Foam Structure Preservation during Microwave-Assisted Vacuum Drying: Significance of Interfacial and Dielectric Properties of the Bulk Phase of Foams from Polysorbate 80–Maltodextrin Dispersions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Preparation of Sample Dispersions
2.2. Surface Tension and Surface Dilatational Properties of the Bulk Phase
2.3. Dielectric Properties of the Bulk Phase
2.4. Foam Preparation
2.5. Foam Drying and Product Characterization
3. Results and Discussion
3.1. Foam Drying
3.2. Surface Tension and Surface Dilatational Properties of the Bulk Phase
3.3. Dielectric Properties of the Bulk Phase
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ambros, S.; Bauer, S.A.W.; Shylkina, L.; Foerst, P.; Kulozik, U. Microwave-Vacuum Drying of Lactic Acid Bacteria: Influence of Process Parameters on Survival and Acidification Activity. Food Bioprocess Technol. 2016, 9, 1901–1911. [Google Scholar] [CrossRef]
- Bauer, S.A.W.; Schneider, S.; Behr, J.; Kulozik, U.; Foerst, P. Combined influence of fermentation and drying conditions on survival and metabolic activity of starter and probiotic cultures after low-temperature vacuum drying. J. Biotechnol. 2012, 159, 351–357. [Google Scholar] [CrossRef]
- de Jesus, S.S.; Filho, R.M. Optimizing Drying Conditions for the Microwave Vacuum Drying of Enzymes. Dry Technol. 2011, 29, 1828–1835. [Google Scholar] [CrossRef]
- McLoughlin, C.M.; McMinn, W.A.M.; Magee, T.R.A. Microwave-Vacuum Drying of Pharmaceutical Powders. Dry. Technol. 2003, 21, 1719–1733. [Google Scholar] [CrossRef]
- Gehrmann, D.; Esper, G.J.; Schuchmann, H. Trocknungstechnik in der Lebensmittelindustrie, 1st ed.; Behr: Hamburg, Germany, 2009. [Google Scholar]
- Santivarangkna, C.; Wenning, M.; Foerst, P.; Kulozik, U. Damage of cell envelope of Lactobacillus helveticus during vacuum drying. J. Appl. Microbiol. 2007, 102, 748–756. [Google Scholar] [CrossRef]
- Foerst, P.; Kulozik, U.; Schmitt, M.; Bauer, S.; Santivarangkna, C. Storage stability of vacuum-dried probiotic bacterium Lactobacillus paracasei F19. Food Bioprod. Process. 2012, 90, 295–300. [Google Scholar] [CrossRef]
- Ambros, S.; Dombrowski, J.; Boettger, D.; Kulozik, U. The Concept of Microwave Foam Drying Under Vacuum: A Gentle Preservation Method for Sensitive Biological Material. J. Food Sci. 2019, 84, 1682–1691. [Google Scholar] [CrossRef]
- Ambros, S.; Dombrowski, J.; Boettger, D.; Kulozik, U. Structure-Function-Process Relationship for Microwave Vacuum Drying of Lactic Acid Bacteria in Aerated Matrices. Food Bioprocess Technol. 2019, 12, 395–408. [Google Scholar] [CrossRef]
- Rajkumar, P.; Kailappan, R.; Viswanathan, R.; Raghavan, G.S.V. Drying characteristics of foamed alphonso mango pulp in a continuous type foam mat dryer. J. Food Eng. 2007, 79, 1452–1459. [Google Scholar] [CrossRef]
- Ratti, C.; Kudra, T. Drying of Foamed Biological Materials: Opportunities and Challenges. Dry. Technol. 2006, 24, 1101–1108. [Google Scholar] [CrossRef]
- Sankat, C.K.; Castaigne, F. Foaming and drying behaviour of ripe bananas. LWT 2004, 37, 517–525. [Google Scholar] [CrossRef]
- Patino, J.M.R.; Sánchez, C.C.; Niño, M.R.R. Implications of interfacial characteristics of food foaming agents in foam formulations. Adv. Colloid Interface Sci. 2008, 140, 95–113. [Google Scholar] [CrossRef]
- Georgieva, D.; Cagna, A.; Langevin, D. Link between surface elasticity and foam stability. Soft Matter 2009, 5, 2063–2071. [Google Scholar] [CrossRef]
- Guo, W.; Zhu, X. Dielectric Properties of Red Pepper Powder Related to Radiofrequency and Microwave Drying. Food Bioprocess Technol. 2014, 7, 3591–3601. [Google Scholar] [CrossRef]
- Jaya, S.; Das, H. Effect of maltodextrin, glycerol monostearate and tricalcium phosphate on vacuum dried mango powder properties. J. Food Eng. 2004, 63, 125–134. [Google Scholar] [CrossRef]
- Jaya, S.; Das, H.; Mani, S. Optimization of Maltodextrin and Tricalcium Phosphate for Producing Vacuum Dried Mango Powder. Int. J. Food Prop. 2006, 9, 13–24. [Google Scholar] [CrossRef]
- Kubbutat, P.; Kulozik, U.; Dombrowski, J. Foam structure preservation during microwave-assisted vacuum drying: Significance of interfacial and dielectric properties of the bulk phase of the bulk phase of foams from whey protein isolate/maltodextrin dispersions. J. Food Eng. 2021, 110691. [Google Scholar] [CrossRef]
- Lucasson, J.; van den Tempel, M. Dynamic measurements of dilational properties of a liquid interface. Chem. Eng. Sci. 1972, 27, 1283–1291. [Google Scholar] [CrossRef]
- Conde, J.M.; Patino, J.M.R. Rheological Properties of Hydrolysates of Proteins from Extracted Sunflower Flour Adsorbed at the Air−Water Interface. Ind. Eng. Chem. Res. 2005, 44, 7761–7769. [Google Scholar] [CrossRef]
- Pueschner GmbH & Co. KG, Dielectric Measurement Kit µWaveAnalyser: Short Technical Notes. 2008. Available online: https://www.pueschner.com/downloads/product-news/werb_mwmess_techDaten_en.pdf (accessed on 9 April 2020).
- Bart, J.C.J. Additives in Polymers: Industrial Analysis and Applications; John Wiley & Sons Ltd.: Chichester, UK, 2005. [Google Scholar]
- Adrian, R.; Patryk, W. Influence of water on the dielectric properties, electrical conductivity and microwave absorption properties of amorphous yellow dextrin. Cellulose 2019, 26, 2987–2998. [Google Scholar]
- Kubbutat, P.; Kulozik, U. Interactions of Sugar Alcohol, Di-Saccharides and Polysaccharides with Polysorbate 80 as Surfactant in the Stabilization of Foams. Colloids Surf. A Physicochem. Eng. Asp. 2021, 616, 126349. [Google Scholar] [CrossRef]
- Jangle, R.D.; Pisal, S.S. Vacuum Foam Drying: An Alternative to Lyophilization for Biomolecule Preservation. Indian J. Pharm. Sci. 2012, 74, 91–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marinova, K.G.; Basheva, E.S.; Nenova, B.; Temelska, M.; Mirarefi, A.Y.; Campbell, B.; Ivanov, I.B. Physico-chemical factors controlling the foamability and foam stability of milk proteins: Sodium caseinate and whey protein concentrates. Food Hydrocoll. 2009, 23, 1864–1876. [Google Scholar] [CrossRef]
- Shogren, R.; Biresaw, G. Surface properties of water soluble maltodextrin, starch acetates and starch acetates/alkenylsuccinates. Colloids Surf. A 2007, 298, 170–176. [Google Scholar] [CrossRef]
- Pycia, K.; Juszczak, L.; Gałkowska, D.; Socha, R.; Jaworska, G. Maltodextrins from chemically modified starches. Production and characteristics. Starch Stärke 2017, 69, 1600199. [Google Scholar] [CrossRef]
- Semenova, M.G.; Belyakova, L.E.; Antipova, A.S.; Polikarpov, Y.N.; Klouda, L.; Markovic, A.; Il’in, M.M. Effect of maltodextrins on the surface activity of small-molecule surfactants. Colloids Surf. B 2003, 31, 47–54. [Google Scholar] [CrossRef]
- Baeza, R.; Pilosof, A.M.R.; Sanchez, C.C.; Patino, J.M.R. Adsorption and rheological properties of biopolymers at the air-water interface. AIChE J. 2006, 52, 2627–2638. [Google Scholar] [CrossRef]
- Roebuck, B.D.; Goldblith, S.A. Dielectric Properties of Carbohydrate-Waser Mixtures at Microwave Frequencies. J. Food Sci. 1972, 37, 199–202. [Google Scholar] [CrossRef]
- Haggis, G.H.; Hasted, J.B.; Buchanan, T.J. The Dielectric Properties of Water in Solutions. J. Chem. Phys. 1952, 20, 1452–1465. [Google Scholar] [CrossRef]
- Zhang, X.; Ruan, C.; Haq, T.U.; Chen, K. High-Sensitivity Microwave Sensor for Liquid Characterization Using a Complementary Circular Spiral Resonator. Sensors 2019, 19, 787. [Google Scholar] [CrossRef] [Green Version]
- Epstein, B.R.; Foster, K.R.; Mackay, R.A. Microwave dielectric properties of ionic and nonionic microemulsions. J. Colloid Interface Sci. 1983, 95, 218–227. [Google Scholar] [CrossRef]
c(MD), % | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 |
---|---|---|---|---|---|---|---|---|---|
tan(φ), - | 0.20 | 0.24 | 0.45 | 0.46 | 0.53 | 0.50 | 0.48 | 0.40 | 0.28 |
c(MD), % | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 |
---|---|---|---|---|---|---|---|---|---|
tan(δ), - | 0.12 | 0.13 | 0.14 | 0.16 | 0.17 | 0.20 | 0.22 | 0.23 | 0.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubbutat, P.; Kulozik, U.; Dombrowski, J. Foam Structure Preservation during Microwave-Assisted Vacuum Drying: Significance of Interfacial and Dielectric Properties of the Bulk Phase of Foams from Polysorbate 80–Maltodextrin Dispersions. Foods 2021, 10, 1163. https://doi.org/10.3390/foods10061163
Kubbutat P, Kulozik U, Dombrowski J. Foam Structure Preservation during Microwave-Assisted Vacuum Drying: Significance of Interfacial and Dielectric Properties of the Bulk Phase of Foams from Polysorbate 80–Maltodextrin Dispersions. Foods. 2021; 10(6):1163. https://doi.org/10.3390/foods10061163
Chicago/Turabian StyleKubbutat, Peter, Ulrich Kulozik, and Jannika Dombrowski. 2021. "Foam Structure Preservation during Microwave-Assisted Vacuum Drying: Significance of Interfacial and Dielectric Properties of the Bulk Phase of Foams from Polysorbate 80–Maltodextrin Dispersions" Foods 10, no. 6: 1163. https://doi.org/10.3390/foods10061163
APA StyleKubbutat, P., Kulozik, U., & Dombrowski, J. (2021). Foam Structure Preservation during Microwave-Assisted Vacuum Drying: Significance of Interfacial and Dielectric Properties of the Bulk Phase of Foams from Polysorbate 80–Maltodextrin Dispersions. Foods, 10(6), 1163. https://doi.org/10.3390/foods10061163