Lactose: Characteristics, Food and Drug-Related Applications, and Its Possible Substitutions in Meeting the Needs of People with Lactose Intolerance
Abstract
:1. Introduction
2. Physical and Chemical Characteristics of Lactose
3. Lactose in Food and Drug Industries
3.1. Lactose Uses in Food Industries
3.1.1. Sweetener
3.1.2. Browning Agent
3.1.3. Encapsulating Agent
3.1.4. Anti-Freezing Agent
3.1.5. Shelf-Life Extender
3.1.6. Fermentation Substrate
3.2. Lactose Uses in Pharmaceutical Formulations
3.3. Undesirable Properties of Lactose
3.3.1. Solubility
3.3.2. Stickiness and Caking
4. Negative Effects of Lactose on Health: Lactose Intolerance
5. Regulation on Lactose Labelling
5.1. Food and Supplements
5.2. Drugs
6. Development of LF Products
6.1. Substitution of Ingredients Containing Lactose
- -
- “Delactosed” ingredients: This group includes milk and dairy products subject to enzymatic treatment that breaks down lactose into glucose and galactose, which assures a LF final product under certain conditions.Lactase is the enzyme used by food manufacturing companies to produce milk-based LF products. This enzyme is widely found in nature and can be isolated from plants, yeasts, fungi, bacteria, and animals. The production of LF milk and its derivatives by the hydrolysis of lactose was developed in 1970, when the first β-galactosidase became commercially available [69].The use of soluble lactase for the production of LF milk can be effective using two different methods: “in batch”, with the addition of a relatively high amount of lactase to raw or heat-treated milk before an incubation of about 24 h [70], and “in pack or aseptic”, involving lactose hydrolysis also during product storage [71]. The quality of low-lactose milk is affected by the side proteolytic activity of the lactase used in the production process [72].
- -
- Naturally lactose-free (NLF) ingredients: This category identifies products, obtained from milk transformation, in which lactose is naturally reduced thanks to their typical manufacturing process. Cheeses are the main representative of this group and synergic factors work together to reduce lactose content. As reported in Facioni et al. (2021), some of the main parameters involved are the microbial composition of the starter culture, curd processing, and, lastly, ageing. The standardization of the cheese production process plays a crucial role in determining obtaining the same lactose residue among the final products of the process, and this also assures its reproducibility. PDO cheeses are the most suitable category of products that respect the above-mentioned requirement because they comply with technical specifications reporting agreed cheese production rules. It has been shown that, in specific cases, a NLF cheese is obtained within a few months from production. Despite this, it is crucial not only to study case-by-case situations, but also to perform analytical validation of the final product to assess residual lactose content, because of the variations allowed within the product specifications [73].
- -
- Ingredients not containing lactose: This group includes ingredients which do not contain lactose, nor milk or dairy products, because of their specific natural composition. Some examples are water, flour, vegetable oil, eggs, vegetables, meat, and fish, together with processed ingredients, mainly plant-based beverages such as those obtained from rice, soy, oats, coconuts, nuts, almonds, cashews, hemp, etc.
6.2. Substitution of Lactose as an Additive
6.2.1. Sweetener
6.2.2. Browning Agent
6.2.3. Encapsulating Agent
6.2.4. Anti-Freezing Agent
6.2.5. Shelf-Life Extender
6.2.6. Fermentation Substrate
6.3. Substitution of Lactose as a Drug Excipient
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Misselwitz, B.; Butter, M.; Verbeke, K.; Fox, M.R. Update on Lactose Malabsorption and Intolerance: Pathogenesis, Diagnosis and Clinical Management. Gut 2019, 68, 2080–2091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ségurel, L.; Bon, C. On the Evolution of Lactase Persistence in Humans. Annu. Rev. Genom. Hum. Genet 2017, 8, 297–319. [Google Scholar] [CrossRef] [PubMed]
- Facioni, M.S.; Raspini, B.; Pivari, F.; Dogliotti, E.; Cena, H. Nutritional Management of Lactose Intolerance: The Importance of Diet and Food Labelling. J. Transl. Med. 2020, 18, 260. [Google Scholar] [CrossRef] [PubMed]
- Fassio, F.; Facioni, M.S.; Guagnini, F. Lactose Maldigestion, Malabsorption, and Intolerance: A Comprehensive Review with a Focus on Current Management and Future Perspectives. Nutrients 2018, 10, 1599. [Google Scholar] [CrossRef] [Green Version]
- Schaafsma, G. Lactose and Lactose Derivatives as Bioactive Ingredients in Human Nutrition. Int. Dairy J. 2008, 18, 458–465. [Google Scholar] [CrossRef]
- Hodges, J.K.; Cao, S.; Cladis, D.P.; Weaver, C.M. Lactose Intolerance and Bone Health: The Challenge of Ensuring Adequate Calcium Intake. Nutrients 2019, 11, 718. [Google Scholar] [CrossRef] [Green Version]
- Baldan, A.; Tagliati, S.; Saccomandi, D.; Brusaferro, A.; Busoli, L.; Scala, A.; Malaventura, C.; Maggiore, G.; Borgna-Pignatti, C. Assessment of Lactose-Free Diet on the Phalangeal Bone Mineral Status in Italian Adolescents Affected by Adult-Type Hypolactasia. Nutrients 2018, 10, 558. [Google Scholar] [CrossRef] [Green Version]
- Storhaug, C.L.; Fosse, S.K.; Fadnes, L.T. Country, Regional, and Global Estimates for Lactose Malabsorption in Adults: A Systematic Review and Meta-Analysis. Lancet Gastroenterol. Hepatol. 2017, 2, 738–746. [Google Scholar] [CrossRef] [Green Version]
- Osservatorio Immagino, Decima Edizione 2 • 2021, GS1 Italy Servizi. Available online: https://servizi.gs1it.org/osservatori/osservatorio-immagino-10/ (accessed on 16 March 2022).
- Churakova, E.; Peri, K.; Vis, J.S.; Smith, D.W.; Beam, J.M.; Vijverberg, M.P.; Stor, M.C.; Winter, R.T. Accurate Analysis of Residual Lactose in Low-Lactose Milk: Comparing a Variety of Analytical Techniques. Int. Dairy J. 2019, 96, 126–131. [Google Scholar] [CrossRef]
- Sadovnikova, A.; Garcia, S.C.; Hovey, R.C. A Comparative Review of the Cell Biology, Biochemistry, and Genetics of Lactose Synthesis. J. Mammary Gland. Biol. Neoplasia 2021, 26, 181–196. [Google Scholar] [CrossRef] [PubMed]
- Ugidos-Rodríguez, S.; Matallana-González, M.C.; Sánchez-Mata, M.C. Lactose Malabsorption and Intolerance: A Review. Food Funct. 2018, 9, 4056–4068. [Google Scholar] [CrossRef] [PubMed]
- Muehlhoff, E.; Bennett, A.; McMahon, D. Milk and Dairy Products in Human Nutrition; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; ISBN 9789251078631. [Google Scholar]
- Johnson, J.M.; Conforti, F.D. Lactose; Encyclopedia of Food Sciences and Nutrition; Academic Press Johns Hopkins University: Baltimore, MD, USA, 2003; pp. 3472–3476. [Google Scholar] [CrossRef]
- Illanes, A.; Guerrero, C.; Wilson, L.; Conejeros, R.; Scott, F. Lactose: Production and Upgrading. In Lactose-Derived Prebiotics; A Process Perspective; Elsevier Academic Press: Cambridge, MA, USA, 2016; pp. 1–33. [Google Scholar] [CrossRef]
- Huppertz, T.; Gazi, I. Lactose in Dairy Ingredients: Effect on Processing and Storage Stability. J. Dairy Sci. 2016, 99, 6842–6851. [Google Scholar] [CrossRef] [PubMed]
- Portnoy, M.; Barbano, D.M. Lactose: Use, Measurement, and Expression of Results. J. Dairy Sci. 2021, 104, 8314–8325. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Yin, Q.; Xie, Q.; Smith, E.E.; Zhao, X.; Li, B.; Huo, G. Elucidating the physicochemical properties and surface composition of goat milk-based infant formula powders. Food Chem. 2022, 377, 131936. [Google Scholar] [CrossRef] [PubMed]
- Fox, P.F. Lactose: Chemistry and Properties. Adv. Dairy Chem. 2009, 3, 1–15. [Google Scholar] [CrossRef]
- Paterson, A.H.J. Production and Uses of Lactose. Adv. Dairy Chem. 2009, 3, 105–120. [Google Scholar] [CrossRef]
- Yang, S.T.; Silva, E.M. Novel Products and New Technologies for Use of a Familiar Carbohydrate, Milk Lactose. J. Dairy Sci. 1995, 78, 2541–2562. [Google Scholar] [CrossRef]
- CLAL—Lattosio, USA. Available online: https://www.clal.it/?section=lattosio (accessed on 17 March 2022).
- Nickerson, T.A. Use of Milk Derivative, Lactose, in Other Foods. J. Dairy Sci. 1976, 59, 581–587. [Google Scholar] [CrossRef]
- Belitz, H.D.; Grosch, W.; Schieberle, P. Food Chemistry; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 9783540699330. [Google Scholar]
- Eadala, P.; Waud, J.P.; Matthews, S.B.; Green, J.T.; Campbell, A.K. Quantifying the “hidden” Lactose in Drugs Used for the Treatment of Gastrointestinal Conditions. Aliment. Pharmacol. Ther. 2009, 29, 677–687. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.; Metzger, L.E.; Martínez-Monteagudo, S.I. One-Pot Synthesis of Sweetening Syrup from Lactose. Sci. Rep. 2020, 10, 2730. [Google Scholar] [CrossRef]
- Seoane, R.G.; Garcia-Recio, V.; Garrosa, M.; Rojo, M.Á.; Jiménez, P.; Girbés, T.; Cordoba-Diaz, M.; Cordoba-Diaz, D. Human Health Effects of Lactose Consumption as a Food and Drug Ingredient. Curr. Pharm. Des. 2020, 26, 1778–1789. [Google Scholar] [CrossRef] [PubMed]
- Baltes, W. Chemical changes in food by the maillard reaction. Food Chem. 1982, 9, 59–73. [Google Scholar] [CrossRef]
- Chandan, R.C.; Kilara, A. Dairy Ingredients for Food Processing; Wiley-Blackwell: Ames, IA, USA, 2011; ISBN 9780813817460. [Google Scholar]
- Risch, S.J.; Reineccius, G.A. Encapsulation and Controlled Release of Food Ingredients. Am. Chem. Soc. 1995, 590, 55. [Google Scholar] [CrossRef]
- McSweeney, P.L.H.; Fox, P.F. Advanced Dairy Chemistry; Springer: Boston, MA, USA, 2009; Volume 3, pp. 1–778. [Google Scholar] [CrossRef]
- Guimarães, D.; Noro, J.; Silva, C.; Cavaco-Paulo, A.; Nogueira, E. Protective Effect of Saccharides on Freeze-Dried Liposomes Encapsulating Drugs. Front. Bioeng. Biotechnol. 2019, 7, 424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vega, C.; Roos, Y.H. Invited Review: Spray-Dried Dairy and Dairy-like Emulsions—Compositional Considerations. J. Dairy Sci. 2006, 89, 383–401. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Zhang, D.; Dong, W.; Luo, Z.; Kang, C.; Li, H.; Wang, G.; Gong, J. Amorphous and Humidity Caking: A Review. Chin. J. Chem. Eng. 2019, 27, 1429–1438. [Google Scholar] [CrossRef]
- Zdrojewicz, Z.; Zyskowska, K.; Wasiuk, S. Lactose in Drugs and Lactose Intolerance—Realities and Myths. Pediatr. I Med. Rodz. 2018, 14, 261–266. [Google Scholar] [CrossRef]
- Melini, V.; Melini, F. Strategies to Extend Bread and GF Bread Shelf-Life: From Sourdough to Antimicrobial Active Packaging and Nanotechnology. Fermentation 2018, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Taglieri, I.; Macaluso, M.; Bianchi, A.; Sanmartin, C.; Quartacci, M.F.; Zinnai, A.; Venturi, F. Overcoming Bread Quality Decay Concerns: Main Issues for Bread Shelf Life as a Function of Biological Leavening Agents and Different Extra Ingredients Used in Formulation. A Review. J. Sci. Food Agric. 2021, 101, 1732–1743. [Google Scholar] [CrossRef]
- Jessen, B. Starter Cultures for Meat Fermentations. In Fermented Meats; Springer: Boston, MA, USA, 1995; pp. 130–159. [Google Scholar] [CrossRef]
- Nagaoka, S. Yogurt Production. Methods Mol. Biol. 2019, 1887, 45–54. [Google Scholar] [CrossRef]
- Garcia-Orue, I.; Santos-Vizcaino, E.; Etxabide, A.; Uranga, J.; Bayat, A.; Guerrero, P.; Igartua, M.; de la Caba, K.; Hernandez, R.M. Development of Bioinspired Gelatin and Gelatin/Chitosan Bilayer Hydrofilms for Wound Healing. Pharmaceutics 2019, 11, 314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Stefano, M. Il Malassorbimento e L’intolleranza al Lattosio Fisiopatologia, Diagnosi e Approccio Terapeutico. Available online: https://www.simg.it/Riviste/rivista_simg/2012/05_2012/10.pdf (accessed on 16 March 2022).
- Dossier Scientifico Delle Linee Guida per Una Sana Alimentazione (Edizione 2018)—Dossier Scientifico Delle Linee Guida per Una Sana Alimentazione (Edizione 2018)—Alimenti e Nutrizione—CREA. Available online: https://www.crea.gov.it/web/alimenti-e-nutrizione/-/dossier-scientifico-linee-guida-per-una-sana-alimentazione-2018 (accessed on 16 March 2022).
- Batista, R.A.B.; Assunção, D.C.B.; de Penaforte, F.R.O.; Japur, C.C. Lactose in Processed Foods: Evaluating the Availability of Information Regarding Its Amount. Cienc. Saude Coletiva 2018, 23, 4119–4128. [Google Scholar] [CrossRef] [PubMed]
- Zarmpi, P.; Flanagan, T.; Meehan, E.; Mann, J.; Fotaki, N. Biopharmaceutical Aspects and Implications of Excipient Variability in Drug Product Performance. Eur. J. Pharm. Biopharm. 2017, 111, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Du, P.; Du, J.; Smyth, H.D.C. Evaluation of Granulated Lactose as a Carrier for Dry Powder Inhaler Formulations 2: Effect of Drugs and Drug Loading. J. Pharm. Sci. 2017, 106, 366–376. [Google Scholar] [CrossRef] [Green Version]
- Du, P.; Du, J.; Smyth, H.D.C. Evaluation of Granulated Lactose as a Carrier for DPI Formulations 1: Effect of Granule Size. Ageing Int. 2014, 15, 1417–1428. [Google Scholar] [CrossRef] [Green Version]
- Polveri Inalatorie per L’asma e “Allergia” al Lattosio—Informazioni Sui Farmaci. Available online: https://www.informazionisuifarmaci.it/polveri-inalatorie-per-lasma-e-allergia-al-lattosio-1221 (accessed on 17 March 2022).
- Pui, L.P.; Karim, R.; Yusof, Y.A.; Wong, C.W.; Ghazali, H.M. Anti-Caking Agent Effects on the Properties of Spray-Dried ‘Cempedak’ Fruit Powder. Pertanika J. Trop. Agric. Sci. 2020, 43, 621–635. [Google Scholar] [CrossRef]
- Anguita-Ruiz, A.; Aguilera, C.M.; Gil, Á. Genetics of Lactose Intolerance: An Updated Review and Online Interactive World Maps of Phenotype and Genotype Frequencies. Nutrients 2020, 12, 2689. [Google Scholar] [CrossRef]
- Enattah, N.S.; Sahi, T.; Savilahti, E.; Terwilliger, J.D.; Peltonen, L.; Järvelä, I. Identification of a Variant Associated with Adult-Type Hypolactasia. Nat. Genet. 2002, 30, 233–237. [Google Scholar] [CrossRef]
- Casellas, F.; Aparici, A.; Pérez, M.J.; Rodríguez, P. Perception of Lactose Intolerance Impairs Health-Related Quality of Life. Eur. J. Clin. Nutr. 2016, 70, 1068–1072. [Google Scholar] [CrossRef]
- EUR-Lex—32011R1169—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32011R1169 (accessed on 17 March 2022).
- EUR-Lex—32013R0609—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/eli/reg/2013/609/oj (accessed on 17 March 2022).
- EUR-Lex—32016R0127—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/IT/ALL/?uri=CELEX:32016R0127 (accessed on 17 March 2022).
- EUR-Lex—32011R1169—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/eli/reg/2011/1169/oj (accessed on 17 March 2022).
- Regolamento (UE) n. 1169/2011. Ministero Della Salute Direzione Generale Igiene E Sicurezza Alimenti E Nutrizione Ufficio Iv Ex DGSAN. Available online: https://eur--lex-europa-eu.translate.goog/legal-content/EN/TXT/?uri=CELEX:02011R1169-20180101&_x_tr_sl=en&_x_tr_tl=it&_x_tr_hl=it&_x_tr_pto=sc (accessed on 16 March 2022).
- 8-Circolare Ministero Della Salute Giugno 2016—Estratti e Titolazioni. Available online: https://www.agrar.it/upload/documenti/8-Circolare%20Ministero%20della%20Salute%20Giugno%202016%20-%20Estratti%20e%20titolazioni.pdf (accessed on 16 March 2022).
- European Food Safety Authority. Scientific Opinion on Lactose Thresholds in Lactose Intolerance and Galactosaemia. EFSA J. 2010, 8, 1777. [Google Scholar] [CrossRef]
- Martínez, A.; Zazpe García, I.; Cuervo Zapatel, M.; Garaulet Aza, M.; Marcos, A.; Luis Santos, J.; Salas, J.; Moize Arcone Grupo Hospitalario Quirón, V.; María Garriga García, E.; Ros Rahola, E.; et al. Spanish Journal of Human Nutrition and Dietetics COMITÉ EDITORIAL CONSEJO EDITORIAL EJECUTIVO Nutrición Básica y Aplicada: Cultura Alimentaria, Sociología, Antropología de La Alimentación y Psicología. Available online: https://www.aesan.gob.es/AECOSAN/docs/documentos/seguridad_alimentaria/interpretaciones/nutricionales/sin_lactosa.pdf (accessed on 16 March 2022).
- Goodman, S.; Vanderlee, L.; Acton, R.; Mahamad, S.; Hammond, D. The Impact of Front-of-Package Label Design on Consumer Understanding of Nutrient Amounts. Nutrients 2018, 10, 1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ursino, M.G.; Poluzzi, E.; Caramella, C.; de Ponti, F. Excipients in Medicinal Products Used in Gastroenterology as a Possible Cause of Side Effects. Regul. Toxicol. Pharmacol. 2011, 60, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Annex to the European Commission Guideline on “Excipients in the Labelling and Package Leaflet of Medicinal Products for Human Use” (SANTE-2017-11668) Excipients and Information for the Package Leaflet Agreed by CHMP Excipients Drafting Group Adopted by EMA Committee for Medicinal Products for Human Use (CHMP). Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/annex-european-commission-guideline-excipients-labelling-package-leaflet-medicinal-products-human_en.pdf (accessed on 15 March 2022).
- Wilson, J.L.; Cheung, K.W.K.; Lin, L.; Green, E.A.E.; Porras, A.I.; Zou, L.; Mukanga, D.; Akpa, P.A.; Darko, D.M.; Yuan, R.; et al. Scientific Considerations for Global Drug Development. Sci. Transl. Med. 2020, 12, eaax2550. [Google Scholar] [CrossRef]
- Elder, D.P.; Kuentz, M.; Holm, R. Pharmaceutical Excipients—Quality, Regulatory and Biopharmaceutical Considerations. Eur. J. Pharm. Sci. 2016, 87, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Kubbinga, M.; Moghani, L.; Langguth, P. Novel Insights into Excipient Effects on the Biopharmaceutics of APIs from Different BCS Classes: Lactose in Solid Oral Dosage Forms. Eur. J. Pharm. Sci. 2014, 61, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Suri, S.; Kumar, V.; Prasad, R.; Tanwar, B.; Goyal, A.; Kaur, S.; Gat, Y.; Kumar, A.; Kaur, J.; Singh, D. Considerations for Development of Lactose-Free Food. J. Nutr. Intermed. Metab. 2019, 15, 27–34. [Google Scholar] [CrossRef]
- Silva, A.R.A.; Silva, M.M.N.; Ribeiro, B.D. Health Issues and Technological Aspects of Plant-Based Alternative Milk. Food Res. Int. 2020, 131, 108972. [Google Scholar] [CrossRef]
- Rasika, D.M.; Vidanarachchi, J.K.; Rocha, R.S.; Balthazar, C.F.; Cruz, A.G.; Sant’Ana, A.S.; Ranadheera, C.S. Plant-Based Milk Substitutes as Emerging Probiotic Carriers. Curr. Opin. Food Sci. 2021, 38, 8–20. [Google Scholar] [CrossRef]
- Harju, M.; Kallioinen, H.; Tossavainen, O. Lactose Hydrolysis and Other Conversions in Dairy Products: Technological Aspects. Int. Dairy J. 2012, 22, 104–109. [Google Scholar] [CrossRef]
- Dekker, P.J.T.; Koenders, D.; Bruins, M.J. Lactose-Free Dairy Products: Market Developments, Production, Nutrition and Health Benefits. Nutrients 2019, 11, 551. [Google Scholar] [CrossRef] [Green Version]
- Troise, A.D.; Bandini, E.; de Donno, R.; Meijer, G.; Trezzi, M.; Fogliano, V. The Quality of Low Lactose Milk Is Affected by the Side Proteolytic Activity of the Lactase Used in the Production Process. Food Res. Int. 2016, 89, 514–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hettinga, K.A. Lactose in the Dairy Production Chain. In Lactose: Evolutionary Role, Health Effects, and Applications; Academic Press: Cambridge, MA, USA, 2019; pp. 231–266. [Google Scholar] [CrossRef]
- Facioni, M.S.; Dominici, S.; Marescotti, F.; Covucci, R.; Taglieri, I.; Venturi, F.; Zinnai, A. Lactose Residual Content in Pdo Cheeses: Novel Inclusions for Consumers with Lactose Intolerance. Foods 2021, 10, 2236. [Google Scholar] [CrossRef] [PubMed]
- Carocho, M.; Morales, P.; Ferreira, I.C.F.R. Sweeteners as Food Additives in the XXI Century: A Review of What Is Known, and What Is to Come. Food Chem. Toxicol. 2017, 107, 302–317. [Google Scholar] [CrossRef] [PubMed]
- de Medeiros, A.C.; Filho, E.R.T.; Bolini, H.M.A. Impact of Natural and Artificial Sweeteners Compounds in the Sensory Profile and Preference Drivers Applied to Traditional, Lactose-Free, and Vegan Frozen Desserts of Chocolate Flavor. J. Food Sci. 2019, 84, 2973–2982. [Google Scholar] [CrossRef]
- Laroque, D.; Inisan, C.; Berger, C.; Vouland, É.; Dufossé, L.; Guérard, F. Kinetic Study on the Maillard Reaction. Consideration of Sugar Reactivity. Food Chem. 2008, 111, 1032–1042. [Google Scholar] [CrossRef]
- Onwulata, C.; Smith, P.W.; Craig, J.C.; Holsinger, V.H. Physical Properties of Encapsulated Spray-Dried Milkfat. J. Food Sci. 1994, 59, 316–320. [Google Scholar] [CrossRef]
- Vignolles, M.L.; Lopez, C.; Madec, M.N.; Ehrhardt, J.J.; Mejean, S.; Schuck, P.; Jeantet, R. Protein-Lactose Matrix Effects on Fat Encapsulation during the Overall Spray-Drying Process of Dairy Powders | Request PDF. Available online: https://www.researchgate.net/publication/281355658_Protein-lactose_matrix_effects_on_fat_encapsulation_during_the_overall_spray-drying_process_of_dairy_powders (accessed on 17 March 2022).
- Esaulko, N.A.; Romanenko, E.S.; Selivanova, M.V.; Mironova, E.A.; Aisanov, T.S.; Miltiusov, V.E.; German, M.S. Quality Improvement and Shelf Life Extension of Functional Bakery Products with the Use of Stevia. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Purwokerto, Indonesia, 21–23 August 2019; Institute of Physics Publishing: Bristol, UK, 2019; Volume 315. [Google Scholar]
- Acton, J.C.; Dick, R.L.; Norris, E.L. Utilization of Various Carbohydrates in Fermented Sausage. J. Food Sci. 2006, 42, 174–178. [Google Scholar] [CrossRef]
INDUSTRY USE | |||||||
---|---|---|---|---|---|---|---|
Food | Drug | ||||||
Positive Effects | References | Negative Effects | References | Positive Effects | References | Negative Effects | References |
Sweetener | [14,23] | Solubility | [21,23,24] | Inert | [25,26,27] | Health-related effects | [25] |
Browning agent | [14,21,23,28,29] | Stickiness | [30,31,32] | Stable | [25,26,27] | ||
Encapsulating agent | [14,28,33] | Caking | [33,34] | Non-toxic | [26,27] | ||
Anti-freezing agent | [31] | Diluent | [35] | ||||
Shelf-life extender | [14,36,37] | Flowable | [25,35] | ||||
Fermentation substrate | [23,38,39] | Compressible | [25,35] | ||||
Excellent rheological properties | [25,35] | ||||||
Cryo-lipoprotector | [32] | ||||||
Cross-linker | [40] |
HEALTH-RELATED EFFECTS | ||||
---|---|---|---|---|
Positive Effects | References | Negative Effects | References | |
4 Kcal | [5] | Gastrointestinal symptoms | Abdominal distention | [3,41] |
Calcium absorption | [6,7] | Constipation | [3,41] | |
Health of bones | [6,7] | Diarrhea | [3,41] | |
Low glycemic index | [5] | Nausea | [3] | |
Low cariogenicity | [5] | Meteorism | [41] | |
Flatulence | [41] | |||
Extraintestinal symptoms | Skin rashes | [3] | ||
Headache | [3] | |||
Increased urination | [3] | |||
Joint and/or muscle pain | [3] | |||
Heart palpitations | [3] | |||
Mouth ulcers | [3] |
SUGAR | SWEETENING POWER Compared to Sucrose (=1) |
---|---|
Advantame | 37,000 |
Neohesperidin | 1500–2000 |
Aspartame | 200 |
Fructose | 1.1–1.15 |
Sucrose | 1 |
Glucose | 0.75 |
Mannitol | 0.6 |
Sorbitol | 0.6 |
Isomaltose | 0.55 |
Maltose | 0.4 |
Lactose | 0.2–0.4 |
Lactitol | 0.35 |
Galactose | 0.3 |
Raffinose | 0.2 |
RAW MATERIALS Contening Lactose | POSSIBLE ALTERNATIVES |
---|---|
Milk | Lactose-free milk Vegetable drink (soy, rice, spelt, almond, coconut, oats, etc.) Water Lactose-free yogurt |
Butter | Butteroil Lactose-free butter Ghee Vegetable butter (cocoa, shea) Vegetable oil (olive, sunflower, corn, safflower, etc.) Margarine 100% vegetable Vegetable cream |
Dried milk | Lactose-free dried milk Vegetable dried milk |
Cheese | Naturally lactose-free cheeses “Delactosed” cheeses Plant-based alternatives |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dominici, S.; Marescotti, F.; Sanmartin, C.; Macaluso, M.; Taglieri, I.; Venturi, F.; Zinnai, A.; Facioni, M.S. Lactose: Characteristics, Food and Drug-Related Applications, and Its Possible Substitutions in Meeting the Needs of People with Lactose Intolerance. Foods 2022, 11, 1486. https://doi.org/10.3390/foods11101486
Dominici S, Marescotti F, Sanmartin C, Macaluso M, Taglieri I, Venturi F, Zinnai A, Facioni MS. Lactose: Characteristics, Food and Drug-Related Applications, and Its Possible Substitutions in Meeting the Needs of People with Lactose Intolerance. Foods. 2022; 11(10):1486. https://doi.org/10.3390/foods11101486
Chicago/Turabian StyleDominici, Simona, Francesca Marescotti, Chiara Sanmartin, Monica Macaluso, Isabella Taglieri, Francesca Venturi, Angela Zinnai, and Maria Sole Facioni. 2022. "Lactose: Characteristics, Food and Drug-Related Applications, and Its Possible Substitutions in Meeting the Needs of People with Lactose Intolerance" Foods 11, no. 10: 1486. https://doi.org/10.3390/foods11101486
APA StyleDominici, S., Marescotti, F., Sanmartin, C., Macaluso, M., Taglieri, I., Venturi, F., Zinnai, A., & Facioni, M. S. (2022). Lactose: Characteristics, Food and Drug-Related Applications, and Its Possible Substitutions in Meeting the Needs of People with Lactose Intolerance. Foods, 11(10), 1486. https://doi.org/10.3390/foods11101486