390/foods11111550
APA StylePieracci, Y., Pistelli, L., Cecchi, M., Pistelli, L., & De Leo, M. (2022). Phytochemical Characterization of Citrus-Based Products Supporting Their Antioxidant Effect and Sensory Quality. Foods, 11(11), 1550. https://doi.org/10.3390/foods11111550