Impact of Extraction Method on the Detection of Quality Biomarkers in Normal vs. DFD Meat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Muscle Sample Collection
2.3. Meat Quality Trait Measurements
2.4. Muscle Extraction Methods
2.4.1. Sarcoplasmic Protein Extraction
- TES buffer (TES): 10 mM Tris (pH 7.6), 1 mM EDTA (pH 8.0), 0.25 M sucrose, and 0.6% protease inhibitor cocktail (P8340, Sigma-Aldrich Co., St. Louis, MO, USA) [18].
- Sodium buffer (Na): 50 mM sodium phosphate buffer (pH 7.5) and 0.6% protease inhibitor cocktail (P8340, Sigma-Aldrich Co., St. Louis, MO, USA) [19].
- Sodium with Triton buffer (Na + T): 50 mM sodium phosphate buffer (pH 7.5), 0.1% Triton X-100, and 0.6% protease inhibitor cocktail (P8340, Sigma-Aldrich Co., St. Louis, MO, USA) [20].
- Potassium with Triton buffer (K + T): 10 mM potassium phosphate buffer (pH 7.4), 50 mM NaCl, 0.1% Triton X-100, and 0.6% protease inhibitor cocktail (P8340, Sigma-Aldrich Co., St. Louis, MO, USA) [21].
- (a)
- 1000× g, 6 min at 4 °C;
- (b)
- 20,000× g, 20 min at 4 °C.
2.4.2. Myofibrillar Protein Extraction
- The denaturing extraction was performed on the sample residue after the extraction of sarcoplasmic proteins with the TES buffer and 20 min centrifugation at 20,000× g and 4 °C, as proposed by Bjarnadottir et al. [22]. The resulting pellet was homogenized into 4 mL of lysis buffer (10 mM Tris-HCl (pH 7.6), 7 M urea, 2 M thiourea, 2% CHAPS, and 10 mM DTT) with the polytron 2 × 15 s at 20,000 rpm. Subsequently, this solution was stirred for 1 h in a Multi Reax stirrer (Heidolph Instruments, Schwabach, Germany) and was centrifuged at 20,000 rpm for 20 min at 4 °C. The supernatant containing the myofibrillar proteins was collected and filtered through a nylon filter (5 mm), aliquoted, and stored at −80 °C.
- The non-denaturing myofibrillar extraction was based on the method reported by Hashimoto et al. [23], with the following modifications: 0.5 g of muscle samples were homogenized in 4 mL of non-denaturing extraction buffer (30 mM of sodium phosphate buffer (pH 7)) and 0.6% protease inhibitor cocktail (Sigma-Aldrich Co., St. Louis, MO, USA) using a Polytron PT1200 E (Kinematica Inc., Luzern, Switzerland) two times for 15 s at maximum speed. The homogenates obtained were centrifuged at 8000× g for 20 min at 4 °C. The recovered pellet was resuspended in 4 mL of KCl phosphate buffer ((pH 7.5); 0.45 M KCl, 15.6 mM Na2PO4, and 3.5 mM KH2PO4) and vortexed. Subsequently, this solution was stirred for 30 min in a Multi Reax stirrer (Heidolph Instruments, Schwabach, Germany). The mixture was centrifuged twice at 5000× g for 15 min at 4 °C. After the centrifugation, the supernatant containing the myofibrillar proteins was recovered, aliquoted, and stored at −80 °C.
2.5. Protein Extractability
2.6. Oxidative Stress
2.7. Sarcoplasmic and Myofibrillar Subproteome Analysis
2.8. Stress Protein: Hsp70
2.9. Statistical Analysis
3. Results and Discussion
3.1. Meat Quality Traits
3.2. Protein Extractability
3.3. Oxidative Stress
3.4. Sarcoplasmic and Myofibrillar Subproteome
3.5. Stress Protein: Hsp70
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Picard, B.; Gagaoua, M. Meta-proteomics for the discovery of protein biomarkers of beef tenderness: An overview of integrated studies. Food Res. Int. 2020, 127, 108739. [Google Scholar] [CrossRef] [PubMed]
- Lieber, R.L.; Friden, J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve 2000, 23, 1647–1666. [Google Scholar] [CrossRef]
- Eady, M.; Samuel, D.; Bowker, B. Effect of pH and postmortem aging on protein extraction from broiler breast muscle. Poult. Sci. 2014, 93, 1825–1833. [Google Scholar] [CrossRef]
- Au, Y. The muscle ultrastructure: A structural perspective of the sarcomere. Cell. Mol. Life Sci. 2004, 61, 3016–3033. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zou, Y.; Han, M.; Pan, L.; Xing, T.; Xu, X.; Zhou, G. Solubilization of myosin in a solution of low ionic strength L-histidine: Significance of the imidazole ring. Food Chem. 2016, 196, 42–49. [Google Scholar] [CrossRef]
- Anderson, M.J.; Lonergan, S.M.; Huff-Lonergan, E. Myosin light chain 1 release from myofibrillar fraction during postmortem aging is a potential indicator of proteolysis and tenderness of beef. Meat Sci. 2012, 90, 345–351. [Google Scholar] [CrossRef]
- Bowker, B.C.; Fahrenholz, T.M.; Paroczay, E.W.; Eastridge, J.S.; Solomon, M.B. Effect of hydrodynamic pressure processing and ageing on the tenderness and myofibrillar proteins of beef strip loins. J. Muscle Foods 2008, 19, 74–97. [Google Scholar] [CrossRef]
- Lan, Y.H.; Novakofski, J.; Carr, T.R.; McKeith, F.K. Assay and storage conditions affect yield of salt soluble protein from muscle. J. Food Sci. 1993, 58, 963–967. [Google Scholar] [CrossRef]
- Munasinghe, D.M.; Sakai, T. Sodium chloride as a preferred protein extractant for pork lean meat. Meat Sci. 2004, 67, 697–703. [Google Scholar] [CrossRef]
- Thomas, R.; Gadekar, Y.P.; Kandeepan, G.; George, S.K.; Kataria, M. Effect of extraction conditions and postmortem ageing period on yield and salt soluble proteins from buffalo (Bubalus bubalis) lean meat. Am. J. Food Technol. 2007, 2, 313–317. [Google Scholar] [CrossRef]
- Newton, K.G.; Gill, C.O. The microbiology of DFD fresh meats: A review. Meat Sci. 1981, 5, 223–232. [Google Scholar] [CrossRef]
- Grayson, A.L.; Shackelford, S.D.; King, D.A.; McKeith, R.O.; Miller, R.K.; Wheeler, T.L. Effect of degree of dark cutting on tenderness and sensory attributes of beef. J. Anim. Sci. 2016, 94, 2583–2591. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Hopkins, D.L.; Bruce, H.; Li, D.; Baldi, G.; Bekhit, A.E. Causes and contributing factors to “dark cutting” meat: Current trends and future directions: A review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 400–430. [Google Scholar] [CrossRef] [Green Version]
- Adzitey, F.; Nurul, H. Pale soft exudative (PSE) and dark firm dry (DFD) meats: Causes and measures to reduce these incidences—A mini review. Int. Food Res. J. 2011, 18, 11–20. [Google Scholar]
- AMSA. Meat Color Measurement Guidelines; American Meat Science Association: Champaign, IL, USA, 2012. [Google Scholar]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- Díaz, F.; Díaz-Luis, A.; Sierra, V.; Diñeiro, Y.; González, P.; García-Torres, S.; Tejerina, D.; Romero-Fernández, M.P.; de Vaca, M.C.; Coto-Montes, A.; et al. What functional proteomic and biochemical analysis tell us about animal stress in beef? J. Proteom. 2020, 218, 103722. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Veiseth-Kent, E.; Grove, H.; Kuziora, P.; Aass, L.; Hildrum, K.I.; Hollung, K. Peroxiredoxin-6—A potential protein marker for meat tenderness in bovine longissimus thoracis muscle. J. Anim. Sci. 2009, 87, 2391–2399. [Google Scholar] [CrossRef] [Green Version]
- Coto-Montes, A.; Caballero, B.; Sierra, V.; Vega-Naredo, I.; Tomás-Zapico, C.; Hardeland, R.; Tolivia, D.; Ureña, F.; Rodríguez-Colunga, M.J. Actividad de los principales enzimas antioxidantes durante el periodo de Oreo de culones de la raza Asturiana de los Valles. ITEA 2004, 100, 43–45. [Google Scholar]
- Potes, Y.; de Luxán-Delgado, B.; Rodriguez-González, S.; Guimarães, M.R.M.; Solano, J.J.; Fernández-Fernández, M.; Coto-Montes, A. Overweight in elderly people induces impaired autophagy in skeletal muscle. Free Radic. Biol. Med. 2017, 110, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Gonzalez, A.; Potes, Y.; Illan-Rodriguez, D.; Vega-Naredo, I.; Sierra, V.; Caballero, B.; Fabrega, E.; Velarde, A.; Dalmau, A.; Olivan, M.; et al. Effect of animal mixing as a stressor on biomarkers of autophagy and oxidative stress during pig muscle maturation. Animal 2015, 9, 1188–1194. [Google Scholar] [CrossRef] [Green Version]
- Bjarnadóttir, S.G.; Hollung, K.; Faergestad, E.M.; Veiseth-Kent, E. Proteome changes in bovine longissimus thoracis muscle during the first 48 h postmortem: Shifts in energy status and myofibrillar stability. J. Agric. Food Chem. 2010, 58, 7408–7414. [Google Scholar] [CrossRef]
- Hashimoto, K.; Watabe, S.; Kono, M.; Shiro, K. Muscle protein composition of sardine and mackerel. Bull. Jpn. Soc. Sci. Fish 1979, 45, 1435–1441. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Tume, R.K.; Xu, X.; Zhou, G. Solubilization of myofibrillar proteins in water or low ionic strength media: Classic techniques, basic principles and novel functionalities. Crit. Rev. Food Sci. Nutr. 2015, 57, 3260–3280. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Lubinsky, S.; Bewley, G.C. Genetics of catalase in Drosophila melanogaster: Rates of synthesis and degradation of the enzyme in flies aneuploid and euploid for the structural gene. Genetics 1979, 91, 723–742. [Google Scholar] [CrossRef] [PubMed]
- Joseph, P.; Suman, S.P.; Rentfrow, G.; Li, S.; Beach, C.M. Proteomics of muscle-specific beef color stability. J. Agric. Food Chem. 2012, 60, 3196–3203. [Google Scholar] [CrossRef]
- Picard, B.; Gagaoua, M. Chapter 11—proteomic investigations of beef tenderness. Proteom. Food Sci. 2017, 177–197. [Google Scholar] [CrossRef]
- Huang, C.; Hou, C.; Ijaz, M.; Yan, T.; Li, X.; Li, Y.; Zhang, D. Proteomics discovery of protein biomarkers linked to meat quality traits in post-mortem muscles: Current trends and future prospects: A review. Trends Food Sci. Tech. 2020, 105, 416–432. [Google Scholar] [CrossRef]
- García-Torres, S.; de Vaca, M.C.; Tejerina, D.; Romero-Fernández, M.P.; Ortiz, A.; Díaz, F.; Sierra, V.; González, P.; Franco, D.; Zapata, C.; et al. ¿Es el pH un criterio suficiente para la clasificación de carne DFD en vacuno? In Proceedings of the I Congreso Iberoamericano de Marcas de Calidad de Carne y de Productos Cárnicos, Bragança, Portugal, 24–25 October 2019. [Google Scholar]
- Poleti, M.; Moncau, C.; Silva-Vignato, B.; Fernandes-Rosa, A.; Lobo, A.; Cataldi, T.; Negrão, J.; Silva, S.; Eler, J.; Balieiro, J. Label-free quantitative proteomic analysis reveals muscle contraction and metabolism proteins linked to ultimate pH in bovine skeletal muscle. Meat Sci. 2018, 145, 209–219. [Google Scholar] [CrossRef]
- Della Malva, A.; Albenzio, M.; Santillo, A.; Russo, D.; Figliola, L.; Caroprese, M. Methods for Extraction of Muscle Proteins from Meat and Fish Using Denaturing and Nondenaturing Solutions. J. Food Qual. 2018, 2018, 1–9. [Google Scholar] [CrossRef]
- Saw, M.M.; Riederer, B.M. Sample preparation for two-dimensional gel electrophoresis. Proteomics 2003, 3, 1408–1417. [Google Scholar] [CrossRef]
- Rabilloud, T. Use of thiourea to increase the solubility of membrane proteins in two-dimensional electrophoresis. Electrophoresis 1998, 19, 758–760. [Google Scholar] [CrossRef]
- Malafaia, C.B.; Guerra, M.L.; Silva, T.D.; Paiva, P.M.; Souza, E.B.; Correia, M.T.; Silva, M.V. Selection of a protein solubilization method suitable for phytopathogenic bacteria: A proteomics approach. Proteome Sci. 2015, 13, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, L.L.; Lo, S.C.; Hodgkiss, I.J. Proteomic study of a model causative agent of harmful red tide. Prorocentrum triestinum I: Optimization of sample preparation methodologies for analyzing with two-dimensional electrophoresis. Proteomics 2002, 2, 1168–1186. [Google Scholar] [CrossRef]
- Molloy, M.P.; Herbert, B.R.; Walsh, B.J.; Tyler, M.I.; Traini, M.; Sanchez, J.C.; Hochstrasser, D.F.; Williams, K.L.; Gooley, A.A. Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis. Electrophoresis 1998, 19, 837–844. [Google Scholar] [CrossRef]
- Di Luca, A.; Mullen, A.M.; Elia, G.; Davey, G.; Hamill, R.M. Centrifugal drip is an accessible source for protein indicators of pork ageing and water-holding capacity. Meat Sci. 2011, 88, 261–270. [Google Scholar] [CrossRef]
- Yu, J.; Tang, S.; Bao, E.; Zhang, M.; Hao, Q.; Yue, Z. The effect of transportation on the expression of heat shock proteins and meat quality of M. longissimus dorsi in pigs. Meat Sci. 2009, 83, 474–478. [Google Scholar] [CrossRef] [PubMed]
- Xing, T.; Xu, X.L.; Zhou, G.H.; Wang, P.; Jiang, N.N. The effect of transportation of broilers during summer on the expression of heat shock protein 70, postmortem metabolism and meat quality. J. Anim. Sci. 2015, 93, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Luis, A.; Díaz, F.; Diñeiro, Y.; González-Blanco, L.; Arias, E.; Coto-Montes, A.; Oliván, M.; Sierra, V. Nuevos indicadores de carnes (DFD): Estrés oxidativo, autofagia y apoptosis. ITEA 2020, 117, 3–18. [Google Scholar] [CrossRef]
- Larkins, N.T.; Murphy, R.M.; Lamb, G.D. Influences of temperature, oxidative stress, and phosphorylation on binding of heat shock proteins in skeletal muscle fibers. Am. J. Physiol. Cell Physiol. 2012, 303, 654–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulsen, G.; Vissing, K.; Kalhovde, J.M.; Ugelstad, I.; Bayer, M.L.; Kadi, F.; Schjerling, P.; Hallén, J.; Raastad, T. Maximal eccentric exercise induces a rapid accumulation of small heat shock proteins on myofibrils and a delayed HSP70 response in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 293, 844–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, T.; Wang, M.F.; Han, M.Y.; Zhu, X.S.; Xu, X.L.; Zhou, G.H. Expression of heat shock protein 70 in transport-stressed broiler pectoralis major muscle and its relationship with meat quality. Animal 2017, 11, 1599–1607. [Google Scholar] [CrossRef] [PubMed]
Variable | Time post-mortem | Control (n = 7) | DFD (n = 7) | Sig. |
---|---|---|---|---|
pH Drip loss (%) L* | 24 h | 5.48 ± 0.05 | 6.49 ± 0.27 | *** |
48 h | 1.19 ± 0.64 | 1.06 ± 0.31 | NS | |
48 h | 34.35 ± 2.53 | 27.71 ± 2.34 | *** | |
a* b* | 48 h | 9.84 ± 2.82 | 5.83 ± 0.97 | ** |
48 h | 11.87 ± 2.45 | 6.14 ± 2.38 | *** | |
Meat toughness (WBSF, kg) | 3 days | 7.15 ± 1.74b | 6.63 ± 2.50 | NS |
7 days | 6.02 ± 1.31ab | 5.56 ± 1.85 | NS | |
14 days | 4.97 ± 1.01a | 5.33 ±1.35 | NS | |
Mesophilic (log UFC/kg) | 3 days | 3.73 ± 0.37a | 3.72 ± 1.06a | NS |
7 days | 4.31 ± 0.84a | 4.42 ± 1.71a | NS | |
14 days | 6.05 ± 0.37b | 7.22 ± 0.64b | *** | |
Enterobacteriaceae (log UFC/kg) | 3 days | 1.26 ± 1.23 | 1.53 ± 1.32a | NS |
7 days | 1.45 ± 1.43 | 2.13 ± 1.64a | NS | |
14 days | 3.08 ± 1.59 | 4.91 ± 0.83b | * |
Sarcoplasmic Bands (MWe 1) | TES 1000 | TES 20,000 | Na 1000 | Na 20,000 | Na + T 1000 | Na + T 20,000 | K + T 1000 | K + T 20,000 | SEM | Sig. |
---|---|---|---|---|---|---|---|---|---|---|
S2 (137.9 kDa) | 0.188 | 0.211 | 0.246 | 0.262 | 0.431 | 0.446 | 0.42 | 0.316 | 0.061 | ** |
S3 (115.8 kDa) | 0.305a | 0.249a | 0.406ab | 0.344a | 0.753bc | 0.911c | 0.602abc | 0.421ab | 0.084 | *** |
S6 (81.31 kDa) | 0.55a | 0.572a | 1.556b | 1.256b | 1.442b | 1.559b | 1.705b | 1.482b | 0.146 | *** |
S10 (53.60 kDa) | 0.895a | 0.992ab | 0.998ab | 1.031ab | 1.336b | 1.325b | 1.211ab | 1.197ab | 0.087 | ** |
S11 (50.70 kDa) | 1.264abc | 1.107a | 1.244abc | 1.223ab | 1.438abcd | 1.68d | 1.603bcd | 1.611cd | 0.086 | *** |
S12 (45.55 kDa) | 8.244ab | 8.814b | 8.101ab | 7.837ab | 7.536ab | 7.049a | 7.474ab | 6.874a | 0.351 | ** |
S13 (40.72 kDa) | 10.805b | 10.448ab | 10.159ab | 10.154ab | 9.258a | 9.34ab | 8.513a | 8.98a | 0.427 | ** |
S14 (37.6 kDa) | 8.775ab | 8.707ab | 9.287b | 9.16ab | 8.524ab | 8.413ab | 8.18a | 8.345ab | 0.242 | * |
S15 (34.74 kDa) | 10.859bcd | 10.457abc | 11.59d | 11.376cd | 10.74abcd | 9.77a | 10.341abc | 9.857ab | 0.241 | *** |
S16 (32.14 kDa) | 8.128b | 8.079b | 6.672a | 6.878a | 6.53a | 6.136a | 6.446a | 6.38a | 0.211 | *** |
S17 (29.74 kDa) | 1.576a | 1.826a | 2.399c | 2.835cd | 2.649cd | 2.677cd | 3.28d | 3.179d | 0.109 | *** |
S19 (26.68 kDa) | 2.889b | 2.89b | 2.258a | 2.546ab | 2.419ab | 2.585ab | 2.22a | 2.521ab | 0.128 | *** |
S20 (25.76 kDa) | 4.162b | 4.103b | 3.635ab | 3.661ab | 3.425a | 3.329a | 3.482a | 3.483a | 0.133 | *** |
Myofibrillar Bands(MWe 1) | Lysis | ND | SEM | Sig. |
---|---|---|---|---|
M2 (170.8 kDa) | 1.667 | 2.464 | 0.142 | ** |
M3 (143.58 kDa) | 3.139 | 5.893 | 0.417 | *** |
M6 (110.53 kDa) | 0.719 | 1.066 | 0.096 | *** |
M11 (74.77 kDa) | 0.896 | 0.500 | 0.063 | ** |
M18 (49.7 kDa) | 0.698 | 1.245 | 0.113 | *** |
M19 (47.58 kDa) | 0.899 | 1.717 | 0.104 | ** |
M20 (41.07 kDa) | 14.276 | 8.959 | 1.033 | ** |
M23 (34.80 kDa) | 5.503 | 4.660 | 0.242 | * |
M24 (32.76 kDa) | 4.874 | 7.404 | 0.303 | *** |
M27 (26.31 kDa) | 1.466 | 2.128 | 0.085 | *** |
M30 (19.46 kDa) | 3.033 | 2.388 | 0.128 | *** |
M31 (18.40 kDa) | 0.693 | 0.406 | 0.051 | *** |
M32 (17.09 kDa) | 2.254 | 3.100 | 0.117 | *** |
M34 (14.94 kDa) | 0.817 | 2.314 | 0.123 | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Blanco, L.; Diñeiro, Y.; Díaz-Luis, A.; Coto-Montes, A.; Oliván, M.; Sierra, V. Impact of Extraction Method on the Detection of Quality Biomarkers in Normal vs. DFD Meat. Foods 2021, 10, 1097. https://doi.org/10.3390/foods10051097
González-Blanco L, Diñeiro Y, Díaz-Luis A, Coto-Montes A, Oliván M, Sierra V. Impact of Extraction Method on the Detection of Quality Biomarkers in Normal vs. DFD Meat. Foods. 2021; 10(5):1097. https://doi.org/10.3390/foods10051097
Chicago/Turabian StyleGonzález-Blanco, Laura, Yolanda Diñeiro, Andrea Díaz-Luis, Ana Coto-Montes, Mamen Oliván, and Verónica Sierra. 2021. "Impact of Extraction Method on the Detection of Quality Biomarkers in Normal vs. DFD Meat" Foods 10, no. 5: 1097. https://doi.org/10.3390/foods10051097
APA StyleGonzález-Blanco, L., Diñeiro, Y., Díaz-Luis, A., Coto-Montes, A., Oliván, M., & Sierra, V. (2021). Impact of Extraction Method on the Detection of Quality Biomarkers in Normal vs. DFD Meat. Foods, 10(5), 1097. https://doi.org/10.3390/foods10051097