Chickpea and Chestnut Flours as Non-Gluten Alternatives in Cookies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Reagents, and Ingredients
2.2. Cookie Preparation
2.3. Chemical Analysis of Pulse Flours and Cookies
2.3.1. Nutritional Profile
2.3.2. Soluble Sugars
2.3.3. Fatty Acids
2.3.4. Organic Acids
2.4. Flour Properties
2.4.1. Hydration Properties
2.4.2. Particle Size
2.5. Dough Characteristics
2.6. Cookie Characteristics
2.7. Acceptance Test
2.8. Statistical Analysis
3. Results and Discussion
3.1. Flour Analysis
3.1.1. Nutritional Profile and Chemical Analysis
3.1.2. Flour Properties
3.1.3. Dough Characteristics
3.2. Cookie Analysis
3.2.1. Cookies Nutritional Profile and Chemical Analysis
3.2.2. Cookie Physical Parameters
3.2.3. Sensorial Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hall, C.; Hillen, C.; Robinson, J.G. Composition, nutritional value, and health benefits of pulses. Cereal Chem. 2017, 94, 11–31. [Google Scholar] [CrossRef]
- Sozer, N.; Holopainen-Mantila, U.; Poutanen, K. Traditional and new food uses of pulses. Cereal Chem. 2017, 94, 66–73. [Google Scholar] [CrossRef]
- Rebello, C.J.; Greenway, F.L.; Finley, J.W. Whole grains and pulses: A comparison of the nutritional and health benefits. J. Agric. Food Chem. 2014, 62, 7029–7049. [Google Scholar] [CrossRef] [PubMed]
- Champ, M.M.J. Non-nutrient bioactive substances of pulses. Br. J. Nut. 2002, 88, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Bresciani, A.; Marti, A. Using pulses in baked products: Lights, shadows, and potential solutions. Foods 2019, 8, 451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roland, W.S.U.; Pouvreau, L.; Curran, J.; Van De Velde, F.; De Kok, P.M.T. Flavor aspects of pulse ingredients. Cereal Chem. 2017, 94, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Pareyt, B.; Delcour, J.A. The Role of Wheat Flour Constituents, Sugar, and Fat in Low Moisture Cereal Based Products: A Review on Sugar-Snap Cookies. Crit. Rev. Food Sci. Nutr. 2008, 48, 824–839. [Google Scholar] [CrossRef] [PubMed]
- McWalters, K.H. Cooking and Baking Properties of Defatted Peanut, Soyabean and Field Peas Flours. Cereal Chem. 1978, 55, 853–863. [Google Scholar]
- Cappa, C.; Kelly, J.D.; Ng, P.K.W. Baking performance of 25 edible dry bean powders: Correlation between cookie quality and rapid test indices. Food Chem. 2020, 302, 125338. [Google Scholar] [CrossRef] [PubMed]
- Zucco, F.; Borsuk, Y.; Arntfield, S.D. Physical and nutritional evaluation of wheat cookies supplemented with pulse flours of different particle sizes. LWT Food Sci. Technol. 2011, 44, 2070–2076. [Google Scholar] [CrossRef]
- Mieszkowska, A.; Marzec, A. Effect of polydextrose and inulin on texture and consumer preference of short-dough biscuits with chickpea flour. LWT Food Sci. Technol. 2016, 73, 60–66. [Google Scholar] [CrossRef]
- Yamsaengsung, R.; Berghofer, E.; Schoenlechner, R. Physical properties and sensory acceptability of cookies made from chickpea addition to white wheat or whole wheat flour compared to gluten-free amaranth or buckwheat flour. Int. J. Food Sci. Technol. 2012, 47, 2221–2227. [Google Scholar] [CrossRef]
- Rachwa-Rosiak, D.; Nebesny, E.; Budryn, G. Chickpeas—Composition, Nutritional Value, Health Benefits, Application to Bread and Snacks: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1137–1145. [Google Scholar] [CrossRef]
- Hao, H.; Li, Q.; Bao, W.; Wu, Y.; Ouyang, J. Relationship between physicochemical characteristics and in vitro digestibility of chestnut (Castanea mollissima) starch. Food Hydrocoll. 2018, 84, 193–199. [Google Scholar] [CrossRef]
- De Vasconcelos, M.C.B.M.; Bennett, R.N.; Rosa, E.A.S.; Ferreira-Cardoso, J.V. Composition of European chestnut (Castanea sativa Mill.) and association with health effects: Fresh and processed products. J. Sci. Food Agric. 2010, 90, 1578–1589. [Google Scholar] [CrossRef]
- Šoronja-Simović, D.; Pajin, B.; Šubarić, D.; Dokić, L.; Šereš, Z.; Nikolić, I. Quality, Sensory and Nutritional Characteristics of Cookies Fortified with Chestnut Flour. J. Food Process. Preserv. 2017, 41, e12887. [Google Scholar] [CrossRef]
- Demirkesen, I. Formulation of Chestnut Cookies and their Rheological and Quality Characteristics. J. Food Qual. 2016, 39, 264–273. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 18th ed.; AOAC: Arlinton, VA, USA, 2005. [Google Scholar]
- Reis, F.; Barros, L.; Martins, A.; Vasconcelos, M.H.; Morales, P.; Ferreira, I.C.F.R. Leccinum molle (Bon) Bon and Leccinum vulpinum Watling: The first study of their nutritional and antioxidant potential. Molecules 2016, 21, 246. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, R.; Barros, L.; Dueñas, M.; Calhelha, R.C.; Carvalho, A.M.; Queiroz, M.J.R.P.; Ferreira, I.C.F.R. Nutrients, phytochemicals and bioactivity of wild Roman chamomile: A comparison between the herb and its preparations. Food Chem. 2013, 136, 718–725. [Google Scholar] [CrossRef] [Green Version]
- Barros, L.; Pereira, C.; Ferreira, I.C.F.R. Optimized analysis of organic acids in edible mushrooms from Portugal by ultra fast liquid chromatography and photodiode array detection. Food Anal. Method 2013, 6, 309–316. [Google Scholar] [CrossRef]
- American Association of Cereal Chemists (AACC). AACC Approved Methods, AACC Method 61-02.01, Pasting Properties; AACC 56.30, Water Binding Capacity, 11th ed.; AACC: St Paul, MN, USA, 2012. [Google Scholar]
- Cruz, B.R.; Abraao, A.S.; Lemos, A.M.; Nunes, F.M. Chemical composition and functional properties of native chestnut starch (Castanea sativa Mill). Carbohydr. Polym. 2013, 94, 594–602. [Google Scholar] [CrossRef]
- Jukanti, A.K.; Gaur, P.M.; Gowda, C.L.L.; Chibbar, R.N. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): A review. Br. J. Nutr. 2012, 108, S11–S26. [Google Scholar] [CrossRef] [Green Version]
- Tharanathan, R.N.; Mahadevamma, S. Grain legumes—A boon to human nutrition. Trends Food Sci. Technol. 2003, 14, 507–518. [Google Scholar] [CrossRef]
- Tosh, S.M.; Yada, S. Dietary fibres in pulse seeds and fractions: Characterization, functional attributes, and applications. Food Res. Int. 2010, 43, 450–460. [Google Scholar] [CrossRef]
- Sreerama, Y.N.; Sashikala, V.B.; Pratape, V.M.; Singh, V. Nutrients and antinutrients in cowpea and horse gram flours in comparison to chickpea flour: Evaluation of their flour functionality. Food Chem. 2012, 131, 462–468. [Google Scholar] [CrossRef]
- Ahmed, J.; Al-Attar, H.; Arfat, Y.A. Effect of particle size on compositional, functional, pasting and rheological properties of commercial water chestnut flour. Food Hydrocoll. 2016, 52, 888–895. [Google Scholar] [CrossRef]
- Belorio, M.; Sahagún, M.; Gómez, M. Influence of flour particle size distribution on the quality of maize gluten-free cookies. Foods 2019, 8, 83. [Google Scholar] [CrossRef] [Green Version]
- Mancebo, C.M.; Rodriguez, P.; Gómez, M. Assessing rice flour-starch-protein mixtures to produce gluten free sugar-snap cookies. LWT Food Sci. Technol. 2016, 67, 127–132. [Google Scholar] [CrossRef]
- Dokić, L.; Nikolić, I.; Simović, D.Š.; Pajin, B.; Juul, N. Sensory Characterization of Cookies with Chestnut Flour. Int. J. Nutr. Food Eng. 2014, 8, 416–419. [Google Scholar]
- Kweon, M.; Slade, L.; Levine, H.; Gannon, D. Cookie-versus cracker-baking—What’s the difference? Flour functionality requirements explored by src and alveography. Crit. Rev. Food Sci. Nutr. 2014, 54, 115–138. [Google Scholar] [CrossRef] [PubMed]
- Rocha-Parra, A.F.; Sahagún, M.; Ribotta, P.D.; Ferrer, C.; Gómez, M. Particle Size and Hydration Properties of Dried Apple Pomace: Effect on Dough Viscoelasticity and Quality of Sugar-Snap Cookies. Food Bioproc. Tech. 2019, 12, 1083–1092. [Google Scholar] [CrossRef]
- Sahagún, M.; Gómez, M. Influence of protein source on characteristics and quality of gluten-free cookies. J. Food Sci. Technol. 2018, 55, 4131–4138. [Google Scholar] [CrossRef]
- Jiang, B.; Liu, Y.T.; Bhandari, B.; Zhou, W.B. Impact of caramelization on the glass transition temperature of several caramelized sugars. Part 1: Chemical analyses. J. Agric. Food Chem. 2008, 56, 5138–5147. [Google Scholar] [CrossRef]
- Paciulli, M.; Rinaldi, M.; Cavazza, A.; Ganino, T.; Rodolfi, M.; Chiancone, B.; Chiavaro, E. Effect of chestnut flour supplementation on physico-chemical properties and oxidative stability of gluten-free biscuits during storage. LWT Food Sci. Technol. 2018, 98, 451–457. [Google Scholar] [CrossRef]
- Chevalier, S.; Colonna, P.; Buleon, A.; Della Valle, G. Physicochemical behaviors of sugars, lipids, and gluten in short dough and biscuit. J. Agric. Food Chem. 2000, 48, 1322–1326. [Google Scholar] [CrossRef]
- Purlis, E. Browning development in bakery products—A review. J. Food Eng. 2010, 99, 239–249. [Google Scholar] [CrossRef]
- Barreira, J.C.M.; Pereira, J.A.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R. Sugars profiles of different chestnut (Castanea sativa Mill.) and Almond (Prunus dulcis) Cultivars by HPLC-RI. Plant. Foods Hum. Nutr. 2010, 65, 38–43. [Google Scholar] [CrossRef]
- Lund, M.N.; Ray, C.A. Control of Maillard Reactions in Foods: Strategies and Chemical Mechanisms. J. Agric. Food Chem. 2017, 65, 4537–4552. [Google Scholar] [CrossRef] [Green Version]
Nutritional Value | CPF ¹ | CNF ² |
---|---|---|
Crude Fat | 4.6 ± 0.3 * | 2.40 ± 0.03 |
Protein | 19.9 ± 0.2 * | 8.0 ± 0.3 |
Ash | 6.0 ± 0.5 | 7.7 ± 0.3 * |
Carbohydrates | 53.8 ± 0.3 | 71 ± 1 * |
Total dietary fibre | 15.7 ± 0.1 * | 10.8 ± 0.5 |
Soluble Sugars | ||
Fructose | 1.0 ± 0.1 | 1.4 ± 0.1 * |
Glucose | nd | 1.5 ± 0.2 |
Sucrose | 4.1 ± 0.1 | 16.2 ± 0.6 * |
Trehalose | nd | 0.7 ± 0.1 |
Total Sugars | 5.1 ± 0.2 | 20 ± 1 * |
Organic acids | ||
Oxalic acid | 0.046 ± 0.002 * | 0.016 ± 0.002 |
Quinic acid | nd 3 | 0.015 ± 0.003 |
Malic acid | 0.13 ± 0.02 | nd 3 |
Fumaric acid | tr 4 | nd 3 |
Total Organic Acids | 0.18 ± 0.02 * | 0.031 ± 0.001 |
Fatty Acids | ||
C10:0 5 | 3.94 ± 0.02 | nd 3 |
C14:0 6 | 4.24 ± 0.01 | nd 3 |
C15:0 7 | 3.82 ± 0.01 | nd 3 |
C16:0 8 | 16.22 ± 0.01 | 26.54 ± 0.03 * |
C16:1 9 | 3.93 ± 0.03 | nd 3 |
C17:0 10 | 3.81 ± 0.02 | nd 3 |
C18:0 11 | 4.80 ± 0.01 | 22.23 ± 0.02 * |
C18:1n9c 12 | 35.25 ± 0.14 | nd 3 |
C18:2n6c 13 | 7.20 ± 0.01 | 28.37 ± 0.01 * |
C18:3n3 14 | 4.45 ± 0.02 | 22.86 ± 0.02 * |
C20:0 15 | 4.22 ± 0.01 | nd 3 |
C21:1 16 | 4.17 ± 0.01 | nd 3 |
C22:0 17 | 3.940 ± 0.003 | nd 3 |
Total SFA 18 | 45.01 ± 0.09 | 48.78 ± 0.01 * |
Total MUFA 19 | 43.4 ± 0.1 | nd 3 |
Total PUFA 20 | 11.65 ± 0.01 | 51.22 ± 0.01 |
100CPF 1 | 75CPF25CNF | 50CPF50CNF | 25CPF75CNF | 100CNF 2 | |
---|---|---|---|---|---|
WHC 3 (g/g) | 2.08 ± 0.14 a | 2.13 ± 0.06 a | 2.17 ± 0.05 a | 2.03 ± 0.14 a | 1.97 ± 0.07 a |
SV 4 (mL/g) | 2.86 ± 0.31 a | 2.80 ± 0.00 a | 2.90 ± 0.14 a | 2.60 ± 0.20 a | 2.60 ± 0.20 a |
D(4;3) 5 | 113 ± 4 b | nd 11 | nd 11 | nd 11 | 80 ± 8 a |
D(90) 6 | 329 ± 13 b | nd 11 | nd 11 | nd 11 | 211 ± 23 a |
G’ (Pa) 7 | 100,255 ± 13 a | 100,540 ± 4 a | 115,060 ± 17 a | 249,100 ± 1 a | 685,200 ± 5 b |
G”(Pa) 8 | 42,660 ± 1344 a | 38,075 ± 3642 a | 38,055 ± 6131 a | 65,185 ± 1435 b | 101,695 ± 4391 c |
Tan δ 9 | 0.45 ± 0.02 c | 0.40 ± 0.01 bc | 0.33 ± 0.01 abc | 0.28 ± 0.01 ab | 0.26 ± 0.11 a |
G* 10 | 109,250 ± 10,536 a | 108,250 ± 5162 a | 121,250 ± 23,405 a | 257,900 ± 1131 b | 656,300 ± 88,247 c |
Nutritional Value | 100CPF 1 | 75CPF25CNF | 50CPF50CNF | 25CPF75CNF | 100CNF 2 |
Crude Fat | 15.71 ± 0.03 a | 15.6 ± 0.5 a | 15.6 ± 0.2 a | 15.2 ± 0.2 a | 15.2 ± 0.3 a |
Proteins | 9.8 ± 0.5 a | 8.0 ± 0.2 b | 6.9 ± 0.4 c | 5.97 ± 0.01 d | 3.9 ± 0.4 e |
Ash | 5.0 ± 0.5 a | 1.8 ± 0.1 b | 4.9 ± 0.5 a | 2.5 ± 0.1 b | 5.5 ± 0.4 a |
Carbohydrates | 58 ± 1 c | 64 ± 1 b | 63 ± 1 b | 68 ± 1 a | 66 ± 0.9 a |
Total dietary fibre | 11.2 ± 0.1 a | 10.2 ± 0.1 b | 9.6 ± 0.6 bc | 8.7 ± 0.3 c | 9.0 ± 0.1 c |
Energy (kcal/100 g dw) | 435 ± 2 b | 449 ± 2 a | 439 ± 3 b | 450 ± 1 a | 434 ± 1 b |
Soluble Sugars | 100CPF | 75CPF25CNF | 50CPF50CNF | 25CPF75CNF | 100CNF |
Fructose | 3.0 ± 0.1 a | 2.0 ± 0.1 bc | 1.8 ± 0.5 c | 1.4 ± 0.1 c | 2.9 ± 0.5 ab |
Glucose | nd 3 | nd 3 | nd 3 | nd 3 | 2.0 ± 0.6 |
Sucrose | 21.5 ± 0.8 b | 14.4 ± 0.4 c | 16.3 ± 0.9 c | 19.7 ± 0.5 b | 35 ± 2 a |
Trehalose | nd 3 | nd 3 | nd 3 | nd 3 | 1.3 ± 0.2 |
Total Sugars | 24.5 ± 0.9 b | 16.3 ± 0.3 d | 18.0 ± 0.4 cd | 21 ± 1 c | 41 ± 3 a |
Organic acids | |||||
Oxalic acid | 0.094 ± 0.001 b | 0.115 ± 0.005 a | 0.037 ± 0.002 c | 0.035 ± 0.002 c | 0.004 ± 0.001 d |
Quinic acid | nd 3 | nd 3 | nd 3 | 0.118 ± 0.005 a | 0.047 ± 0.003 b |
Malic acid | 0.155 ± 0.003 a | 0.123 ± 0.002 b | 0.10 ± 0.01 c | nd 3 | nd 3 |
Fumaric acid | tr 4 | tr 4 | tr 4 | tr 4 | nd 3 |
Total Organic Acids | 0.25 ± 0.07 a | 0.238 ± 0.004 a | 0.14 ± 0.01 b | 0.15 ± 0.01 b | 0.051 ± 0.002 c |
Fatty Acids | 100CPF | 75CPF25CNF | 50CPF50CNF | 25CPF75CNF | 100CNF |
C12:0 5 | 0.33 ± 0.01 a | 0.308 ± 0.001 ab | 0.34 ± 0.01 a | 0.29 ± 0.03 b | 0.30 ± 0.01 ab |
C14:0 6 | 1.04 ± 0.03 a | 1.02 ± 0.01 a | 1.06 ± 0.01 a | 0.9 ± 0.1 b | 0.98 ± 0.03 ab |
C15:0 7 | nd 3 | nd 3 | nd 3 | nd 3 | 0.06 ± 0.01 |
C16:0 8 | 43.8 ± 0.4 bc | 44.2 ± 0.1 b | 44.40 ± 0.02 b | 43.5 ± 0.4 c | 45.4 ± 0.1 a |
C16:1 9 | 0.17 ± 0.01 a | 0.153 ± 0.001 b | 0.158 ± 0.001 b | 0.155 ± 0.002 b | 0.129 ± 0.002 c |
C17:0 10 | 0.12 ± 0.01 a | nd 3 | nd 3 | nd 3 | 0.12 ± 0.01 a |
C18:0 11 | 4.74 ± 0.04 a | 4.56 ± 0.02 b | 4.56 ± 0.01 b | 4.50 ± 0.03 b | 2.85 ± 0.01 c |
C18:1n9c 12 | 32.8 ± 0.2 b | 32.93 ± 0.06 b | 33.09 ± 0.01 b | 34.1 ± 0.3 a | 32.7 ± 0.1 b |
C18:2n6c 13 | 15.5 ± 0.1 bc | 15.83 ± 0.04 a | 15.397 ± 0.003 c | 15.6 ± 0.2 abc | 15.67 ± 0.03 ab |
C18:3n3 14 | 0.452 ± 0.004 b | 0.450 ± 0.002 b | 0.442 ± 0.001 b | 0.43 ± 0.01 b | 0.56 ± 0.04 a |
C20:0 15 | 0.33 ± 0.01 b | 0.289 ± 0.002 c | 0.286 ± 0.001 c | 0.282 ± 0.001 c | 0.424 ± 0.001 a |
C20:1 16 | 0.146 ± 0.002 a | 0.116 ± 0.001 b | 0.116 ± 0.001 b | 0.116 ± 0.003 b | 0.10 ± 0.02 b |
C20:2 17 | 0.40 ± 0.01 b | nd 3 | nd 3 | nd 3 | 0.436 ± 0.002 a |
C22:0 18 | nd 3 | nd 3 | nd 3 | nd 3 | 0.193 ± 0.001 |
C22:1 19 | 0.19 ± 0.01 a | 0.145 ± 0.003 c | 0.155 ± 0.001 b | 0.149 ± 0.001 bc | nd 3 |
C24:0 20 | nd 3 | nd 3 | nd 3 | nd 3 | 0.124 ± 0.001 |
Total SFA 21 | 50.4 ± 0.3 a | 50.4 ± 0.1 a | 50.642 ± 0.001 a | 49.5 ± 0.5 b | 50.05 ± 0.04 b |
Total MUFA 22 | 33.3 ± 0.2 bc | 33.3 ± 0.1 bc | 33.52 ± 0.01 b | 34.5 ± 0.3 a | 32.9 ± 0.1 c |
Total PUFA 23 | 16.4 ± 0.1 bc | 16.28 ± 0.04 a | 15.838 ± 0.004 c | 16.0 ± 0.2 abc | 16.7 ± 0.1 ab |
100CPF 1 | 75CPF25CNF | 50CPF50CNF | 25CPF75CNF | 100CNF 2 | |
---|---|---|---|---|---|
Physical characteristics | |||||
Diameter (mm) | 49.79 ± 2.31 b | 50.69 ± 1.25 b | 49.25 ± 0.28 b | 45.89 ± 0.36 a | 43.37 ± 0.61 a |
Thickness (mm) | 9.26 ± 0.32 ab | 9.57 ± 0.16 b | 9.45 ± 0.21 b | 9.65 ± 0.10 b | 9.01 ± 0.04 a |
Spread ratio | 5.38 ± 0.08 c | 5.31 ± 0.09 bc | 5.21 ± 0.10 b | 4.76 ± 0.02 a | 4.82 ± 0.07 a |
Hardness (N) | 56.0 ± 4.1 ab | 51.9 ± 1.9 a | 56.1 ± 0.3 ab | 61.2 ± 6.4 bc | 64.5 ± 2.8 c |
Gradient (N/s) | 183.5 ± 26.9 a | 202.7 ±11.9 ab | 189.7 ± 25.3 a | 229.74 ± 1.1 b | 236.1 ± 12.5 b |
Colour parameters | |||||
L* | 52.70 ± 0.80 cd | 54.89 ± 4.39 d | 45.87 ± 2.12 bc | 37.67 ± 0.41 a | 43.15 ± 4.89 ab |
a* | 8.45 ± 0.67 a | 10.70 ± 0.82 b | 9.79 ± 0.48 b | 10.53 ± 0.06 b | 12.54 ± 0.33 c |
b* | 31.11 ± 0.85 c | 29.42 ± 1.39 c | 24.69 ± 1.43 b | 21.41 ± 0.08 a | 22.50 ± 1.73 ab |
Sensory acceptability | |||||
Appearance | 7.32 ± 1.54 d | 7.13 ± 1.49 cd | 6.66 ± 1.46 b | 6.73 ± 1.64 bc | 5.94 ± 1.96 a |
Odour | 6.01 ± 1.68 ab | 6.19 ± 1.57 ab | 6.44 ± 1.49 b | 6.29 ± 1.54 b | 5.83 ± 1.68 a |
Texture | 5.85 ± 1.78 b | 6.36 ± 1.56 c | 5.98 ± 1.58 bc | 5.84 ± 1.68 b | 4.94 ± 1.81 a |
Taste | 6.01 ± 1.96 b | 6.30 ± 1.68 b | 6.35 ± 1.43 b | 6.24 ± 1.65 b | 5.36 ± 1.92 a |
Overall acceptability | 6.38 ± 1.50 b | 6.77 ± 1.19 c | 6.38 ± 1.21 bc | 6.39 ± 1.41 bc | 5.60 ± 1.37 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torra, M.; Belorio, M.; Ayuso, M.; Carocho, M.; Ferreira, I.C.F.R.; Barros, L.; Gómez, M. Chickpea and Chestnut Flours as Non-Gluten Alternatives in Cookies. Foods 2021, 10, 911. https://doi.org/10.3390/foods10050911
Torra M, Belorio M, Ayuso M, Carocho M, Ferreira ICFR, Barros L, Gómez M. Chickpea and Chestnut Flours as Non-Gluten Alternatives in Cookies. Foods. 2021; 10(5):911. https://doi.org/10.3390/foods10050911
Chicago/Turabian StyleTorra, Marta, Mayara Belorio, Manuel Ayuso, Marcio Carocho, Isabel C. F. R. Ferreira, Lillian Barros, and Manuel Gómez. 2021. "Chickpea and Chestnut Flours as Non-Gluten Alternatives in Cookies" Foods 10, no. 5: 911. https://doi.org/10.3390/foods10050911
APA StyleTorra, M., Belorio, M., Ayuso, M., Carocho, M., Ferreira, I. C. F. R., Barros, L., & Gómez, M. (2021). Chickpea and Chestnut Flours as Non-Gluten Alternatives in Cookies. Foods, 10(5), 911. https://doi.org/10.3390/foods10050911