European Database of Carotenoid Levels in Foods. Factors Affecting Carotenoid Content
Abstract
:1. Introduction
2. Material and Methods
2.1. Data Collection
2.2. Data Quality Assessment
3. Results and Discussion
3.1. Data Collection
- –
- Carrot, spinach, goosefoot, peppers (red) and sheep sorrel for β-carotene.
- –
- Spinach, goosefoot, sheep sorrel, Indian spinach and amaranth for lutein.
- –
- Peppers (red), apricot, sarsaparilla, tamarillo and mandarin for β-cryptoxanthin.
- –
- Peppers (red), goosefoot, duckweed, goji berries and maize for zeaxanthin.
- –
- Carrot, pumpkin, carrot greens, cowpea and Ceylon spinach for α-carotene.
- –
- Tomato, rosehip, ketchup, watermelon and tomato sauce for lycopene.
3.2. Data Quality Index
3.2.1. Factors Affecting the Level of Carotenoids
3.2.2. Factors Related to the Plant
Genetic Factors
Ripening
Part of the Tissue
Location of the Fruit in the Plant
3.2.3. Ambient Factors
Light Quality
Light Quantity
Climate, Season and Geographic Site of Production
3.2.4. Agronomic Practices
Salinity Stress
Water Deficit
Use of Agrochemicals
3.3. Post-Harvest Treatments, Industrial Processing, Cooking and Storage Conditions
4. Conclusions and Research Needs
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
Food Name | Scientific Name | Origin (Country) | Purchase (Country) | Water (%) | Part Analysed | Colour | α-Carotene | β-Carotene | β-Cryptoxanthin | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Carrot | Daucus carota L. | United Kingdom | United Kingdom | peeled | 4450 ± 940 | 32,000 ± 2880 | [95] | |||
Carrot | Daucus carota L. | Italy | Italy | 2840–4960 | 4350–8840 | [25] | ||||
Carrot | Daucus carota L. | Germany | Germany | 91.3 | edible part | 4890 | 9020 | [53] | ||
Carrot | Daucus carota L. | Germany | Germany | 84.3 | edible part | 3060 | 6500 | 12 | [53] | |
Carrot | Daucus carota L. | Germany | Germany | edible part | 4120 | 4650 | 28 | [53] | ||
Carrot | Daucus carota L. | Spain | Spain | edible part | orange | 3245 | 8162 | [24] | ||
Carrot | Daucus carota L. | Spain | Spain | edible part | orange | 2895 | 6628 | [24] | ||
Carrot | Daucus carota L. | Spain | Spain | edible part | orange | 3700 | 9800 | [24] | ||
Carrot | Daucus carota L. | Turkey | Turkey | root | orange | 1344–3011 | 4160–7162 | [156] | ||
Carrot | Daucus carota L. | Spain | Spain | edible part | 3245 | 8162 | [24] | |||
Carrot | Daucus carota L. | Spain | Spain | edible part | 2895 | 6628 | [24] | |||
Carrot | Daucus carota L. | Italy | Italy | all sample | L*52.2 ± 0.7a*24.1 ± 1.5b*36.1 ± 1 | 82,100 ± 1100 | 128,400 ± 800 | [111] | ||
Carrot | Daucus carota L. | Italy | Italy | all sample | L*52.1 ± 0.8a*22.6 ± 1.1b*35.7 ± 1.9 | 85,600 ± 2400 | 101,600 ± 700 | [111] | ||
Carrot | Daucus carota L. | Italy | Italy | all sample | L*50.2 ± 1.1a*21.4 ± 1.4b*35.3 ± 1.5 | 68,100 ± 9100 | 113,000 ± 16,700 | [111] | ||
Carrot | Daucus carota L. | Poland | Poland | roots | 4820–9520 | [157] | ||||
Carrot | Daucus carota L. cv Nerac | Ireland | Ireland | roots | 188,000 ± 5000 | [158] | ||||
Carrot | Daucus carota L. cv. Nantes | Brazil | tuber | orange | 3500 | 6150 | nd | [109] | ||
Carrot | Daucus carota L. HCM | France | France | root | dark-orange | 7583± 619 | 17,206 ± 643 | [159] | ||
Carrot | Daucus carota L. subsp. sativus | Finland | Finland | 2200–4900 | 4600–10,300 | [86] | ||||
Carrot | Daucus carota L. subsp. sativus | Spain | Spain | 2900 ± 300 | 6600 ± 0 | [86] | ||||
Carrot | Daucus carota L. subsp. sativus | United Kingdom | United Kingdom | 2700–3600 | 8500–10,800 | [86] | ||||
Carrot | Daucus carota L. subsp. sativus | USA | 3900 | 5600 | [86] | |||||
Carrot | Daucus carota L. subsp. sativus | Egypt | 3400 | 6300 | [86] | |||||
Carrot | Daucus carota L. subsp. sativus | Taiwan | 2800 ± 300 | 5400 ± 600 | [86] | |||||
Carrot | Daucus carota L. subsp. sativus | Malaysia | 3400 | 6800 | [86] | |||||
Carrot | Daucus carota L. var. Commercial French | France | France | root | orange | 2322 ± 233 | 5404 ± 305 | [159] | ||
Carrot | Daucus carota L. var. Blanche à collet vert | France | France | root | white | nd | nd | [159] | ||
Carrot | Daucus carota L. var. Blanche des vosges | France | France | root | white | nd | nd | [159] | ||
Carrot | Daucus carota L. var. Carentan | France | France | root | orange | 1644 ± 50 | 5932 ± 360 | [159] | ||
Carrot | Daucus carota L. var. Commercial French | France | France | root | orange | 1972± 183 | 5433 ± 462 | [159] | ||
Carrot | Daucus carota L. var. Commercial French | France | France | root | orange | 3131 ± 263 | 6633 ± 564 | [159] | ||
Carrot | Daucus carota L. var. Commercial French | France | France | root | orange | 1419 ± 99 | 4149 ± 112 | [159] | ||
Carrot | Daucus carota L. var. Commercial French | France | France | root | orange | 2291 ± 224 | 6190 ± 403 | [159] | ||
Carrot | Daucus carota L. var. Commercial French | France | France | root | orange | 1916 ± 138 | 4730 ± 319 | [159] | ||
Carrot | Daucus carota L. var. Kokubu | France | France | root | orange | 1748 ± 29 | 3740 ± 25 | [159] | ||
Carrot | Daucus carota L. var. La Merveille | France | France | root | orange | 2092 ± 36 | 5869 ± 101 | [159] | ||
Carrot | Daucus carota L. var. Nantaise améliorée | France | France | root | orange | 1369 ± 150 | 3625 ± 329 | [159] | ||
Carrot | Daucus carota L. var. San NaÏ | France | France | root | orange | 1333 ± 85 | 3206 ± 182 | [159] | ||
Carrot | Daucus carota L. var. sativa, D.C. | Spain | Spain | 88 | root | orange | 2895 ± 276 | 6628 ± 45 | [24] | |
Carrot | Daucus carota L. var. sativa, D.C. | Spain | Spain | 90 | root | orange | 3245 ± 128 | 8162 ± 364 | [24] | |
Carrot | Daucus carota L. var. Violette jordanienne | France | France | root | purple | nd | 381 ± 24 | [159] | ||
Carrot | Daucus carota L. var. Violette turque | France | France | root | purple | nd | 318 ± 18 | [159] | ||
Carrot | Daucus carota L. var. yellowstone | France | France | root | yellow | nd | 332 ± 15 | [159] | ||
Carrot | Daucus carota L., var. Bolero | Turkey | Turkey | root | 1642 ± 101 3011 ± 217 | 4826 ± 465 7162 ± 503 | [160] | |||
Carrot | Daucus carota L., var. Fontana | Norway | Norway | root | 5490–11,270 | 2210–5510 | [161] | |||
Carrot | Daucus carota L., var. Maestro-F1 | Turkey | Turkey | root | 1706 ± 60 2478 ± 179 | 4160 ± 148 6706 ± 42 | [160] | |||
Carrot | Daucus carota L., var. Merida | Norway | Norway | root | 5550–10,200 | 1980–5220 | [161] | |||
Carrot | Daucus carota L., var. Nanco | Turkey | Turkey | root | 1473 ± 34 2630 ± 33 | 4310 ± 118 6440 ± 146 | [160] | |||
Carrot | Daucus carota L., var. Nandrin | Norway | Norway | root | 5630–12,080 | 1910–4530 | [161] | |||
Carrot | Daucus carota L., var. Nantindo | Turkey | Turkey | root | 1665 ± 113–3006 ± 66 | 4767 ± 123 6637 ± 58 | [160] | |||
Carrot | Daucus carota L., var. Newburg | Norway | Norway | root | 6100–10,800 | 2370–4090 | [161] | |||
Carrot | Daucus carota L., var. Presto-F1 | Turkey | Turkey | root | 2346 ± 45 2367 ± 217 | 5185 ± 468 6198 ± 138 | [160] | |||
Carrot | Daucus carota L., var. PS-F1 | Turkey | Turkey | root | 2688 ± 225 2967 ± 36 | 6168 ± 302 6373 ± 476 | [160] | |||
Carrot | Daucus carota L., var. Tito | Turkey | Turkey | root | 1344 ± 17 1718 ± 153 | 4563 ± 311 4835 ± 473 | [160] | |||
Carrot | Daucus carota var. Jaune obtuse du Doubs | France | France | root | yellow | nd | 332 ± 21 | [159] | ||
Carrot | Daucus carota var. New Kuroda | France | France | root | orange | 1635 ± 17 | 3632 ± 64 | [159] | ||
Carrot | Daucus carota L. var. De Guérande | France | France | root | orange | 1278 ± 234 | 3354 ± 457 | [159] |
Food Name | Scientific Name | FoodEx2_ TermCode | Origin (Country) | Purchase (Country) | Water (%) | Part Analysed | Colour | α-Carotene | β-Carotene | Lutein | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
Spinach | Spinacea oleracea L. | A00MJ | Spain | Spain | edible part | green | 4626 | 6422 | [24] | ||
Spinach | Spinacea oleracea L. | A00MJ | Spain | Spain | 92 | leaves + stalk | green | 3254 ± 330 | 4229 | [24] | |
Spinach | Spinacea oleracea L. | A00MJ | Spain | Spain | 92 | leaves + stalk | green | 4626 ± 346 | 4229 ± 1310 | [24] | |
Spinach | Spinacea oleracea, L. | A00MJ | Spain | Spain | edible part | green | 3254 | 6422 ± 1190 | [24] | ||
Spinach | Spinacia oleracea L. | A00MJ | Brazil | leaves | green | nd | 4423 | 5793 | [109] | ||
Spinach | Spinacia oleracea L. | A00MJ | Italy | Italy | nd | 3100–4810 | 5930–7900 | [25] | |||
Spinach | Spinacia oleracea L. | A00MJ | Germany | Germany | 90.8 | edible part | 90 | 3250 | 9540 | [55] | |
Spinach | Spinacia oleracea L. | A00MJ | Spain | Spain | edible part | 4626 | 8700 ± 100 | [28] | |||
Spinach | Spinacia oleracea L. | A00MJ | Spain | Spain | edible part | 3254 | 218,700 ± 15,400 | [28] | |||
Spinach | Spinacia oleracea L. | A00MJ | Italy | Italy | all sample | L*30.5 ± 1.1a*8 ± 0.6b*10 ± 0.8 | 152,100 ± 5000 | 167,000 ± 10,400 | [111] | ||
Spinach | Spinacia oleracea L. | A00MJ | Italy | Italy | all sample | L*33.7 ± 1.1a*7.7 ± 1.1b*9.3 ± 1 | 148,100 ± 6500 | 194,200 ± 4200 | [111] | ||
Spinach | Spinacia oleracea L. | A00MJ | Italy | Italy | all sample | L*33.1 ± 0.8a*6.9 ± 0.9b*9.2 ± 0.8 | 18,4600 ± 9300 | 6422 | [111] | ||
Spinach | Spinacia oleracea L. | A00MJ | Slovenia | Slovenia | 90.7 | leaves | green | 4840–13,900 | [114] |
Food Name | Scientific Name | FoodEx2_ TermCode | Origin (Country) | Purchase (Country) | Water (%) | Part Analysed | Colour | E(v. Trans)-α-Carotene | E(v. Trans)-β-Carotene | β-Cryptoxanthin | Lutein | Phytoene | Phytofluene | Violaxanthin | Zeaxanthin | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mandarin | Citrus cv Mediterranean | A01CD | Italy | Italy | essential oil of peel fruit (free) | 610 ± 62 | [58] | |||||||||
Mandarin | Citrus cv Mediterranean | A01CD | Italy | Italy | essential oil of peel fruit (laurate) | 1411 ± 140 | [58] | |||||||||
Mandarin | Citrus cv Mediterranean | A01CD | Italy | Italy | essential oil of peel fruit (myristate) | 1504 ± 132 | [58] | |||||||||
Mandarin | Citrus cv Mediterranean | A01CD | Italy | Italy | essential oil of peel fruit (palmitate) | 715 ± 74 | [58] | |||||||||
Mandarin | Citrus deliciosa, Ten. | A01CJ | Spain | Spain | 86 | without skin | orange | 213 ± 102 | 843 ± 216 | [24] | ||||||
Mandarin | Citrus deliciosa, Ten. | A01CJ | Spain | Spain | 85 | without skin | orange | 130 ± 10 | 1106 ± 63 | [24] | ||||||
Mandarin | Citrus reticulata | A01CD | Spain | Spain | orange | 213 | 843 | [24] | ||||||||
Mandarin | Citrus reticulata Blanco cv. Hansen | A01CE | France | France | juice fruit | 197 | 1500 | 163 | 446 | 500 | 467 (cis) | 128 | [43] | |||
Mandarin | Citrus reticulata Blanco cv. Hansen | A01CE | France | France | juice fruit | 70 | 162 | 230 | 100 | 110 | 445 (cis) | 143 | [43] | |||
Mandarin | Citrus reticulata Blanco cv. Hansen | A01CE | French Polynesia | juice fruit | 76 | 916 | 210 | 24 | 92 | 560 (cis) | 131 | [43] | ||||
Mandarin | Citrus reticulate, L. var. Tango | A01CD | Spain | Spain | fruit | orange | 12.4 | 547 | 1331.6 | [56] |
Food Name | Scientific Name | FoodEx2_ TermCode | Origin (Country) | Purchase (Country) | Saponification | Part Analysed | Colour | α-Carotene | (v. Trans)-α-Carotene | β-Carotene | E(v. Trans)-β-Carotene | β-Cryptoxanthin | E(V. Trans)-Lutein | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Maize | Zea mays L. | A000T | Spain | Spain | edible part | yellow | 33 | 30 | [24] | |||||
Maize | Zea mays L. | A000T | Croatia | Croatia | all sample | 117.3± 8.17 | 158.5 ± 9.5 | [174] | ||||||
Maize | Zea mays L. | A000T#F28.A07KQ$F28.A0BA1 | USA | no | 15 | 14 | 0 | 202 | [28] | |||||
Maize | Zea mays L. | A000T | Netherlands | Netherlands | kernels | 20 ± 7 | 424 ± 6 | 157 ± 3 | [175] | |||||
Maize | Zea mays L. | A000T | Netherlands | Netherlands | kernels | 44 ± 9 | 447 ± 28 | 29 ± 2 | [175] | |||||
Maize | Zea mays L. | A000T | Netherlands | Netherlands | kernels | 58 ± 0 | 40 ± 2 | 93 ± 1 | [175] | |||||
Maize | Zea mays L. | A000T | Netherlands | Netherlands | kernels | 3 ± 1 | 246 ± 8 | 453 ± 8 | [175] | |||||
Maize | Zea mays L. | A000T | Netherlands | Netherlands | kernels | 44 ± 1 | 879 ± 28 | 37 ± 3 | [175] | |||||
Maize | Zea mays L. | A000T | Netherlands | Netherlands | kernels | 41 ± 7 | 448 ± 15 | 260 ± 10 | [175] | |||||
Maize | Zea mays L. | A000T | Netherlands | Netherlands | kernels | 17 ± 0 | 368 ± 2 | 988 ± 5 | [175] | |||||
Maize | Zea mays L. | A000T | Netherlands | Netherlands | kernels | 23 ± 2 | 56 ± 2 | 37 ± 2 | [175] | |||||
Maize | Zea mays L. | A000T | Netherlands | Netherlands | kernels | 11 ± 0 | 37 ± 0 | 41 ± 4 | [175] | |||||
Maize | Zea mays L. | A000T | Netherlands | Netherlands | kernels | 6 ± 4 | 253 ± 13 | 375 ± 15 | [175] | |||||
Maize | Zea mays L. | A000T | Netherlands | Netherlands | kernels | 16 ± 3 | 303 ± 16 | 251 ± 8 | [175] | |||||
Maize | Zea mays L. | A000T | Netherlands | Netherlands | kernels | 86 ± 6 | 277 ± 8 | 84 ± 2 | [175] | |||||
Maize | Zea mays L. | A000T | Netherlands | Netherlands | kernels | 23 ± 1 | 305 ± 20 | 371 ± 15 | [175] |
Food Name | Scientific Name | FoodEx2_ TermCode | Origin (Country) | Purchase (Country) | Water (%) | Part Analysed | Colour | α-Carotene | β-Carotene | β-Cryptoxanthin | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
Pumpkin | Cucurbita maxima | A00KH | Spain | Spain | edible part | 490 | 60 | [24] | |||
Pumpkin | Cucurbita maxima | A00KH | Spain | Spain | edible part | 31 | 188 | [24] | |||
Pumpkin | Cucurbita maxima | A00KH | Spain | Spain | edible part | 53 | 692 | [24] | |||
Pumpkin | Cucurbita maxima var. Autumn Cup | A00KH | Austria | Austria | flesh fruit | 800 | 5200 | [152] | |||
Pumpkin | Cucurbita maxima var. Buen Gusto | A00KH | Austria | Austria | flesh fruit | 1000 | 3300 | [152] | |||
Pumpkin | Cucurbita maxima var. Flat white Boer | A00KH | Austria | Austria | flesh fruit | 7500 | 6200 | [152] | |||
Pumpkin | Cucurbita maxima var. Gelber Zentner | A00KH | Austria | Austria | flesh fruit | 0 | 2200 | [152] | |||
Pumpkin | Cucurbita maxima var. Hyvita | A00KH | Austria | Austria | flesh fruit | 990 | 2500 | [152] | |||
Pumpkin | Cucurbita maxima var. Imperial Elite | A00KH | Austria | Austria | flesh fruit | 1100 | 7400 | [152] | |||
Pumpkin | Cucurbita maxima var. Japan 117 | A00KH | Austria | Austria | flesh fruit | 1000 | 7200 | [152] | |||
Pumpkin | Cucurbita maxima var. Mini green Hubbard | A00KH | Austria | Austria | flesh fruit | 420 | 1400 | [152] | |||
Pumpkin | Cucurbita maxima var. Mishti kumra | A00KH | Bangladesh | fruit | 362 ± 89.3 | [157] | |||||
Pumpkin | Cucurbita maxima var. Snow Delite | A00KH | Austria | Austria | flesh fruit | 1500 | 6400 | [152] | |||
Pumpkin | Cucurbita maxima var. Uchiki Kuri | A00KH | Austria | Austria | flesh fruit | 1400 | 2500 | [152] | |||
Pumpkin | Cucurbita maxima var. Umber Cup | A00KH | Austria | Austria | flesh fruit | 790 | 3700 | [152] | |||
Pumpkin | Cucurbita maxima var. Walfish | A00KH | Austria | Austria | flesh fruit | 900 | 4300 | [152] | |||
Pumpkin | Cucurbita maxima x C. moschata var. Tetsuka Buto | A00KH | Austria | Austria | flesh fruit | 2400 | 3500 | [152] | |||
Pumpkin | Cucurbita moschata Duchesne cv. Menina Brasileira and cv. Goianinha | A0DLT#F20.A07QF$F20.A07RD | Brazil | without skin and seed | orange | 2530 | 6170 | nd | [109] | ||
Pumpkin | Cucurbita moschata var. Burpee Butterbush | A0DLT | Austria | Austria | flesh fruit | 980 | 3100 | [152] | |||
Pumpkin | Cucurbita moschata var. Long Island Cheese | A0DLT | Austria | Austria | flesh fruit | 5900 | 7000 | [152] | |||
Pumpkin | Cucurbita moschata var. Martinica | A0DLT | Austria | Austria | flesh fruit | 1600 | 5400 | [152] | |||
Pumpkin | Cucurbita moschata var. Mousquée de Provence | A0DLT | Austria | Austria | flesh fruit | 2800 | 4900 | [152] | |||
Pumpkin | Cucurbita pepo | A00KH | Italy | Italy | 490 | 60 | [25] | ||||
Pumpkin | Cucurbita pepo L. | A00KH | Poland | Poland | 8.2 | seed and oil | yellow-green | 10–20 | 80–210 | 20–50 | [153] |
Pumpkin | Cucurbita pepo var. Acorn Table | A00KH | Austria | Austria | flesh fruit | 150 | 2100 | [152] | |||
Pumpkin | Cucurbita pepo var. Acorn Tay Bell | A00KH | Austria | Austria | flesh fruit | 150 | 2100 | [152] | |||
Pumpkin | Cucurbita pepo var. Carneval di Venezia | A00KH | Austria | Austria | flesh fruit | 30 | 60 | [152] | |||
Pumpkin | Cucurbita pepo var. Melonette Jaspée Vende | A00KH | Austria | Austria | flesh fruit | 50 | 1300 | [152] | |||
Pumpkin | Cucurbita pepo var. Tonda padana (Americano) | A00KH | Austria | Austria | flesh fruit | 120 | 2300 | [152] | |||
Pumpkin | Curcubita maxima | A00KH | Spain | Spain | edible part | orange | 490 | 60 | [24] | ||
Pumpkin | Curcubita maxima | A00KH | Spain | Spain | edible part | orange | 31 | 188 | [24] | ||
Pumpkin | Curcubita maxima | A00KH | Spain | Spain | edible part | orange | 53 | 692 | [24] |
Food Name | Scientific Name | FoodEx2_ TermCode | FoodEx2_ TermName | Origin (Country) | Purchase (Country) | Part Analysed | Colour | β-Carotene | E(v. Trans)-β-Carotene | Z(v. cis)-Β-carotene | E(v. Trans)-β- | Phytoene | Phytofluene | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rosehip | Rosa canina L. | A0DSS | Dog rose | Turkey | Turkey | whole plants | red and pink | 18–370 | [75] | |||||
Rosehip | Rosa canina L. | A0DSS | Dog rose | Germany | Germany | all sample | 2495 ± 207.5 | [76] | ||||||
Rosehip | Rosa canina L. | A0DSS | Dog rose | Germany | Germany | all sample | 500 ± 35 | [76] | ||||||
Rosehip | Rosa canina L. | A0DSS | Dog rose | Germany | Germany | all sample | 290 ± 32.5 | [76] | ||||||
Rosehip | Rosa canina L. | A0DSS | Dog rose | Germany | Germany | pulp | 3200 ± 200 | 500 ± 320 | 1200 ± 100 | 400 ± 100 | nd | [77] | ||
Rosehip | Rosa canina L. | A0DSS | Dog rose | Germany | Germany | pulp | 4200 ± 200 | 900 ± 240 | 100 ± 100 | 700 ± 100 | [77] |
Food Name | Scientific Name | FoodEx2_ TermCode | FoodEx2_ TermName | Origin (Country) | Purchase (Country) | Part Analysed | Colour | Lycopene | E(v. Trans)-Lycopene | Z(v. Cis)-Lycopene | Violaxanthin | E(v. Trans)-Lutein | E(v. Trans)-Zeaxanthin | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rosehip | Rosa canina L. | A0DSS | Dog rose | Germany | Germany | all sample | 23,842.5 ± 777.5 | [76] | ||||||
Rosehip | Rosa canina L. | A0DSS | Dog rose | Germany | Germany | all sample | 3615 ± 215 | [76] | ||||||
Rosehip | Rosa canina L. | A0DSS | Dog rose | Germany | Germany | pulp | 7900 ± 1500 | 8400 ± 1600 | 300 ± 10 | 100 ± 10 | 2700 ± 30 | [77] | ||
Rosehip | Rosa canina L. | A0DSS | Dog rose | Germany | Germany | pulp | 7400 ± 1200 | 6300 ± 600 | 700 ± 100 | 600 ± 100 | [77] |
Food Name | Scientific Name | FoodEx2_ TermCode | Origin (Country) | Purchase (Country) | Water (%) | Saponi-Fication | Part Analysed | Colour | α-Carotene | β-Carotene | E(v. Trans)-β-Carotene | β-Cryptoxanthin | Lycopene | E(v. Trans)-Lycopene | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Watermelon | Citrullus lanatus (Thunb) Matsumura & Nakai | A00KJ | Italy | Italy | red | 46–546 | 959–1681 | [154] | |||||||
Watermelon | Citrullus lanatus | A00KJ | Spain | Spain | edible part | red | 77 | 62 | 2454 | [24] | |||||
Watermelon | Citrullus lanatus | A00KJ | USA | no | 0 | 126 | 5 | [28] | |||||||
Watermelon | Citrullus lanatus (Thunb.) Matsum & Nakai | A00KJ | Brazil | red | nd | 365 | nd | 3550 | [109] | ||||||
Watermelon | Citrullus vulgaris | A00KJ#F10.A0F2S | Indonesia | fruit | red | 592 (314–777) | nd | 11,389 (8731–13,523) | [59] | ||||||
Watermelon | Citrullus vulgaris | A00KJ#F10.A0F5H | Indonesia | fruit | yellow | 140 (56–287) | 90 (59–110) | 71 (nd -109) | [59] | ||||||
Watermelon | Citrullus vulgaris | A00KJ#F10.A0F2S | Italy | Italy | nd | 314–777 | nd | 4770–13,523 | [25] | ||||||
Watermelon | Citrullus vulgaris | A00KJ#F10.A0F5H | Italy | Italy | nd | 56–287 | 59–110 | nd–109 | [25] | ||||||
Watermelon | Citrullus vulgaris, Schered. | A00KJ#F20.A07QF$F20.A07RD | Spain | Spain | 92 | without rind or seeds | red | 77 ± 29 | 62 ± 20 | 2454± 319 | [24] | ||||
Watermelon | Citrullus vulgaris, Schrad | A00KJ | Spain | Spain | edible part | red | 57.6 ± 4.8 | 1.2 ± 0.5 | [56] | ||||||
Watermelon | Citrullus vulgaris | A00KJ | Finland | Finland | pulp | - | 3080 | [26] |
Food Name | Scientific Name | FoodEx2_ TermCode | Origin (Country) | Purchase (Country) | Water (%) | Saponi-Fication | Part Analysed | Colour | Lutein | E(v. Trans)-Lutein | E(v. Trans)-Zeaxanthin | Phytofluene | Phytoene | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Watermelon | Citrullus lanatus | A00KJ | Spain | Spain | edible part | red | 40 ± 13 | 1122 ± 812 | [24] | |||||
Watermelon | Citrullus lanatus | A00KJ | USA | no | 4 | 0 | [28] | |||||||
Watermelon | Citrullus lanatus | A00KJ | Spain | Spain | Pulp | red | 440 | 1170 | [22] |
References
- Dias, M.G.; Olmedilla-Alonso, B.; Hornero-Méndez, D.; Mercadante, A.Z.; Osorio, C.; Vargas-Murga, L.; Melendez-Martínez, A.J. Comprehensive Database of Carotenoid Contents in Ibero-American Foods. A Valuable Tool in the Context of Functional Foods and the Establishment of Recommended Intakes of Bioactives. J. Agric. Food Chem. 2018, 66, 5055–5107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meléndez-Martínez, A.J.; Mandić, A.; Bantis, F.; Böhm, V.; Borge, G.I.; Brnčić, M.; Bysted, A.; Cano, M.P.; Dias, M.G.; Elgersma, A.; et al. A comprehensive review on carotenoids in foods and feeds: Status quo, applications, patents, and research needs. Crit. Rev. Food Sci. Nutr. 2021, 1–51. [Google Scholar] [CrossRef] [PubMed]
- Meléndez-Martínez, A.J.; Böhm, V.; Borge, G.I.; Cano, M.P.; Fikselová, M.; Gruskiene, R.; Lavelli, V.; Loizzo, M.R.; Mandić, A.I.; Mapelli-Brahm, P.; et al. Carotenoids: Considerations for Their Use in Functional Foods, Nutraceuticals, Nutricosmetics, Supplements, Botanicals, and Novel Foods in the Context of Sustainability, Circular Economy, and Climate Change. Annu. Rev. Food Sci. Technol. 2021, 12, 433–460. [Google Scholar] [CrossRef] [PubMed]
- European Commission; Scientific Committee on Food; European Food Safety Authority; Scientific Panel on Dietetic Products Nutrition and Allergies. Tolerable Upper Intake Levels for Vitamins and Minerals; European Food Safety Authority: Parma, Italy, 2006. [Google Scholar]
- National Research Council (U.S.); Institute of Medicine (U.S.). Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; A Report of the Panel on Dietary Antioxidants and Related Compounds, Subcommittees on Upper Reference Levels of Nutrients and of Interpretation and Use of Dietary Reference Intakes, and the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Food and Nutrition Board, Institute of Medicine; National Academy Press: Washington, DC, USA, 2000. [Google Scholar]
- Buscemi, S.; Corleo, D.; Di Pace, D.; Petroni, M.L.; Satriano, A.; Marchesini, G. The Effect of Lutein on Eye and Extra-Eye Health. Nutrients 2018, 10, 1321. [Google Scholar] [CrossRef] [Green Version]
- Ranard, K.; Jeon, S.; Mohn, E.; Griffiths, J.; Johnson, E.; Erdman, J. Dietary guidance for lutein: Consideration for intake recommendations is scientifically supported. Eur. J. Nutr. 2017, 56, 37–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regulation (EU) No 1169/2011. From: European parliament and of the council of 25 October 2011 on the provision of food information to consumers. Off. J. Eur. Union 2011, L304, 18–63. [Google Scholar]
- IOM, Institute of Medicine of National Academies (U.S.). Panel on Micronutrients. DRI: Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; A Report of the Institute of Medicine; Food and Nutrition Board; Panel on Micronutrients; Subcommittee on Upper Reference Levels of Nutrients; Subcommittee of Interpretation and Uses of Dietary Reference Intakes; Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Institute of Medicine; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- IOM, Institute of Medicine of National Academies (U.S.). Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; Otten, J.J., Hellwig, J.P., Meyers, L.D., Eds.; National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- FAO/INFOODS. Guidelines for Converting Units, Denominators and Expressions; Version 1.0; FAO: Rome, Italy, 2012. [Google Scholar]
- Granado, F.; Olmedilla, B.; Blanco, I.; Gil-Martinez, E.; Rojas-Hidalgo, E.; Erdman, J. Variability in the intercomparison of food carotenoid content data: A user’s point of view. Crit. Rev. Food Sci. Nutr. 1997, 37, 621–633. [Google Scholar] [CrossRef] [PubMed]
- Meléndez-Martínez, A.J. An Overview of Carotenoids, Apocarotenoids, and Vitamin A in Agro-Food, Nutrition, Health, and Disease. Mol. Nutr. Food Res. 2019, 63. [Google Scholar] [CrossRef] [Green Version]
- FAO. The State of the World’s Biodiversity for Food and Agriculture; Bélanger, J., Pilling, D., Eds.; FAO Commission on Genetic Resources for Food and Agriculture Assessments: Rome, Italy, 2019; 572p, Available online: http://www.fao.org/3/CA3129EN/CA3129EN.pdf (accessed on 1 February 2021).
- Kapsokefalou, M.; Roe, M.; Turrini, A.; Costa, H.S.; Martinez-Victoria, E.; Marletta, L.; Berry Finglas, P. Food Composition at Present: New Challenges. Nutrients 2019, 11, 1714. [Google Scholar] [CrossRef] [Green Version]
- Salvini, S.; Oseredczuk, M.; Roe, M.; Møller, A. Guidelines for Quality Index Attribution to Original Data from Scientific Literature or Reports for EuroFIR Data Interchange; EuroFIR Technical Report; EuroFIR AISBL: Brussels, Belgium, 2009. [Google Scholar]
- Mangels, A.R.; Holden, J.M.; Beecher, G.R.; Forman, M.R.; Lanza, E. Carotenoid content of fruits and vegetables: An evaluation of analytic data. J. Am. Diet. Assoc. 1993, 93, 284–296. [Google Scholar] [CrossRef]
- West, C.E.; Poortvliet, E.J. The Carotenoid Content of Foods with Special Reference to Developing Countries; Vitamin A Field Support Project (VITAL), Ed.; International Science and Technology Institute, Inc.: Arlington, VA, USA, 1993; pp. 1–207. [Google Scholar]
- Loranty, A.; Rembiałkowska, E.; Rosa, E.A.S.; Bennett, R.N. Identification, quantification and availability of carotenoids and chlorophylls in fruit, herb and medicinal teas. J. Food Compos. Anal. 2010, 23, 432–441. [Google Scholar] [CrossRef]
- Ireland, J.; Shahar, D.; Marletta, L.; Oyelade, O.J.; Khokhar, S.; Henauw, S. Vitamin composition of ethnic foods commonly consumed in Europe. Food Nutr. Res. 2012, 56, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Masino, F.; Ulrici, A.; Antonelli, A. Extraction and quantification of main pigments in pesto sauces. Eur. Food Res. Technol. 2008, 226, 569–575. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.J.; Mapelli-Brahm, P.; Benítez-González, A.; Stinco, C.M. A comprehensive review on the colorless carotenoids phytoene and phytofluene. Arch. Biochem. Biophys. 2015, 572, 188–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallverdú-Queralt, A.; de Alvarenga, J.F.R.; Estruch, R.; Lamuela-Raventos, R.M. Bioactive compounds present in the Mediterranean sofrito. Food Chem. 2013, 141, 3365–3372. [Google Scholar] [CrossRef]
- Beltrán, B.; Estévez, R.; Cuadrado, C.; Jiménez, S.; Olmedilla-Alonso, B. Carotenoid data base to assess dietary intake of carotenes, xanthophyls and vitamin A, its use in a comparative study of vitamin a nutritional status in young adults. Nutr. Hosp. 2012, 27, 1334–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maiani, G.; Castón, M.J.; Catasta, G.; Toti, E.; Cambrodón, I.G.; Bysted, A.; Granado-Lorencio, F.; Begoña Olmedilla-Alonso, B.; Knuthsen, P.; Valoti, M.; et al. Carotenoids, actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol. Nutr. Food Res. 2009, 53 (Suppl. S2), S194–S218. [Google Scholar] [CrossRef] [PubMed]
- Pól, J.; Hyötyläinen, T.; Ranta-Aho, O.; Riekkola, M.-L. Determination of lycopene in food by on-line SFE coupled to HPLC using a single monolithic column for trapping and separation. J. Chromatogr. A 2004, 1052, 25–31. [Google Scholar] [CrossRef]
- Seybold, C.; Fröhlich, K.; Bitsch, R.; Otto, K.; Böhm, V. Changes in contents of carotenoids and vitamin E during tomato processing. J. Agric. Food Chem. 2004, 52, 7005–7010. [Google Scholar] [CrossRef]
- Perry, A.; Rasmussen, H.; Johnson, E.J. Xanthophyll (lutein, zeaxanthin) content in fruits, vegetables and corn and egg products. J. Food Compos. Anal. 2009, 22, 9–15. [Google Scholar] [CrossRef]
- Dhuique-Mayer, C.; Fanciullino, A.L.; Dubois, C.; Ollitrault, P. Effect of Genotype and Environment on Citrus Juice Carotenoid Content. J. Agric. Food Chem. 2009, 57, 9160–9168. [Google Scholar] [CrossRef] [PubMed]
- Gama, J.J.T.; Sylos, C.M. Major carotenoid composition of Brazilian Valencia orange juice, identification and quantification by HPLC. Food Res. Int. 2005, 38, 8999–9903. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.J.; Britton, G.; Vicario, I.M.; Heredia, F.J. The complex carotenoid pattern of orange juices from concentrate. Food Chem. 2008, 109, 546–553. [Google Scholar] [CrossRef]
- Dias, M.G.; Camões, M.F.G.F.C.; Oliveira, L. Carotenoids in traditional Portuguese fruits and vegetables. Food Chem. 2009, 113, 808–815. [Google Scholar] [CrossRef]
- Velázquez-Estrada, R.M.; Hernández-Herrero, M.M.; Rüfer, C.E.; Guamis-López, B.; Roig-Sagués, A.X. Influence of ultra high pressure homogenization processing on bioactive compounds and antioxidant activity of orange juice. Innov. Food Sci. Emerg. Technol. 2013, 18, 89–94. [Google Scholar] [CrossRef]
- Fratianni, A.; Cinquanta, L.; Panfili, G. Degradation of carotenoids in orange juice during microwave heating. LWT Food Sci. Technol. 2010, 43, 867–871. [Google Scholar] [CrossRef]
- Melendez-Martinez, A.; Vicario, I.; Heredia, F.J. A routine high-performance liquid chromatography method for carotenoid determination in ultrafrozen orange juices. J. Agric. Food Chem. 2003, 51, 4219–4224. [Google Scholar] [CrossRef] [PubMed]
- Salvo, A.; Dugo, P.; Giuffrida, D.; Salvo, A.; Saitta, M.; Dugo, G. Free carotenoid and carotenoid ester composition in native orange juices of different varieties. Fruits 2010, 65, 277–284. [Google Scholar] [CrossRef]
- Stinco, M.C.; Fernández-Vázquez, R.; Escudero-Gilete, M.L.; Heredia, F.J.; Meléndez-Martínez, A.J.; Vicario, M.I. Effect of orange juice’s processing on the color, particle size, and bioaccessibility of carotenoids. J. Agric. Food Chem. 2012, 60, 1447–1455. [Google Scholar] [CrossRef]
- Escudero-Lopez, B.; Cerrillo, I.; Herrero-Martín, G.; Hornero-Méndez, D.; Gil Izzquierdo, A.; Medina, S.; Ferreres, F.; Berná, G.; Medina, S.; Martín, F.; et al. Fermented Orange Juice, Source of Higher Carotenoid and Flavanone Contents. J. Agric. Food Chem. 2013, 61, 8773–8782. [Google Scholar] [CrossRef]
- Delpino-Rius, A.; Eras, J.; Marsol-Vall, A.; Vilaró, F.; Balcells, M.; Canela-Garayoa, R. Ultraperformance liquid chromatography analysis to study the changes in the carotenoid profile of commercial monovarietal fruit juices. J. Chromatogr. A 2014, 1331, 90–99. [Google Scholar] [CrossRef]
- La Peña, M.M.-D.; Salvia-Trujillo, L.; Rojas-Graü, M.; Martín-Belloso, O. Changes on phenolic and carotenoid composition of high intensity pulsed electric field and thermally treated fruit juice-soymilk beverages during refrigerated storage. Food Chem. 2011, 129, 982–990. [Google Scholar] [CrossRef]
- Víctor, A.; Villanueva-Suárez, M.J.; Mateos-Aparicio, I.; Tenorio, M.D. Colour, bioactive compounds and antioxidant capacity of mixed beverages based on fruit juices with milk or soya. J. Food Nutr. Res. 2014, 53, 71–80. [Google Scholar]
- Andrés, V.; Villanueva, M.J.; Tenorio, M.D. Simultaneous determination of tocopherols, retinol, ester derivatives and β-carotene in milk- and soy-juice based beverages by HPLC with diode-array detection. LWT Food Sci. Technol. 2014, 58, 557–562. [Google Scholar] [CrossRef]
- Oms-Oliu, G.; Odriozola-Serrano, I.; Soliva-Fortuny, R.; Martín-Belloso, O. Effects of high-intensity pulsed electric field processing conditions on lycopene, vitamin C and antioxidant capacity of watermelon juice. Food Chem. 2009, 115, 1312–1319. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Odriozola-Serrano, I.; Oms-Oliu, G.; Lamuela-Raventós, R.M.; Elez-Martínez, P.; Martín-Belloso, O. Impact of high-intensity pulsed electric fields on carotenoids profile of tomato juice made of moderate-intensity pulsed electric field-treated tomatoes. Food Chem. 2013, 141, 3131–3138. [Google Scholar] [CrossRef]
- Lazzerini, C.; Cifelli, M.; Domenici, V. Pigments in extra virgin olive oils produced in different mediterranean countries in 2014, Near UV-vis spectroscopy versus HPLC-DAD. LWT Food Sci. Technol. 2017, 84, 586–594. [Google Scholar] [CrossRef]
- Mateos, R.; García-Mesa, J.A. Rapid and quantitative extraction method for the determination of chlorophylls and carotenoids in olive oil by high-performance liquid chromatography. Anal. Bioanal. Chem. 2006, 385, 1247–1249. [Google Scholar] [CrossRef] [PubMed]
- Mapelli-Brahm, P.; Hernanz-Vila, D.; Stinco, C.M.; Heredia, F.J.; Meléndez-Martínez, A.J. Isoprenoids composition and colour to differentiate virgin olive oils from a specific mill. LWT Food Sci. Technol. 2018, 89, 18–23. [Google Scholar] [CrossRef]
- Criado, M.N.; Morelló, J.R.; Motilva, M.J.; MPaz Romero, M.P. Effect of Growing Area on Pigment and Phenolic Fractions of Virgin Olive Oils of the Arbequina Variety in Spain. J. Am. Oil Chem. Soc. 2004, 81, 633. [Google Scholar] [CrossRef]
- Ernawita Wahyuono, R.; Hesse, J.; Hipler, U.-C.; Elsner, P.; Böhm, V. Carotenoids of indigenous citrus species from Aceh and its in vitro antioxidant, antidiabetic and antibacterial activities. Eur. Food Res. Technol. 2016, 242, 1869–1881. [Google Scholar] [CrossRef]
- Fratianni, A.; Di Criscio, T.; Mignogna, R.; Panfili, G. Carotenoids, tocols and retinols evolution during egg pasta—Making processes. Food Chem. 2012, 131, 590–595. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, Q.; Quan, J.; Zheng, Q.; Xi, W. Determination of sugars, organic acids, aroma components, and carotenoids in grapefruit pulps. Food Chem. 2016, 205, 112–121. [Google Scholar] [CrossRef]
- Xu, C.-J.; Fraser, P.D.; Wang, W.-J.; Bramley, P.M. Differences in the Carotenoid Content of Ordinary Citrus and Lycopene-Accumulating Mutants. J. Agric. Food Chem. 2006, 54, 5474–5481. [Google Scholar] [CrossRef]
- Müller, H. Determination of the carotenoid content in selected vegetables and fruit by HPLC and photodiode array detection/Bestimmung des Carotinoidgehaltes in ausgewaehlten Gemuese-und Obstsorten mittels HPLC und Photodiodenreihenbestimmung. Z. Fuer. Leb. Und. 1997, 2, 88. [Google Scholar]
- Lester, E.G.; Manthey, A.J.; Buslig, S.B. Organic vs. Conventionally Grown Rio Red Whole Grapefruit and Juice, Comparison of Production Inputs, Market Quality, Consumer Acceptance, and Human Health-Bioactive Compounds. J. Agric. Food Chem. 2007, 55, 4474–4480. [Google Scholar] [CrossRef] [PubMed]
- Stinco, C.M.; Escudero-Gilete, M.L.; Heredia, F.J.; Vicario, I.M.; Meléndez-Martínez, A.J. Multivariate analyses of a wide selection of orange varieties based on carotenoid contents, color and in vitro antioxidant capacity. Food Res. Int. 2016, 90, 194–204. [Google Scholar] [CrossRef]
- Estévez-Santiago, R.; Olmedilla-Alonso, B.; Fernández-Jalao, I. Bioaccessibility of provitamin A carotenoids from fruits, application of a standardised static in vitro digestion method. Food Funct. 2016, 7, 1354–1366. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.G.; Oliveira, L.; Camões, M.F.G.F.C.; Nunes, B.; Versloot, P.; Hulshof, P.J.M. Critical assessment of three high performance liquid chromatography analytical methods for food carotenoid quantification. J. Chromatogr. A 2010, 1217, 3494–3502. [Google Scholar] [CrossRef] [PubMed]
- Giuffrida, D.; La Torre, L.; Manuela, S.; Pellicanò, T.M.; Dugo, G. Application of HPLC-APCI-MS with a C-30 reversed phase column for the characterization of carotenoid esters in mandarin essential oil. Flavour Fragr. J. 2006, 21, 319. [Google Scholar] [CrossRef]
- Setiawan, B.; Sulaeman, A.; Giraud, D.W.; Driskell, J.A. Carotenoid Content of Selected Indonesian Fruits. J. Food Compos. Anal. 2001, 14, 169. [Google Scholar] [CrossRef]
- Ruiz, D.; José Egea Tomás-Barberán, F.A.; Gil, M.I. Carotenoids from new apricot (Prunus armeniaca L.) varieties and their relationship with flesh and skin color. J. Agric. Food Chem. 2005, 53, 6368–6374. [Google Scholar] [CrossRef]
- Sass-Kiss, A.; Kiss, J.; Milotay, P.; Kerek, M.M.; Toth-Markus, M. Differences in anthocyanin and carotenoid content of fruits and vegetables. Food Res. Int. 2005, 38, 1023–1029. [Google Scholar] [CrossRef]
- Dragovic-Uzelac, V.; Levaj, B.; Mrkic, V.; Bursac, D.; Boras, M. The content of polyphenols and carotenoids in three apricot cultivars depending on stage of maturity and geographical region. Food Chem. 2007, 102, 966–975. [Google Scholar] [CrossRef]
- Leccese, A.; Bureau, S.; Reich, M.; Renard, M.G.C.C.; Audergon, J.M.; Mennone, C.; Susanna Bartolini, S.; Viti, R. Pomological and Nutraceutical Properties in Apricot Fruit, Cultivation Systems and Cold Storage Fruit Management. Plant Foods Hum. Nutr. 2010, 65, 112–120. [Google Scholar] [CrossRef]
- De Rigal, D.; Gauillard, F.; Richard-Forget, F. Changes in the carotenoid content of apricot (Prunus armeniaca, var Bergeron) during enzymatic browning, β-carotene inhibition of chlorogenic acid degradation. J. Sci. Food Agric. 2000, 80, 763–768. [Google Scholar] [CrossRef]
- Orazem, P.; Mikulic-Petkovsek, M.; Stampar, F.; Hudina, M. Changes during the last ripening stage in pomological and biochemical parameters of the ‘Redhaven’ peach cultivar grafted on different rootstocks. Sci. Hortic. 2013, 160, 326–334. [Google Scholar] [CrossRef]
- Lozzio, M.R.; Pacetti, D.; Lucci, P.; Núñez, O.; Menichini, F.; Frega, N.G.; Tundis, R. Prunus persica var. platycarpa (Tabacchiera Peach), Bioactive Compounds and Antioxidant Activity of Pulp, Peel and Seed Ethanolic Extracts. Plant Foods Hum. Nutr. 2015, 70, 331–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crupi, P.; Coletta, A.; Antonacci, D. Analysis of Carotenoids in Grapes to Predict Norisoprenoid Varietal Aroma of Wines from Apulia. J. Agric. Food Chem. 2010, 58, 9647–9656. [Google Scholar] [CrossRef]
- Mendes-Pinto, M.M.; Ferreira, A.C.S.; Caris-Veyrat, C.; de Pinho, P.G. Carotenoid, chlorophyll, and chlorophyll-derived compounds in grapes and Port wines. J. Agric. Food Chem. 2005, 53, 10034–10041. [Google Scholar] [CrossRef]
- Giovanelli, G.; Brenna, O.V. Evolution of some phenolic components, carotenoids and chlorophylls during ripening of three Italian grape varieties. Z. Leb. Und. Forsch. A Eur. Food Res. Technol. 2007, 225, 145–150. [Google Scholar] [CrossRef]
- Leontowicz, H.; Leontowicz, M.; Latocha, P.; Jesion, I.; Park, Y.S.; Katrich, E.; Barasch, D.; Nemirovski, A.; Gorinstein, S. Bioactivity and nutritional properties of hardy kiwi fruit Actinidia arguta in comparison with Actinidia deliciosa “Hayward” and Actinidia eriantha “Bidan”. Food Chem. 2016, 196, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Marinova, D.; Ribarova, F. HPLC determination of carotenoids in Bulgarian berries. J. Food Compos. Anal. 2007, 20, 370–374. [Google Scholar] [CrossRef]
- Carvalho, E.; Fraser, P.D.; Martens, S. Carotenoids and tocopherols in yellow and red raspberries. Food Chem. 2013, 139, 744–752. [Google Scholar] [CrossRef]
- Karppinen, K.; Zoratti, L.; Sarala, M.; Carvalho, E.; Hirsimaki, J.; Mentula, H.; Martens, S.; Häggman, H.; Jaakola, L. Carotenoid metabolism during bilberry (Vaccinium myrtillus L.) fruit development under different light conditions is regulated by biosynthesis and degradation. BMC Plant Biol. 2016, 16, 95. [Google Scholar] [CrossRef] [Green Version]
- Mihalcea, L.; Turturică, M.; Ghinea, I.O.; Barbu, V.; Ioniţă, E.; Cotârleț, M.; Stănciuc, N. Encapsulation of carotenoids from sea buckthorn extracted by CO2 supercritical fluids method within whey proteins isolates matrices. Innov. Food Sci. Emerg. Technol. 2017, 42, 120–129. [Google Scholar] [CrossRef]
- Kazaz, S.; Baydar, H.; Erbas, S. Variations in chemical compositions of Rosa damascena Mill. and Rosa canina L. fruits. Czech J. Food Sci. 2009, 27, 178–184. [Google Scholar] [CrossRef] [Green Version]
- Böhm, V.; Fröhlich, K.; Bitsch, R. Rosehip—A “new” source of lycopene? Mol. Asp. Med. 2003, 24, 385–389. [Google Scholar] [CrossRef]
- Al-Yafeai, A.; Malarski, A.; Böhm, V. Characterization of carotenoids and vitamin E in R. rugosa and R. canina, Comparative analysis. Food Chem. 2018, 242, 435–442. [Google Scholar] [CrossRef]
- Lachowicz, S.; Oszmiański, J.; Pluta, S. The composition of bioactive compounds and antioxidant activity of Saskatoon berry (Amelanchier alnifolia Nutt.) genotypes grown in central Poland. Food Chem. 2017, 235, 234–243. [Google Scholar] [CrossRef]
- Delgado-Pelayo, R.; Hornero-Mendez, D. Identification and Quantitative Analysis of Carotenoids and Their Esters from Sarsaparilla (Smilax aspera L.) Berries. J. Agric. Food Chem. 2012, 60, 8225–8232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoo, H.E.; Ismail, A.; Mohd-Esa, N.; Idris, S. Carotenoid Content of Underutilized Tropical Fruits. Plant Foods Hum. Nutr. 2008, 63, 170–175. [Google Scholar] [CrossRef]
- Yemiş, O.; Bakkalbaşı, E.; Artık, N. Changes in pigment profile and surface colour of fig (Ficus carica L.) during drying. Int. J. Food Sci. Technol. 2012, 47, 1710–1719. [Google Scholar] [CrossRef]
- Plaza, L.; Colina, C.; Ancos B de Sánchez-Moreno, C.; Pilar Cano, M. Influence of ripening and astringency on carotenoid content of high-pressure treated persimmon fruit (Diospyros kaki L.). Food Chem. 2012, 130, 591–597. [Google Scholar] [CrossRef]
- Veberic, R.; Jurhar, J.; Mikulic-Petkovsek, M.; Stampar, F.; Schmitzer, V. Comparative study of primary and secondary metabolites in 11 cultivars of persimmon fruit (Diospyros kaki L.). Food Chem. 2010, 119, 477–483. [Google Scholar] [CrossRef]
- Ribeiro, P.F.A.; Stringheta, P.C.; de Oliveira, E.B.; Mendonca, A.C.; Sant’Ana, H.M.P. Levels of vitamin C, beta.-carotene and minerals in camu-camu cultivated in different environments/Teor de vitamina C, beta.-caroteno e minerais em camu-camu cultivado em diferentes ambientes. Cienc. Rural 2016, 46, 567–572. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Pelayo, R.; Gallardo-Guerrero, L.; Hornero-Méndez, D. Carotenoid composition of strawberry tree (Arbutus unedo L.) fruits. Food Chem. 2016, 199, 165–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Amaya, D.B. Some considerations in generating carotenoid data for food composition tables. J. Food Compos. Anal. 2000, 13, 641–647. [Google Scholar] [CrossRef]
- Mezadri, T.; Villaño, D.; Fernández-Pachón, M.S.; García-Parrilla, M.C.; Troncoso, A.M. Antioxidant compounds and antioxidant activity in acerola (Malpighia emarginata DC.) fruits and derivatives. J. Food Compos. Anal. 2008, 21, 282–290. [Google Scholar] [CrossRef]
- D’Evoli, L.; Moscatello, S.; Lucarini, M.; Aguzzi, A.; Gabrielli, P.; Proietti, S.; Battistelli, A.; Famiani, F.; Böhm, V.; Lombardi-Boccia, G. Nutritional traits and antioxidant capacity of kiwifruit (Actinidia deliciosa Planch., cv. Hayward) grown in Italy. J. Food Compos. Anal. 2015, 37, 25–29. [Google Scholar] [CrossRef]
- Englberger, L.; Wills, R.B.H.; Blades, B.; Dufficy, L.; Daniells, J.W.; Coyne, T. Carotenoid content and flesh color of selected banana cultivars growing in Australia. Food Nutr. Bull. 2006, 27, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Ekesa, B.; Nabuuma, D.; Blomme, G.; van den Bergh, I. Provitamin A carotenoid content of unripe and ripe banana cultivars for potential adoption in eastern Africa. J. Food Compos. Anal. 2015, 43, 1–6. [Google Scholar] [CrossRef]
- García-Herrera, P.; Sánchez-Mata, M.C.; Cámara, M.; Tardío, J.; Olmedilla-Alonso, B. Carotenoid content of wild edible young shoots traditionally consumed in Spain (Asparagus acutifolius L., Humulus lupulus L., Bryonia dioica Jacq. and Tamus communis L.). J. Sci. Food Agric. 2013, 93, 1692–1698, Erratum in J. Sci. Food Agric. 2014, 94, 1914–1916. [Google Scholar] [CrossRef] [PubMed]
- Mertz, C.; Gancel, A.-L.; Gunata, Z.; Alter, P.; Dhuique-Mayer, C.; Vaillant, F.; Perez, A.M.; Ruales, J.; Brat, P. Phenolic compounds, carotenoids and antioxidant activity of three tropical fruits. J. Food Compos. Anal. 2009, 22, 381–387. [Google Scholar] [CrossRef]
- Mertz, C.; Brat, P.; Caris-Veyrat, C.; Gunata, Z. Characterization and thermal lability of carotenoids and vitamin C of tamarillo fruit (Solanum betaceum Cav.). Food Chem. 2010, 119, 653–659. [Google Scholar] [CrossRef]
- Kornsteiner, M.; Wagner, K.H.; Elmadfa, I. Tocopherols and total phenolics in 10 different nut types. Food Chem. 2006, 98, 381–387. [Google Scholar] [CrossRef]
- Burns, J.; Fraser, P.D.; Bramley, P.M. Identification and quantification of carotenoids, tocopherols and chlorophylls in commonly consumed fruits and vegetables. Phytochemistry 2003, 62, 939–947. [Google Scholar] [CrossRef]
- Fattore, M.; Montesano, D.; Pagano, E.; Teta, R.; Borrelli, F.; Mangoni, A.; Seccia, S.; Albrizio, S. Carotenoid and flavonoid profile and antioxidant activity in “Pomodorino Vesuviano” tomatoes. J. Food Compos. Anal. 2016, 53, 61–68. [Google Scholar] [CrossRef]
- Znidarčič, D.; Ban, D.; Sircelj, H. Carotenoid and chlorophyll composition of commonly consumed leafy vegetables in Mediterranean countries. Food Chem. 2011, 129, 1164–1168. [Google Scholar] [CrossRef]
- Raju, M.; Varakumar, S.; Lakshminarayana, R.; Krishnakantha, T.P.; Baskaran, V. Carotenoid composition and vitamin A activity of medicinally important green leafy vegetables. Food Chem. 2007, 101, 1598–1605. [Google Scholar] [CrossRef]
- Burgos, G.; Muñoa, L.; Sosa, P.; Bonierbale, M.; zum Felde, T.; Díaz, C. In vitro bioaccessibility of lutein and zeaxanthin of yellow fleshed boiled potatoes. Plant Foods Hum. Nutr. 2013, 68, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Champagne, A.; Bernillon, S.; Moing, A.; Rolin, D.; Legendre, L.; Lebot, V. Carotenoid profiling of tropical root crop chemotypes from Vanuatu, South Pacific. J. Food Compos. Anal. 2010, 23, 763–771. [Google Scholar] [CrossRef]
- López, A.; Javier, G.-A.; Fenoll, J.; Hellín, P.; Flores, P. Original Research Article, Chemical composition and antioxidant capacity of lettuce, Comparative study of regular-sized (Romaine) and baby-sized (Little Gem and Mini Romaine) types. J. Food Compos. Anal. 2014, 33, 39–48. [Google Scholar] [CrossRef]
- Fernández-Marín, B.; Míguez, F.; Méndez-Fernández, L.; Agut, A.; Becerril, J.M.; García-Plazaola, J.I.; Kranner, I.; Colville, L. Seed Carotenoid and Tocochromanol Composition of Wild Fabaceae Species Is Shaped by Phylogeny and Ecological Factors. Front. Plant. Sci. 2017, 8, 1428. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-J.; Fonseca, J.M.; Choi, J.-H.; Kubota, C.; Kwon, D.Y. Salt in irrigation water affects the nutritional and visual properties of romaine lettuce (Lactuca sativa L.). J. Agric. Food Chem. 2008, 56, 3772–3776. [Google Scholar] [CrossRef] [PubMed]
- Brazaitytė, A.; Sakalauskienė, S.; Samuolienė, G.; Jankauskienė, J.; Viršilė, A.; Novičkovas, A.; Sirtautas, R.; Miliauskienė, J.; Vaštakaitė, V.; Dabašinskas, L.; et al. The effects of LED illumination spectra and intensity on carotenoid content in Brassicaceae microgreens. Food Chem. 2015, 173, 600–606. [Google Scholar] [CrossRef]
- Bengtsson, A.; Namutebi, A.; Alminger, M.L.; Svanberg, U. Effects of various traditional processing methods on the all-trans-β-carotene content of orange-fleshed sweet potato. J. Food Compos. Anal. 2008, 21, 134–143. [Google Scholar] [CrossRef]
- Hels, O.; Larsen, T.; Christensen, L.P.; Kidmose, U.; Hassan, N.; Thilsted, S.H. Contents of iron, calcium, zinc and β-carotene in commonly consumed vegetables in Bangladesh. J. Food Compos. Anal. 2004, 17, 587–595. [Google Scholar] [CrossRef]
- Fernandez-Orozco, R.; Gallardo-Guerrero, L.; Hornero-Méndez, D. Carotenoid profiling in tubers of different potato (Solanum sp.) cultivars, Accumulation of carotenoids mediated by xanthophyll esterification. Food Chem. 2013, 141, 2864–2872. [Google Scholar] [CrossRef]
- Mosha, T.; Pace, R.; Adeyeye, S.; Laswai, H.; Mtebe, K. Effect of traditional processing practices on the content of total carotenoid, β-carotene, α-carotene and vitamin A activity of selected Tanzanian vegetables. Plant Foods Hum. Nutr. 1997, 50, 189–201. [Google Scholar] [CrossRef]
- Vargas-Murga, L.; de Rosso, V.V.; Mercadante, A.Z.; Olmedilla-Alonso, B. Fruits and vegetables in the Brazilian Household Budget Survey (2008–2009), carotenoid content and assessment of individual carotenoid intake. J. Food Compos. Anal. 2016, 50, 88–96. [Google Scholar] [CrossRef] [Green Version]
- Samuolienė, G.; Viršilė, A.; Brazaitytė, A.; Jankauskienė, J.; Sakalauskienė, S.; Vaštakaitė, V.; Novičkovas, A.; Viškelienėa, A.; Sasnauskasa, A.; Duchovskis, P. Blue light dosage affects carotenoids and tocopherols in microgreens. Food Chem. 2017, 228, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Mazzeo, T.; N’Dri, D.; Chiavaro, E.; Visconti, A.; Fogliano, V.; Pellegrini, N. Effect of two cooking procedures on phytochemical compounds, total antioxidant capacity and colour of selected frozen vegetables. Food Chem. 2011, 128, 627–633. [Google Scholar] [CrossRef]
- Duma, M.; Alsina, I.; Zeipina, S.; Dubova, L. Leaf vegetables as source of phytochemicals. In Proceedings of the 9th Baltic Conference on Food Science and Technology “Food for Consumer Well-Being” (FOODBALT 2014), Jelgava, Latvia, 8–9 May 2014. [Google Scholar]
- Arnold, C.; Schwarzenbolz, U.; Bohm, V. Carotenoids and chlorophylls in processed xanthophyll-rich food. LWT Food Sci. Technol. 2014, 57, 442. [Google Scholar] [CrossRef]
- Simonovska, B.; Vovk, I.; Glavnik, V.; Černelič, K. Effects of extraction and high-performance liquid chromatographic conditions on the determination of lutein in spinach. J. Chromatogr. A 2013, 1276, 95–101. [Google Scholar] [CrossRef]
- Appenroth, K.-J.; Sree, K.S.; Böhm, V.; Hammann, S.; Vetter, W.; Leiterer, M.; Jahreis, G. Nutritional value of duckweeds (Lemnaceae) as human food. Food Chem. 2017, 217, 266–273. [Google Scholar] [CrossRef]
- Lalas, S.; Athanasiadis, V.; Karageorgou, I.; Batra, G.; Nanos, G.D.; Makris, D.P. Nutritional Characterization of Leaves and Herbal Tea of Moringa oleifera Cultivated in Greece. J. Herbs Spices Med. Plants 2017, 23, 320–333. [Google Scholar] [CrossRef]
- Abbet, C.; Slacanin, I.; Hamburger, M.; Potterat, O. Comprehensive analysis of Phyteuma orbiculare L., a wild Alpine food plant. Food Chem. 2013, 136, 595–603. [Google Scholar] [CrossRef]
- Pellegrini, N.; Chiavaro, E.; Gardana, C.; Mazzeo, T.; Contino, D.; Gallo, M.; Riso, P.; Fogliano, V.; Porrini, M. Effect of Different Cooking Methods on Color, Phytochemical Concentration, and Antioxidant Capacity of Raw and Frozen Brassica Vegetables. J. Agric. Food Chem. 2010, 58, 4310–4321. [Google Scholar] [CrossRef] [PubMed]
- Campos, F.M.; Chaves, J.B.P.; de Azeredo, P.M. Handling Practices to Control Ascorbic Acid and β-Carotene Losses in Collards (Brassica oleracea). Food Sci. Technol. Int. 2010, 15, 445–452. [Google Scholar] [CrossRef]
- Arnold, C.; Jentsch, S.; Dawczynski, J.; Bohm, V. Age-related macular degeneration, Effects of a short-term intervention with an oleaginous kale extract—A pilot study. Nutrition 2013, 29, 1412–1417. [Google Scholar] [CrossRef]
- Santos, J.; Herrero, M.; Mendiola, J.A.; Oliva-Teles, M.T.; Ibáñez, E.; Delerue-Matos, C.; Oliveira, M.B.P.P. Assessment of nutritional and metabolic profiles of pea shoots, the new ready-to-eat baby-leaf vegetable. Food Res. Int. 2014, 58, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Granado-Lorencio, F.; Olmedilla-Alonso, B.; Herrero-Barbudo, C.; Sánchez-Moreno, C.; de Ancos, B.; Martínez, J.A.; Pérez-Sacristán, B.; Blanco-Navarro, I. Modified-atmosphere packaging (MAP) does not affect the bioavailability of tocopherols and carotenoids from broccoli in humans, A cross-over study. Food Chem. 2008, 106, 1070–1076. [Google Scholar] [CrossRef]
- Fernández-León, M.F.; Fernández-León, A.M.; Lozano, M.; Ayuso, M.C.; González-Gómez, D. Altered commercial controlled atmosphere storage conditions for ‘Parhenon’ broccoli plants (Brassica oleracea L. var. italica). Influence on the outer quality parameters and on the health-promoting compounds. LWT Food Sci. Technol. 2013, 50, 665–672. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.L.; Rebolloso-Fuentes, M.M. Nutrient composition and antioxidant activity of eight tomato (Lycopersicon esculentum) varieties. J. Food Compos. Anal. 2009, 22, 123–129. [Google Scholar] [CrossRef]
- Dias, M.G.; Camões, M.F.G.F.C.; Oliveira, L. Uncertainty estimation and in-house method validation of HPLC analysis of carotenoids for food composition data production. Food Chem. 2008, 109, 815–824. [Google Scholar] [CrossRef]
- Krauss, S.; Schnitzler, W.H.; Grassmann, J.; Woitke, M. The influence of different electrical conductivity values in a simplified recirculating soilless system on inner and outer fruit quality characteristics of tomato. J. Agric. Food Chem. 2006, 54, 441–448. [Google Scholar] [CrossRef] [PubMed]
- De Pascale, S.; Maggio, A.; Fogliano, V.; Ambrosino, P.; Ritieni, A. Irrigation with saline water improves carotenoids content and antioxidant activity of tomato. J. Hortic. Sci. BioTechnol. 2001, 76, 447–453. [Google Scholar] [CrossRef]
- D’Antuono, L.F.; Elementi, S.; Neri, R. Genotype x environment interaction on carrot germplasm Daucus carota L., Emilia-Romagna. Italus Hortus 2006, 13, 693–697. [Google Scholar]
- Patanè, C.; Pellegrino, A.; Saita, A.; Siracusa, L.; Ruberto, G.; Barbagallo, R. Mediterranean long storage tomato as a source of novel products for the agrifood industry, Nutritional and technological traits. LWT Food Sci. Technol. 2017, 85, 445–448. [Google Scholar] [CrossRef]
- Lahoz, I.; Leiva-Brondo, M.; Martí, R.; Macua, J.I.; Campillo, C.; Roselló, S.; Cebolla-Cornejo, J. Influence of high lycopene varieties and organic farming on the production and quality of processing tomato. Sci. Hortic. 2016, 204, 128–137. [Google Scholar] [CrossRef] [Green Version]
- Aherne, A.; Jiwan, M.; Daly, T.; O’Brien, N. Geographical Location has Greater Impact on Carotenoid Content and Bioaccessibility from Tomatoes than Variety. Plant Foods Hum. Nutr. 2009, 64, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Gautier, H.; Diakou-Verdin, V.; Bénard, C.; Reich, M.; Buret, M.; Bourgaud, F.; Poëssel, J.C.; Caris-Veyrat, C.; Génard, M. How does tomato quality (sugar, acid, and nutritional quality) vary with ripening stage, temperature, and irradiance? J. Agric. Food Chem. 2008, 56, 1241–1250. [Google Scholar] [CrossRef] [PubMed]
- Gautier, H.; Rocci, A.; Buret, M.; Grasselly, D.; Dumas, Y.; Causse, M. Effect of photoselective filters on the physical and chemical traits of vine-ripened tomato fruits. Can. J. Plant. Sci. 2005, 85, 439–446. [Google Scholar] [CrossRef]
- Borghesi, E.; González-Miret, M.L.; Escudero-Gilete, M.L.; Malorgio, F.; Heredia, F.J.; Meléndez-Martínez, A.J. Effects of Salinity Stress on Carotenoids, Anthocyanins, and Color of Diverse Tomato Genotypes. J. Agric. Food Chem. 2011, 59, 11676–11682. [Google Scholar] [CrossRef] [PubMed]
- Vallverdú-Queralt, A.; Oms-Oliu, G.; Odriozola-Serrano, I.; Lamuela-Raventós, R.M.; Martín-Belloso, O.; Elez-Martínez, P. Metabolite profiling of phenolic and carotenoid contents in tomatoes after moderate-intensity pulsed electric field treatments. Food Chem. 2013, 136, 199–205. [Google Scholar] [CrossRef]
- Strati, I.F.; Sinanoglou, V.J.; Kora, L.; Miniadis-Meimaroglou, S.; Oreopoulou, V. Carotenoids from Foods of Plant, Animal and Marine Origin, An Efficient HPLC-DAD Separation Method. Foods 2012, 1, 52–65. [Google Scholar] [CrossRef] [Green Version]
- Hernández, V.; Hellín, P.; Fenoll, J.; Flores, P. Increased temperature produces changes in the bioactive composition of tomato, depending on its developmental stage. J. Agric. Food Chem. 2015, 63, 2378–2382. [Google Scholar] [CrossRef]
- Colle, I.; Lemmens, L.; van Buggenhout, S.; van Loey, A.; Hendrickx, M. Effect of Thermal Processing on the Degradation, Isomerization, and Bioaccessibility of Lycopene in Tomato Pulp. J. Food Sci. 2010, 75, C753–C758. [Google Scholar] [CrossRef]
- Efthimiadou, A.; Katsenios, N.; Karkanis, A.; Papastylianou, P.; Triantafyllidis, V.; Travlos, I.; Bilalis, D.M. Effects of presowing pulsed electromagnetic treatment of tomato seed on growth, yield, and lycopene content. Sci. World J. 2014. [Google Scholar] [CrossRef]
- Stinco, C.M.; Rodríguez-Pulido, F.J.; Escudero-Gilete, M.L.; Gordillo, B.; Vicario, I.M.; Meléndez-Martínez, A.J. Lycopene isomers in fresh and processed tomato products, correlations with instrumental color measurements by digital image analysis and spectroradiometry. Food Res. Int. 2013, 50, 111–120. [Google Scholar] [CrossRef]
- Coyago-Cruz, E.; Corell, M.; Stinco, C.M.; Hernanz, D.; Moriana, A.; Meléndez-Martínez, A.J. Effect of regulated deficit irrigation and cluster position on quality parameters, carotenoids and phenolics of diverse tomato varieties (Solanum lycopersicum L.). Food Res. Int. 2017, 9, 72–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pugliese, A.; O’Callaghan, Y.; Tundis, R.; Galvin, K.; Menichini, F.; O’Brien, N.; Loizzo, M.R. In vitro investigation of the bioaccessibility of carotenoids from raw, frozen and boiled red chili peppers (Capsicum annuum). Eur. J. Nutr. 2014, 53, 501–510. [Google Scholar] [CrossRef]
- Giuffrida, D.; Dugo, P.; Torre, G.; Bignardi, C.; Cavazza, A.; Corradini, C.; Dugo, G. Characterization of 12 Capsicum varieties by evaluation of their carotenoid profile and pungency determination. Food Chem. 2013, 140, 794–802. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Burruezo, A.; del Carmen González-Mas, M.; Nuez, F. Carotenoid Composition and Vitamin A Value in Ají (Capsicum baccatum L.) and Rocoto (C. pubescens R. & P.), 2 Pepper Species from the Andean Region. J. Food Sci. 2010, 75, S44–S53. [Google Scholar] [CrossRef]
- Topuz, A.; Ozdemir, F. Assessment of carotenoids, capsaicinoids and ascorbic acid composition of some selected pepper cultivars (Capsicum annuum L.) grown in Turkey. J. Food Compos. Anal. 2007, 20, 596–602. [Google Scholar] [CrossRef]
- Molnár, H.; Bata-Vidács, I.; Baka, E.; Cserhalmi, Z.; Ferenczi, S.; Tömösközi-Farkas, R.; Adányi, N.; Székács, A. The effect of different decontamination methods on the microbial load, bioactive components, aroma and colour of spice paprika. Food Control. 2018, 83, 131–140. [Google Scholar] [CrossRef]
- Simonne, A.H.; Simonne, E.H.; Eitenmiller, R.R.; Mills, H.A.; Green, N.R. Ascorbic Acid and Provitamin A Contents in Unusually Colored Bell Peppers (Capsicum annuum L.). J. Food Compos. Anal. 1997, 10, 299–311. [Google Scholar] [CrossRef]
- Hornero-Méndez, D.; Costa-García, J.; Mínguez-Mosquera, M.I. Characterization of carotenoid high-producing Capsicum annuum cultivars selected for paprika production. J. Agric. Food Chem. 2002, 50, 5711–5716. [Google Scholar] [CrossRef]
- Minguez-Mosquera, M.I.; Hornero-Mendez, D. Separation and quantification of the carotenoid pigments in red peppers (Capsicum annuum L.), paprika, and oleoresin by reversed-phase HPLC. J. Agric. Food Chem. 1993, 41, 1616–1620. [Google Scholar] [CrossRef]
- Tran, X.T.; Parks, S.E.; Roach, P.D.; Golding, J.B.; Nguyen, M.H. Effects of maturity on physicochemical properties of Gac fruit (Momordica cochinchinensis Spreng). Food Sci. Nutr. 2016, 4, 305. [Google Scholar] [CrossRef]
- Conti, S.; Villari, G.; Amico, E.; Caruso, G. Effects of production system and transplanting time on yield, quality and antioxidant content of organic winter squash (Cucurbita moschata Duch.). Sci. Hortic. 2015, 183, 136–143. [Google Scholar] [CrossRef]
- Murkovic, M.; Mülleder, U.; Neunteufl, H. Carotenoid Content in Different Varieties of Pumpkins. J. Food Compos. Anal. 2002, 15, 633–638. [Google Scholar] [CrossRef]
- Raczyk, M.; Siger, A.; Radziejewska-Kubzdela, E.; Ratusz, K.; Rudzińska, M. Roasting pumpkin seeds and changes in the composition and oxidative stability of cold-pressed oils. Acta Sci. Pol. Technol. Aliment. 2017, 16, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, G.; Rizzolo, A.; Grassi, M.; Provenzi, L.; Lo Scalzo, R. External maturity indicators, carotenoid and sugar compositions and volatile patterns in ‘Cuoredolce®’ and ‘Rugby’ mini-watermelon (Citrullus lanatus (Thunb) Matsumura & Nakai) varieties in relation of ripening degree at harvest. Postharvest Biol. Technol. 2018, 136, 1–11. [Google Scholar] [CrossRef]
- Kurilich, A.; Juvik, J. Simultaneous quantification of carotenoids and tocopherols in corn kernel extracts by HPLC. J. Liq. Chromatogr. Relat. Technol. 1999, 22, 2925–2934. [Google Scholar] [CrossRef]
- Bozalan, N.K.; Karadeniz, F. Carotenoid Profile, Total Phenolic Content, and Antioxidant Activity of Carrots. Int. J. Food Prop. 2011, 14, 1060–1068. [Google Scholar] [CrossRef]
- Borowska, J.E.; Zadernowski, R.; Szajdek, A.; Majewska, K.; Budrewicz, G. Organoleptic, physical and chemical properties of some varieties of carrots suitable in juice production. Pol. J. Nat. Sci. 2005, 18, 173–186. [Google Scholar]
- Aguiló-Aguayo, I.; Gangopadhyay, N.; Lyng, J.G.; Brunton, N.; Rai, D.K. Impact of pulsed light on colour, carotenoid, polyacetylene and sugar content of carrot slices. Innov. Food Sci. Emerg. Technol. 2017, 42, 49–55. [Google Scholar] [CrossRef]
- Nicolle, C.; Simon, G.; Rock, E.; Amouroux, P.; Rémésy, C. Genetic Variability Influences Carotenoid, Vitamin Phenolic, and Mineral Content in White, Yellow, Purple, Orange, and Dark-orange Carrot Cultivars. J. Am. Soc. Hortic. Sci. 2004, 129, 523–529. [Google Scholar] [CrossRef] [Green Version]
- Koca, N. Carotenoids and Antioxidant Activity in Carrots (Daucus carota L.)/Havuçlarda (Daucus carota L.) Karotenoidler ve Antioksidan Aktivite. Ph.D. Thesis, Ankara University, Ankara, Turkey, 2006; 81p. [Google Scholar]
- Rosenfeld, H.J.; Baardseth, P.; Skrede, G. Evaluation of carrot varieties for production of deep fried carrot chips—IV. The influence of growing environment on carrot raw material. Food Res. Int. 1997, 30, 611–618. [Google Scholar] [CrossRef]
- Herrero, M.; Jaime, L.; Martín-Alvarez, P.J.; Cifuentes, A.; Ibáñez, E. Optimization of the extraction of antioxidants from Dunaliella salina microalga by pressurized liquids. J. Agric. Food Chem. 2006, 54, 5597–5603. [Google Scholar] [CrossRef] [PubMed]
- Jaeschke, D.P.; Menegol, T.; Rech, R.; Mercali, G.D.; Marczak, L.D.F. Carotenoid and lipid extraction from Heterochlorella luteoviridis using moderate electric field and ethanol. Process. BioChem. 2016, 51, 1636–1643. [Google Scholar] [CrossRef]
- Castro-Puyana, M.; Herrero, M.; Urreta, I.; Mendiola, J.A.; Cifuentes, A.; Ibanez, E.; Suárez-Alvarez, S. Optimization of clean extraction methods to isolate carotenoids from the microalga Neochloris oleoabundans and subsequent chemical characterization using liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 2013, 13, 4607–4616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Duais, M.; Hohbein, J.; Werner, S.; Böhm, V.; Jetschke, G. Contents of vitamin C, carotenoids, tocopherols, and tocotrienols in the subtropical plant species Cyphostemma digitatum as affected by processing. J. Agric. Food Chem. 2009, 57, 5420–5427. [Google Scholar] [CrossRef]
- Knockaert, G.; Lemmens, L.; van Buggenhout, S.; Hendrickx, M.; van Loey, A. Changes in β-carotene bioaccessibility and concentration during processing of carrot puree. Food Chem. 2012, 133, 60–67. [Google Scholar] [CrossRef]
- Valdivielso, I.; Bustamante, M.A.; de Gordoa, J.C.R.; Nájera, A.I.; Renobales, M.; Barron, L.J.R. Simultaneous analysis of carotenoids and tocopherols in botanical species using one step solid liquid extraction followed by high performance liquid chromatography. Food Chem. 2015, 15, 709–717. [Google Scholar] [CrossRef]
- Lenucci, M.S.; de Caroli, M.; Marrese, P.P.; Iurlaro, A.; Rescio, L.; Böhm, V.; Dalessandro, G.; Piro, G. Enzyme-aided extraction of lycopene from high-pigment tomato cultivars by supercritical carbon dioxide. Food Chem. 2015, 170, 193–202. [Google Scholar] [CrossRef]
- Gámez, M.C.; Calvo, M.M.; Selgas, M.D.; García, M.L.; Erler, K.; Böhm, V.; Catalano, A.; Simone, R.; Palozza, P. Effect of E-beam treatment on the chemistry and on the antioxidant activity of lycopene from dry tomato peel and tomato powder. J. Agric. Food Chem. 2014, 62, 1557–1563. [Google Scholar] [CrossRef]
- Paznocht, L.; Kotíková, Z.; Šulc, M.; Lachman, J.; Orsák, M.; Eliášová, M.; Martinek, P. Free and esterified carotenoids in pigmented wheat, tritordeum and barley grains. Food Chem. 2018, 240, 670–678. [Google Scholar] [CrossRef] [PubMed]
- Brandolini, A.; Hidalgo, A.; Gabriele, S.; Heun, M. Chemical composition of wild and feral diploid wheats and their bearing on domesticated wheats. J. Cereal Sci. 2015, 63, 122–127. [Google Scholar] [CrossRef]
- Hidalgo, A.; Brandolini, A. Nitrogen fertilisation effects on technological parameters and carotenoid, tocol and phenolic acid content of einkorn (Triticum monococcum L. subsp. monococcum), a two-year evaluation. J. Cereal Sci. 2017, 73, 18–24. [Google Scholar] [CrossRef]
- Hidalgo, A.; Scuppa, S.; Brandolini, A. Technological quality and chemical composition of puffed grains from einkorn (Triticum monococcum L. subsp. monococcum) and bread wheat (Triticum aestivum L. subsp. aestivum). LWT Food Sci. Technol. 2016, 68, 541–548. [Google Scholar] [CrossRef]
- Kljak, K.; Grbeša, D. Carotenoid content and antioxidant activity of hexane extracts from selected Croatian corn hybrids. Food Chem. 2015, 167, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Hulshof, P.J.M.; Kosmeijer-Schuil, T.; West, C.E.; Hollman, P.C.H. Quick screening of maize kernels for provitamin A content. J. Food Compos. Anal. 2007, 20, 655–661. [Google Scholar] [CrossRef]
- Pereira-Caro, G.; Cros, G.; Yokota, T.; Crozier, A. Phytochemical Profiles of Black, Red, Brown, and White Rice from the Camargue Region of France. J. Agric. Food Chem. 2013, 61, 7976–7986. [Google Scholar] [CrossRef]
- Atienza, S.G.; Ballesteros, J.; Martín, A.; Hornero-Méndez, D. Genetic variability of carotenoid concentration and degree of esterification among tritordeum (xTritordeum Ascherson et Graebner) and durum wheat accessions. J. Agric. Food Chem. 2007, 55, 4244–4251. [Google Scholar] [CrossRef]
- Ziegler, J.U.; Schweiggert, R.M.; Carle, R. A method for the simultaneous extraction and quantitation of lipophilic antioxidants in Triticum sp. by HPLC-DAD/FLD-MSn. J. Food Compos. Anal. 2015, 39, 94–102. [Google Scholar] [CrossRef]
- Hidalgo, A.; Brandolini, A.; Pompei, C. Carotenoids evolution during pasta, bread and water biscuit preparation from wheat flours. Food Chem. 2010, 121, 746–751. [Google Scholar] [CrossRef]
- Alfieri, M.; Berardo, N.; Redaelli, R.; Hidalgo, A. Carotenoid composition and heterotic effect in selected Italian maize germplasm. J. Cereal Sci. 2014, 59, 181–188. [Google Scholar] [CrossRef]
- Britton, G.; Khachik, F. Carotenoids in Food. In Carotenoids—Volume 5: Nutrition and Health; Britton, G., Liaaen-Jensen, S., Pfander, H., Eds.; Birkhäuser: Basel, Switzerland; Boston, MA, USA; Berlin, Germany, 2009; pp. 45–66. [Google Scholar]
- Rodriguez-Amaya, D. A Guide to Carotenoid Analysis in Foods; ILSI Press: Washington, DC, USA, 2001. [Google Scholar]
- Alquezar, B.; Rodrigo, M.J.; Zacarías, L. Regulation of carotenoid biosynthesis during fruit maturation in the red-fleshed orange mutant Cara Cara. Phytochemistry 2008, 69, 1997–2007. [Google Scholar] [CrossRef]
- Rodrigo, M.-J. Characterization of Pinalate, a novel Citrus sinensis mutant with a fruit-specific alteration that results in yellow pigmentation and decreased ABA content. J. Exp. Bot. 2003, 54, 727–738. [Google Scholar] [CrossRef] [Green Version]
- Fray, R.G.; Grierson, D. Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol. Biol. 1993, 22, 589–602. [Google Scholar] [CrossRef] [PubMed]
- Ronen, G.; Cohen, M.; Zamir, D.; Hirschberg, J. Regulation of carotenoid biosynthesis during tomato fruit development, expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. Plant J. 1999, 17, 341–351. [Google Scholar] [CrossRef]
- Lu, S.; Eck, J.; van Zhou, X.; Lopez, A.B.; O’Halloran, D.M.; Cosman, K.M.; Conlin, B.J.; Dominick, J.; Paolillo, D.J.; Garvin, D.F.; et al. The Cauliflower or Gene Encodes a DnaJ Cysteine-Rich Domain-Containing Protein That Mediates High Levels of b-Carotene Accumulation. Plant Cell 2006, 18, 3594–3605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, X.D.; Al Babili, S.; Kloti, A.; Zhang, J.; Lucca, P.; Beyer, P.; Potrykus, I. Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 2000, 287, 303–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meléndez-Martínez, A.J.; Fraser, P.D.; Bramley, P.M. Accumulation of health promoting phytochemicals in wild relatives of tomato and their contribution to in vitro antioxidant activity. Phytochemistry 2010, 71, 1104–1114. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B.; Kimura, M. Harvest Plus Handbook for Carotenoid Analysis; International Food Policy Research Institute (IFPRI): Washington, DC, USA; International Center for Tropical Agriculture (CIAT): Cali, Colombia, 2004. [Google Scholar]
- Sivakumar, D.; Jifon, J.; Soundy, P. Spectral quality of photo-selective shade nettings improves antioxidants and overall quality in selected fresh produce after postharvest. Food Rev. Int. 2017, 34, 290–307. [Google Scholar] [CrossRef]
- Sakalauskaitė, J.; Viskelis, P.; Dambrauskienė, E.; Sakalauskienė, S.; Samuoliene, G.; Brazaitytė, A.; Duchovskis, P.; Urbonavičienė, D. The effects of different UV-B radiation intensities on morphological and biochemical characteristics in Ocimum basilicum L. J. Sci. Food Agric. 2013, 93, 1266–1271. [Google Scholar] [CrossRef]
- Poiroux-Gonord, F.; Bidel, L.P.R.; Fanciullino, A.L.; Gautier, H.; Lauri-Lopez, F.; Urban, L. Health benefits of vitamins and secondary metabolites of fruits and vegetables and prospects to increase their concentrations by agronomic approaches. J. Agric. Food Chem. 2010, 58, 12065–12082. [Google Scholar] [CrossRef]
- Li, P.; Cheng, L. The shaded side of apple fruit becomes more sensitive to photoinhibition with fruit development. Physiol. Plant. 2008, 134, 282–292. [Google Scholar] [CrossRef]
- Kimura, M.; Rodriguez-Amaya, D.B.; Yokoyama, S.M. Cultivar differences and geographic effects on the carotenoid composition and vitamin A value of papaya. Leb. Wissen Technol. 1991, 24, 415–418. [Google Scholar]
- Mercadante, A.Z.; Rodriguez-Amaya, D.B. Effects of Ripening, Cultivar Differences, and Processing on the Carotenoid Composition of Mango. J. Agric. Food Chem. 1998, 46, 128–130. [Google Scholar] [CrossRef]
- Mercadante, A.Z.; Rodriguez-Amaya, D.B. Carotenoid composition of a leafy vegetable in relation to some agricultural variables. J. Agric. Food Chem. 2002, 39, 1094–1097. [Google Scholar] [CrossRef]
- Coyago-Cruz, E.; Corell, M.; Moriana, A.; Hernanz, D.; Benítez-González, A.M.; Stinco, C.M.; Meléndez-Martínez, A.J. Antioxidants (carotenoids and phenolics) profile of cherry tomatoes as influenced by deficit irrigation, ripening and cluster. Food Chem. 2018, 240, 870–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geetha, G.A. Changes in fruit quality and carotenoid profile in tomato (Solanum lycopersicon L.) genotypes under elevated temperature. J. Hortl. Sci. 2015, 10, 38–43. [Google Scholar]
- Loladze, I.; Nolan, J.M.; Ziska, L.H.; Knobbe, A.R.; Loladze, I.; Knobbe, A.R. Carotenoids and Carbon Dioxide Rising Atmospheric CO2 Lowers Concentrations of Plant Carotenoids Essential to Human Health, A Meta-Analysis. Mol. Nutr. Food Res. 2019, 63, e1801047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dzomeku, B.; Wald, J.; Wünsche, J.; Nohr, D.; Biesalski, H. Climate Change Enhanced Carotenoid Pro-Vitamin A Levels of Selected Plantain Cultivars. Plants 2020, 9, 541. [Google Scholar] [CrossRef] [PubMed]
- Navarro, J.M.; Flores, P.; Garrido, C.; Martinez, V. Changes in the contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity. Food Chem. 2006, 96, 66–73. [Google Scholar] [CrossRef]
- Bang, H.; Leskovar, D.I.; Bender, D.A.; Crosby, K. Deficit irrigation impact on lycopene, soluble solids, firmness and yield of diploid and triploid watermelon in three distinct environments. J. Hortic. Sci. BioTechnol. 2004, 79, 885–890. [Google Scholar] [CrossRef]
- Proietti, S.; Rouphael, Y.; Colla, G.; Cardarelli, M.; de Agazio, M.; Zacchini, M.; Rea, E.; Moscatello, S.; Battistelli, A. Fruit quality of mini-watermelon as affected by grafting and irrigation regimes. J. Sci. Food Agric. 2008, 88, 1107–1114. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, E.; Leyva, R.; Constán-Aguilar, C.; Romero, L.; Ruiz, J.M. Grafting under water stress in tomato cherry, improving the fruit yield and quality Grafting under water stress in tomato cherry, improving the fruit yield and quality. Ann. Appl. Biol. 2012, 161, 302–312. [Google Scholar] [CrossRef]
- Buendía, B.; Allende, A.; Nicolás, E.; Alarcón, J.J.; Gil, M. Effect of Regulated Deficit Irrigation and Crop Load on the Antioxidant Compounds of Peaches. J. Agric. Food Chem. 2008, 56, 3601–3608. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.-L.; Lu, B.-Y.; Gong, Z.-H.; Shah, S.N.M. Effects of drought stress on capsanthin during fruit development and ripening in pepper (Capsicum annuum L.). Agric. Water Manag. 2014, 137, 46–51. [Google Scholar] [CrossRef]
- Flores, P.; Navarro, J.; Garrido, C.; Rubio-Asensio, J.S.; Martínez, V. Influence of Ca2+, K+ and NO3− fertilisation on nutritional quality of pepper. J. Sci. Food Agric. 2004, 84, 569–574. [Google Scholar] [CrossRef]
- Seljåsen, R.; Kristensen, H.L.; Lauridsen, C.; Wyss, G.S.; Kretzschmar, U.; Birlouez-Aragone, I.; Kahl, J. Quality of carrots as affected by pre- and postharvest factors and processing. J. Sci. Food Agric. 2013, 93, 2611–2626. [Google Scholar] [CrossRef] [Green Version]
- Dorais, M. Effect of cultural management on tomato fruit health qualities. Acta Hortic. 2007, 744, 279–294. [Google Scholar] [CrossRef]
- Jones, R.B.B.; Stefanelli, D.; Tomkins, R.B.B. Pre-harvest and post-harvest factors affecting ascorbic acid and carotenoid content in fruits and vegetables. Acta Hortic. 2015, 1106, 31–41. [Google Scholar] [CrossRef]
- Granado, F.; Olmedilla, B.; Blanco, I.; Rojas Hidalgo, E. Carotenoid composition in raw and cooked Spanish vegetables. J. Agric. Food Chem. 1992, 40, 2135–2140. [Google Scholar] [CrossRef] [Green Version]
- Knockaert, G.; Pulissery, S.K.; Colle, I.; van Buggenhout, S.; Hendrickx, M.; van Loey, A. Lycopene degradation, isomerization and in vitro bioaccessibility in high pressure homogenized tomato puree containing oil, Effect of additional thermal and high pressure processing. Food Chem. 2012, 135, 1290–1297. [Google Scholar] [CrossRef]
- Nguyen, M.; Francis, D.; Schwartz, S. Thermal isomerisation susceptibility of carotenoids in different tomato varieties. J. Sci. Food Agric. 2001, 81, 910–917. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.J.; Vicario, I.M.; Heredia, F.J. Carotenoids, Color, and Ascorbic Acid Content of a Novel Frozen-Marketed Orange Juice. J. Agric. Food Chem. 2007, 55, 1347–1355. [Google Scholar] [CrossRef] [PubMed]
- Moyano, M.J.; Meléndez-Martínez, A.J.; Alba, J.; Heredia, F.J. A comprehensive study on the colour of virgin olive oils and its relationship with their chlorophylls and carotenoids indexes (I), CIEXYZ non-uniform colour space. Food Res. Int. 2008, 41, 505–512. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias, M.G.; Borge, G.I.A.; Kljak, K.; Mandić, A.I.; Mapelli-Brahm, P.; Olmedilla-Alonso, B.; Pintea, A.M.; Ravasco, F.; Tumbas Šaponjac, V.; Sereikaitė, J.; et al. European Database of Carotenoid Levels in Foods. Factors Affecting Carotenoid Content. Foods 2021, 10, 912. https://doi.org/10.3390/foods10050912
Dias MG, Borge GIA, Kljak K, Mandić AI, Mapelli-Brahm P, Olmedilla-Alonso B, Pintea AM, Ravasco F, Tumbas Šaponjac V, Sereikaitė J, et al. European Database of Carotenoid Levels in Foods. Factors Affecting Carotenoid Content. Foods. 2021; 10(5):912. https://doi.org/10.3390/foods10050912
Chicago/Turabian StyleDias, M. Graça, Grethe Iren A. Borge, Kristina Kljak, Anamarija I. Mandić, Paula Mapelli-Brahm, Begoña Olmedilla-Alonso, Adela M. Pintea, Francisco Ravasco, Vesna Tumbas Šaponjac, Jolanta Sereikaitė, and et al. 2021. "European Database of Carotenoid Levels in Foods. Factors Affecting Carotenoid Content" Foods 10, no. 5: 912. https://doi.org/10.3390/foods10050912