Mid-Infrared Spectroscopy as a Valuable Tool to Tackle Food Analysis: A Literature Review on Coffee, Dairies, Honey, Olive Oil and Wine
Abstract
:1. Introduction
2. Basic Concepts of Infrared Spectroscopy
3. Chemometric Tools Used in Data Analysis
4. Application of FT-MIR to Food Analysis
4.1. Coffee
4.2. Dairy Products
4.3. Honey
4.4. Olive Oil
4.5. Wine
5. Future Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Food Integrity Handbook- A guide to food authenticity issues and analytical solutions; Morin, J.F.; Lees, M. (Eds.) Eurofins Analytics: Nantes, France, 2018; ISBN 978-2-9566303-1-9. [Google Scholar]
- Modern Techniques for food authentication; Sun, D.-W. (Ed.) Academic Press: Cambridge, MA, USA; Elsevier Inc.: Amsterdam, The Netherlands, 2008; ISBN 978-0-12-374085-4. [Google Scholar]
- Valand, R.; Tanna, S.; Lawson, G.; Bengtström, L. A review of Fourier Transform Infrared (FTIR) spectroscopy used in food adulteration and authenticity investigations. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2020, 37, 19–38. [Google Scholar] [CrossRef] [PubMed]
- McGrath, T.F.; Haughey, S.A.; Patterson, J.; Fauhl-Hassek, C.; Donarski, J.; Alewijn, M.; van Ruth, S.; Elliott, C.T. What are the scientific challenges in moving from targeted to non-targeted methods for food fraud testing and how can they be addressed?—Spectroscopy case study. Trends Food Sci. Technol. 2018, 76, 38–55. [Google Scholar] [CrossRef]
- Wadood, S.A.; Boli, G.; Xiaowen, Z.; Hussain, I.; Yimin, W. Recent development in the application of analytical techniques for the traceability and authenticity of food of plant origin. Microchem. J. 2020, 152, 104295. [Google Scholar] [CrossRef]
- Ma, J.; Sun, D.W.; Pu, H.; Cheng, J.H.; Wei, Q. Advanced Techniques for Hyperspectral Imaging in the Food Industry: Principles and Recent Applications. Annu. Rev. Food Sci. Technol. 2019, 10, 197–220. [Google Scholar] [CrossRef]
- Picchio, V.; Cammisotto, V.; Pagano, F.; Carnevale, R.; Chimenti, I. Multimode Hyperspectral Imaging for Food Quality and Safety. In Hyperspectral Imaging in Agriculture, Food and Environment; Maldonado, A., Rodriguez-Fuentes, H., Contreras, J.A.V., Eds.; IntechOpen: London, UK, 2018; pp. 1–15. ISBN 978-1-78923-291-2. [Google Scholar]
- Roberts, J.; Power, A.; Chapman, J.; Chandra, S.; Cozzolino, D. A short update on the advantages, applications and limitations of hyperspectral and chemical imaging in food authentication. Appl. Sci. 2018, 8, 505. [Google Scholar] [CrossRef] [Green Version]
- Spectroscopic Methods in Food Analysis; Franca, A.S.; Nollet, L. (Eds.) Taylor and Francis: Boca Raton, FL, USA, 2018; ISBN 9781498754613. [Google Scholar]
- Skoog, D.A.; Holler, F.J.; Crouch, S. Principles of Instrumental Analysis, 7th ed.; Cengage Learning: Boston, MA, USA, 2017; ISBN 978-1-305-57721-3. [Google Scholar]
- Silverstein, R.M.; Webster, F.X.; Kiemle, D.J.; Bryce, D.L. Spectrometric Identification of Organic Compounds, 8th ed.; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2015; ISBN 978-0-470-61637-6. [Google Scholar]
- Thompson, J.M. Infrared Spectroscopy; Pan Stanford Publishing Pte. Ltd.: Singapore, Singapore, 2018; ISBN 978-981-4774-78-9. [Google Scholar]
- Wang, P.; Sun, J.; Zhang, T.; Liu, W. Vibrational spectroscopic approaches for the quality evaluation and authentication of virgin olive oil. Appl. Spectrosc. Rev. 2016, 51, 763–790. [Google Scholar] [CrossRef]
- Beć, K.B.; Huck, C.W. Breakthrough potential in near-infrared spectroscopy: Spectra simulation. A review of recent developments. Front. Chem. 2019, 7, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, N.; Franca, A.S.; Oliveira, L.S. Performance of diffuse reflectance infrared Fourier transform spectroscopy and chemometrics for detection of multiple adulterants in roasted and ground coffee. LWT Food Sci. Technol. 2013, 53, 395–401. [Google Scholar] [CrossRef] [Green Version]
- Olale, K.; Walyambillah, W.; Mohammed, S.A.; Sila, A.; Shepherd, K. Application of DRIFT-FTIR spectroscopy for quantitative prediction of simple sugars in two local and two Floridian mango (Mangifera indica L.) cultivars in Kenya. J. Anal. Sci. Technol. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Blum, M.M.; John, H. Historical perspective and modern applications of Attenuated Total Reflectance - Fourier Transform Infrared Spectroscopy (ATR-FTIR). Drug Test. Anal. 2012, 4, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Haas, J.; Mizaikoff, B. Advances in Mid-Infrared Spectroscopy for Chemical Analysis. Annu. Rev. Anal. Chem. 2016, 9, 45–68. [Google Scholar] [CrossRef] [PubMed]
- Karoui, R.; Downey, G.; Blecker, C. Mid-infrared spectroscopy coupled with chemometrics: A tool for the analysis of intact food systems and the exploration of their molecular structure-quality relationships-A review. Chem. Rev. 2010, 110, 6144–6168. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, J.M. Infrared Spectroscopy - Sample Presentation. Ref. Modul. Chem. Mol. Sci. Chem. Eng. 2013, 1–18. [Google Scholar] [CrossRef]
- Reis, N.; Franca, A.S.; Oliveira, L.S. Discrimination between roasted coffee, roasted corn and coffee husks by Diffuse Reflectance Infrared Fourier Transform Spectroscopy. LWT Food Sci. Technol. 2013, 50, 715–722. [Google Scholar] [CrossRef] [Green Version]
- Craig, A.P.; Franca, A.S.; Oliveira, L.S. Discrimination between Immature and Mature Green Coffees by Attenuated Total Reflectance and Diffuse Reflectance Fourier Transform Infrared Spectroscopy. J. Food Sci. 2011, 76. [Google Scholar] [CrossRef] [PubMed]
- Barbin, D.F.; de Souza Madureira Felicio, A.L.; Sun, D.W.; Nixdorf, S.L.; Hirooka, E.Y. Application of infrared spectral techniques on quality and compositional attributes of coffee: An overview. Food Res. Int. 2014, 61, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Gangidi, R.R.; Proctor, A.; Meullenet, J.F. Milled rice surface lipid measurement by diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS). JAOCS, J. Am. Oil Chem. Soc. 2002, 79, 7–12. [Google Scholar] [CrossRef]
- Roberts, J.J.; Cozzolino, D. An overview on the application of chemometrics in food science and technology—An approach to quantitative data analysis. Food Anal. Methods 2016, 9, 3258–3267. [Google Scholar] [CrossRef]
- Efenberger-Szmechtyk, M.; Nowak, A.; Kregiel, D. Implementation of chemometrics in quality evaluation of food and beverages Implementation of chemometrics in quality evaluation of food and beverages. Crit. Rev. Food Sci. Nutr. 2018, 58, 1747–1766. [Google Scholar] [CrossRef]
- Kemsley, E.K.; Defernez, M.; Marini, F. Multivariate statistics: Considerations and confidences in food authenticity problems. Food Control 2019, 105, 102–112. [Google Scholar] [CrossRef]
- Callao, M.P.; Ruisánchez, I. An overview of multivariate qualitative methods for food fraud detection. Food Control 2018, 86, 283–293. [Google Scholar] [CrossRef]
- Lever, J.; Krzywinski, M.; Altman, N. Points of Significance: Principal component analysis. Nat. Methods 2017, 14, 641–642. [Google Scholar] [CrossRef] [Green Version]
- Borràs, E.; Ferré, J.; Boqué, R.; Mestres, M.; Aceña, L.; Busto, O. Data fusion methodologies for food and beverage authentication and quality assessment - A review. Anal. Chim. Acta 2015, 891, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Márquez, C.; López, M.I.; Ruisánchez, I.; Callao, M.P. FT-Raman and NIR spectroscopy data fusion strategy for multivariate qualitative analysis of food fraud. Talanta 2016, 161, 80–86. [Google Scholar] [CrossRef]
- International Coffee Organization. Available online: http://www.ico.org/trade_statistics.asp (accessed on 13 May 2020).
- Saeed, M.; Naveed, M.; BiBi, J.; Ali Kamboh, A.; Phil, L.; Chao, S. Potential nutraceutical and food additive properties and risks of coffee: A comprehensive overview. Crit. Rev. Food Sci. Nutr. 2019, 59, 3293–3319. [Google Scholar] [CrossRef]
- Assis, C.; Pereira, H.V.; Amador, V.S.; Augusti, R.; de Oliveira, L.S.; Sena, M.M. Combining mid infrared spectroscopy and paper spray mass spectrometry in a data fusion model to predict the composition of coffee blends. Food Chem. 2019, 281, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Bicho, N.C.; Lidon, F.C.; Ramalho, J.C.; Leitão, A.E. Quality assessment of Arabica and Robusta green and roasted coffees—A review. Emirates J. Food Agric. 2013, 25, 945–950. [Google Scholar] [CrossRef] [Green Version]
- Damatta, F.M.; Avila, R.T.; Cardoso, A.A.; Martins, S.C.V.; Ramalho, J.C. Physiological and Agronomic Performance of the Coffee Crop in the Context of Climate Change and Global Warming: A Review. J. Agric. Food Chem. 2018, 66, 5264–5274. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.L.; Wang, X.; Zhang, L.; Qiu, M.H. The sources and mechanisms of bioactive ingredients in coffee. Food Funct. 2019, 10, 3113–3126. [Google Scholar] [CrossRef]
- Craig, A.P.; Botelho, B.G.; Oliveira, L.S.; Franca, A.S. Mid infrared spectroscopy and chemometrics as tools for the classification of roasted coffees by cup quality. Food Chem. 2018, 245, 1052–1061. [Google Scholar] [CrossRef]
- Caporaso, N.; Whitworth, M.B.; Grebby, S.; Fisk, I.D. Non-destructive analysis of sucrose, caffeine and trigonelline on single green coffee beans by hyperspectral imaging. Food Res. Int. 2018, 106, 193–203. [Google Scholar] [CrossRef]
- Pimenta, C.J.; Angélico, C.L.; Chalfoun, S.M. Challengs in coffee quality: Cultural, chemical and microbiological aspects. Ciência e Agrotecnologia 2018, 42, 337–349. [Google Scholar] [CrossRef]
- Burns, D.T.; Walker, M.J. Critical Review of Analytical and Bioanalytical Verification of the Authenticity of Coffee. J. AOAC Int. 2020, 102, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Thorburn Burns, D.; Tweed, L.; Walker, M.J. Ground Roast Coffee: Review of Analytical Strategies to Estimate Geographic Origin, Species Authenticity and Adulteration by Dilution. Food Anal. Methods 2017, 10, 2302–2310. [Google Scholar] [CrossRef]
- Toci, A.T.; Farah, A.; Pezza, H.R.; Pezza, L. Coffee Adulteration: More than Two Decades of Research. Crit. Rev. Anal. Chem. 2016, 46, 83–92. [Google Scholar] [CrossRef]
- Barjolle, D.; Quiñones-Ruiz, X.F.; Bagal, M.; Comoé, H. The Role of the State for Geographical Indications of Coffee: Case Studies from Colombia and Kenya. World Dev. 2017, 98, 105–119. [Google Scholar] [CrossRef]
- International Coffee Organization International Coffee Agreement; International Coffee Organization: London, UK, 2007.
- Obeidat, S.M.; Hammoudeh, A.Y.; Alomary, A.A. Application of FTIR Spectroscopy for Assessment of Green Coffee Beans According to Their Origin. J. Appl. Spectrosc. 2018, 84, 1051–1055. [Google Scholar] [CrossRef]
- Link, J.V.; Lemes, A.L.G.; Marquetti, I.; dos Santos Scholz, M.B.; Bona, E. Geographical and genotypic classification of arabica coffee using Fourier transform infrared spectroscopy and radial-basis function networks. Chemom. Intell. Lab. Syst. 2014, 135, 150–156. [Google Scholar] [CrossRef]
- Link, J.; Lemes, A.L.; Sato, H.; Scholz, M.; Bona, E. Optimized Multilayer perceptron for the geographical and genotypic classification of four genotypes of arabica coffee. Rev. Bras. Pesqui. em Aliment. 2012, 3, 72–81. [Google Scholar] [CrossRef] [Green Version]
- Medina, J.; Caro Rodríguez, D.; Arana, V.A.; Bernal, A.; Esseiva, P.; Wist, J. Comparison of Attenuated Total Reflectance Mid-Infrared, Near Infrared, and 1H-Nuclear Magnetic Resonance Spectroscopies for the Determination of Coffee’s Geographical Origin. Int. J. Anal. Chem. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Bona, E.; Marquetti, I.; Link, J.V.; Makimori, G.Y.F.; da Costa Arca, V.; Guimarães Lemes, A.L.; Ferreira, J.M.G.; dos Santos Scholz, M.B.; Valderrama, P.; Poppi, R.J. Support vector machines in tandem with infrared spectroscopy for geographical classification of green arabica coffee. LWT - Food Sci. Technol. 2017, 76, 330–336. [Google Scholar] [CrossRef]
- Craig, A.P.; Franca, A.S.; Oliveira, L.S. Evaluation of the potential of FTIR and chemometrics for separation between defective and non-defective coffees. Food Chem. 2012, 132, 1368–1374. [Google Scholar] [CrossRef] [Green Version]
- Craig, A.P.; Franca, A.S.; Oliveira, L.S. Discrimination between defective and non-defective roasted coffees by diffuse reflectance infrared Fourier transform spectroscopy. LWT Food Sci. Technol. 2012, 47, 505–511. [Google Scholar] [CrossRef] [Green Version]
- Craig, A.P.; Franca, A.S.; Oliveira, L.S.; Irudayaraj, J.; Ileleji, K. Application of elastic net and infrared spectroscopy in the discrimination between defective and non-defective roasted coffees. Talanta 2014, 128, 393–400. [Google Scholar] [CrossRef] [Green Version]
- Reis, N.; Franca, A.S.; Oliveira, L.S. Concomitant use of fourier transform infrared attenuated total reflectance spectroscopy and chemometrics for quantification of multiple adulterants in roasted and ground coffee. J. Spectrosc. 2016, 2016. [Google Scholar] [CrossRef]
- Reis, N.; Botelho, B.G.; Franca, A.S.; Oliveira, L.S. Simultaneous Detection of Multiple Adulterants in Ground Roasted Coffee by ATR-FTIR Spectroscopy and Data Fusion. Food Anal. Methods 2017, 10, 2700–2709. [Google Scholar] [CrossRef]
- Reis, N.; Franca, A.S.; Oliveira, L.S. Quantitative evaluation of multiple adulterants in roasted coffee by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and chemometrics. Talanta 2013, 115, 563–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavares, K.M.; Pereira, R.G.F.A.; Nunes, C.A.; Pinheiro, A.C.M.; Rodarte, M.P. Espectroscopia no infravermelho médio e análise sensorial aplicada à detecção de adulteração de café torrado por adição de cascas de café. Quim. Nova 2012, 35, 1164–1168. [Google Scholar] [CrossRef] [Green Version]
- Brondi, A.M.; Torres, C.; Garcia, J.S.; Trevisan, M.G. Differential scanning calorimetry and infrared spectroscopy combined with chemometric analysis to the determination of coffee adulteration by corn. J. Braz. Chem. Soc. 2017, 28, 1308–1314. [Google Scholar] [CrossRef]
- Correia, R.M.; Loureiro, L.B.; Rodrigues, R.R.T.; Costa, H.B.; Oliveira, B.G.; Filgueiras, P.R.; Thompson, C.J.; Lacerda, V.; Romão, W. Chemical profiles of Robusta and Arabica coffee by ESI(-)FT-ICR MS and ATR-FTIR: A quantitative approach. Anal. Methods 2016, 8, 7678–7688. [Google Scholar] [CrossRef]
- Subramanian, A.; Alvarez, V.B.; Harper, W.J.; Rodriguez-Saona, L.E. Monitoring amino acids, organic acids, and ripening changes in Cheddar cheese using Fourier-transform infrared spectroscopy. Int. Dairy J. 2011, 21, 434–440. [Google Scholar] [CrossRef]
- Sara, S.; Davide, P.; Domenico, V.; Lucio, C.; Patrizia, P. Determining The Authenticity Of Pdo Buffalo Mozzarella: An Approach Based On Fourier Transform Infrared (MIR-FTIR) Spectroscopy And On Chemometric Tools. Int. J. Latest Res. Sci. Technol. 2018, 7, 1–6. [Google Scholar]
- Andrade, J.; Pereira, C.G.; Ranquine, T.; Azarias, C.A.; Bell, M.J.V.; De Carvalho Dos Anjos, V. Long-term ripening evaluation of ewes’ cheeses by fourier-transformed infrared spectroscopy under real industrial conditions. J. Spectrosc. 2018, 2018. [Google Scholar] [CrossRef]
- Mushtaq, M.; Gani, A.; Shetty, P.H.; Masoodi, F.A.; Ahmad, M. Himalayan cheese (Kalari/kradi): Effect of different storage temperatures on its physicochemical, microbiological and antioxidant properties. LWT Food Sci. Technol. 2015, 63, 837–845. [Google Scholar] [CrossRef]
- Yaman, H. A rapid method for detection adulteration in goat milk by using vibrational spectroscopy in combination with chemometric methods. J. Food Sci. Technol. 2020, 57, 3091–3098. [Google Scholar] [CrossRef]
- Leite, A.I.N.; Pereira, C.G.; Andrade, J.; Vicentini, N.M.; Bell, M.J.V.; Anjos, V. FTIR-ATR spectroscopy as a tool for the rapid detection of adulterations in butter cheeses. Lwt 2019, 109, 63–69. [Google Scholar] [CrossRef]
- Alkhalf, M.I.; Mirghani, M.E.S. Detection of formaldehyde in cheese using FTIR spectroscopy. Int. Food Res. J. 2017, 24, 496–500. [Google Scholar]
- Johnson, R. Food Fraud and “Economically Motivated Adulteration” of Food and Food Ingredients. Available online: https://fas.org/sgp/crs/misc/R43358.pdf (accessed on 13 May 2020).
- Azad, T.; Ahmed, S. Common milk adulteration and their detection techniques. Int. J. Food Contam. 2016, 3. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Lu, W.; Gao, B.; Wang, J.; Yu, L.L. Authenticating raw from reconstituted milk using Fourier Transform Infrared Spectroscopy and chemometrics. J. Food Qual. 2019. [Google Scholar] [CrossRef] [Green Version]
- Santos, P.M.; Pereira-Filho, E.R.; Rodriguez-Saona, L.E. Rapid detection and quantification of milk adulteration using infrared microspectroscopy and chemometrics analysis. Food Chem. 2013, 138, 19–24. [Google Scholar] [CrossRef]
- Vinciguerra, L.L.; Marcelo, M.C.A.; Motta, T.M.C.; Meneghini, L.Z.; Bergold, A.M.; Ferrão, M.F. Chemometric tools and FTIR-ATR spectroscopy applied in milk adulterated with cheese whey. Quim. Nova 2019, 42, 249–254. [Google Scholar] [CrossRef]
- Tyan, Y.C.; Yang, M.H.; Jong, S.B.; Wang, C.K.; Shiea, J. Melamine contamination. Anal. Bioanal. Chem. 2009, 395, 729–735. [Google Scholar] [CrossRef]
- García-Miguel, E.; Meza-Márquez, O.G.; Osorio-Revilla, G.; Téllez-Medina, D.I.; Jiménez-Martínez, C.; Cornejo-Mazón, M.; Hernández-Martínez, D.M.; Gallardo-Velazquez, T. Detection of Cyanuric Acid and Melamine in Infant Formula Powders by Mid-FTIR Spectroscopy and Multivariate Analysis. J. Food Qual. 2018, 2018, 1–7. [Google Scholar] [CrossRef]
- Ingelfinger, J.R. Melamine and the Global Implications of Food Contamination. N. Engl. J. Med. 2008, 359, 2745–2748. [Google Scholar] [CrossRef] [PubMed]
- Jawaid, S.; Talpur, F.N.; Sherazi, S.T.H.; Nizamani, S.M.; Khaskheli, A.A. Rapid detection of melamine adulteration in dairy milk by SB-ATR-Fourier transform infrared spectroscopy. Food Chem. 2013, 141, 3066–3071. [Google Scholar] [CrossRef]
- Salleh, N.A.; Selamat, J.; Meng, G.Y.; Abas, F.; Jambari, N.N.; Khatib, A. Fourier transform infrared spectroscopy and multivariate analysis of milk from different goat breeds. Int. J. Food Prop. 2019, 22, 1673–1683. [Google Scholar] [CrossRef] [Green Version]
- Souhassou, S.; Bassbasi, M.; Hirri, A.; Kzaiber, F.; Oussama, A. Detection of camel milk adulteration using Fourier transformed infrared spectroscopy FT-IR coupled with chemometrics methods. Int. Food Res. J. 2018, 25, 1213–1218. [Google Scholar]
- Bassbasi, M.; De Luca, M.; Souhassou, S.; Hirri, A.; Berkani, M.; Kzaiber, F.; Loele, G.; Ragno, G.; Oussama, A. Determination of Milk Adulteration by Sucrose Using FT-MIR Spectroscopy and Chemometrics Methods. Agric. Sci. Res. J. 2014, 11, 175–180. [Google Scholar]
- Fadzlillah, N.A.; Rohman, A.; Ismail, A.; Mustafa, S.; Khatib, A. Application of FTIR-ATR spectroscopy coupled with multivariate analysis for rapid estimation of butter adulteration. J. Oleo Sci. 2013, 62, 555–562. [Google Scholar] [CrossRef] [Green Version]
- Kasprzyk, I.; Depciuch, J.; Grabek-Lejko, D.; Parlinska-Wojtan, M. FTIR-ATR spectroscopy of pollen and honey as a tool for unifloral honey authentication. The case study of rape honey. Food Control 2018, 84, 33–40. [Google Scholar] [CrossRef]
- Bogdanov, S.; Jurendic, T.; Sieber, R.; Gallmann, P. Honey for nutrition and health: A review. J. Am. Coll. Nutr. 2008, 27, 677–689. [Google Scholar] [CrossRef] [PubMed]
- Sahlan, M.; Karwita, S.; Gozan, M.; Hermansyah, H.; Yohda, M.; Yoo, Y.J.; Pratami, D.K. Identification and classification of honey’s authenticity by attenuated total reflectance Fourier-transform infrared spectroscopy and chemometric method. Vet. World 2019, 12, 1304–1310. [Google Scholar] [CrossRef] [Green Version]
- Zulkhairi Amin, F.A.; Sabri, S.; Mohammad, S.M.; Ismail, M.; Chan, K.W.; Ismail, N.; Norhaizan, M.E.; Zawawi, N. Therapeutic properties of stingless bee honey in comparison with european bee honey. Adv. Pharmacol. Sci. 2018, 2018. [Google Scholar] [CrossRef]
- Rios-Corripio, M.A.; Rojas-López, M.; Delgado-Macuil, R. Analysis of adulteration in honey with standard sugar solutions and syrups using attenuated total reflectance-Fourier transform infrared spectroscopy and multivariate methods. CYTA J. Food 2012, 10, 119–122. [Google Scholar] [CrossRef] [Green Version]
- Se, K.W.; Ghoshal, S.K.; Wahab, R.A.; Ibrahim, R.K.R.; Lani, M.N. A simple approach for rapid detection and quantification of adulterants in stingless bees (Heterotrigona itama) honey. Food Res. Int. 2018, 105, 453–460. [Google Scholar] [CrossRef]
- Başar, B.; Özdemir, D. Determination of honey adulteration with beet sugar and corn syrup using infrared spectroscopy and genetic-algorithm-based multivariate calibration. J. Sci. Food Agric. 2018, 98, 5616–5624. [Google Scholar] [CrossRef] [PubMed]
- Svečnjak, L.; Bubalo, D.; Baranović, G.; Novosel, H. Optimization of FTIR-ATR spectroscopy for botanical authentication of unifloral honey types and melissopalynological data prediction. Eur. Food Res. Technol. 2015, 240, 1101–1115. [Google Scholar] [CrossRef]
- Gok, S.; Severcan, M.; Goormaghtigh, E.; Kandemir, I.; Severcan, F. Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis. Food Chem. 2015, 170, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Tsimidou, M.Z.; Blekas, G.; Boskou, D. Olive oil. Encycl. Food Sci. Nutr. 2003, 4252–4260. [Google Scholar] [CrossRef]
- European Commission. Factsheet: EU Olive Oil. Available online: https://ec.europa.eu/info/sites/info/files/food-farming-fisheries/plants_and_plant_products/documents/factsheet-olive-oil_en.pdf (accessed on 20 May 2020).
- European Commission. Study on the Implementation of Conformity Checks in the Olive Oil Sector throughout the European Union; European Union Publication Office: Brussels, Belgium, 2020; ISBN 9789276092643. [Google Scholar]
- IOC International Trade Standard Applying To Olive Oils and Olive-Pomace Oils. Available online: https://www.internationaloliveoil.org/what-we-do/chemistry-standardisation-unit/standards-and-methods/ (accessed on 4 April 2020).
- European Commission. Regulation 2568/91 on the characteristics of olive oil and olive- residue oil and on the relevant methods of analysis, and subsequent amendments. Off. J. Eur. Communities 1991, L248, 1–102. [Google Scholar]
- Internacional Olive Council. Available online: https://www.internationaloliveoil.org/olive-world/olive-oil/ (accessed on 18 May 2020).
- European Commision Olive oil—An overview of the production and marketing of olive oil in the EU. Available online: https://ec.europa.eu/info/food-farming-fisheries/plants-and-plant-products/plant-products/olive-oil_en#marketsituation (accessed on 17 April 2020).
- United Nations Educational, Scientifical and Cultural Organization (UNESCO). Available online: https://ich.unesco.org/en/RL/mediterranean-diet-00884 (accessed on 13 April 2020).
- Tuttolomondo, A.; Simonetta, I.; Daidone, M.; Mogavero, A.; Ortello, A.; Pinto, A. Metabolic and vascular effect of the mediterranean diet. Int. J. Mol. Sci. 2019, 20, 4716. [Google Scholar] [CrossRef] [Green Version]
- Yubero-Serrano, E.M.; Lopez-Moreno, J.; Gomez-Delgado, F.; Lopez-Miranda, J. Extra virgin olive oil: More than a healthy fat. Eur. J. Clin. Nutr. 2019, 72, 8–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lăcătușu, C.M.; Grigorescu, E.D.; Floria, M.; Onofriescu, A.; Mihai, B.M. The mediterranean diet: From an environment-driven food culture to an emerging medical prescription. Int. J. Environ. Res. Public Health 2019, 16, 942. [Google Scholar] [CrossRef] [Green Version]
- van Breda, S.G.J.; de Kok, T.M.C.M. Smart Combinations of Bioactive Compounds in Fruits and Vegetables May Guide New Strategies for Personalized Prevention of Chronic Diseases. Mol. Nutr. Food Res. 2018, 62, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Mazzocchi, A.; Leone, L.; Agostoni, C.; Pali-Schöll, I. The secrets of the mediterranean diet. Does [only] olive oil matter? Nutrients 2019, 11, 2941. [Google Scholar] [CrossRef] [Green Version]
- Tur, J.A.; Ngo de la Cruz, J.; Ribas, L. Olive oil and the Mediterranean diet: Beyond the rhetoric. Eur. J. Clin. Nutr. 2003, 57, S2–S7. [Google Scholar] [CrossRef] [Green Version]
- Nocella, C.; Cammisotto, V.; Fianchini, L.; D’Amico, A.; Novo, M.; Castellani, V.; Stefanini, L.; Violi, F.; Carnevale, R. Extra Virgin Olive Oil and Cardiovascular Diseases: Benefits for Human Health. Endocrine, Metab. Immune Disord. Drug Targets 2017, 18, 4–13. [Google Scholar] [CrossRef]
- Fernandes, J.; Fialho, M.; Santos, R.; Peixoto-Plácido, C.; Madeira, T.; Sousa-Santos, N.; Virgolino, A.; Santos, O.; Vaz Carneiro, A. Is olive oil good for you? A systematic review and meta-analysis on anti-inflammatory benefits from regular dietary intake. Nutrition 2020, 69. [Google Scholar] [CrossRef]
- Olive and Olive Oil Bioactive Constituents; Bosku, D. (Ed.) AOCS Press: Urbana, IL, USA, 2015; ISBN 9781630670412. [Google Scholar]
- Bajoub, A.; Bendini, A.; Fernández-Gutiérrez, A.; Carrasco-Pancorbo, A. Olive oil authentication: A comparative analysis of regulatory frameworks with especial emphasis on quality and authenticity indices, and recent analytical techniques developed for their assessment. A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 832–857. [Google Scholar] [CrossRef]
- Conte, L.; Bendini, A.; Valli, E.; Lucci, P.; Moret, S.; Maquet, A.; Lacoste, F.; Brereton, P.; García-González, D.L.; Moreda, W.; et al. Olive oil quality and authenticity: A review of current EU legislation, standards, relevant methods of analyses, their drawbacks and recommendations for the future. Trends Food Sci. Technol. 2020, 105, 483–493. [Google Scholar] [CrossRef]
- Handbook of Olive Oil. Analysis and Properties, 2nd ed.; Aparicio, R.; Harwood, J. (Eds.) Springer: New York, NY, USA, 2013; ISBN 9781461477761. [Google Scholar]
- Rohman, A.; Che Man, Y.B.; Ismail, A.; Hashim, P. FTIR spectroscopy coupled with chemometrics of multivariate calibration and discriminant analysis for authentication of extra virgin olive oil. Int. J. Food Prop. 2017, 20, S1173–S1181. [Google Scholar] [CrossRef]
- Valli, E.; Bendini, A.; Berardinelli, A.; Ragni, L.; Riccò, B.; Grossi, M.; Gallina Toschi, T. Rapid and innovative instrumental approaches for quality and authenticity of olive oils. Eur. J. Lipid Sci. Technol. 2016, 118, 1601–1619. [Google Scholar] [CrossRef] [Green Version]
- Safar, M.; Bertrand, D.; Robert, P.; Devaux, M.F.; Genot, C. Characterization of edible oils, butters and margarines by Fourier transform infrared spectroscopy with attenuated total reflectance. J. Am. Oil Chem. Soc. 1994, 71, 371–377. [Google Scholar] [CrossRef]
- Filoda, P.F.; Fetter, L.F.; Fornasier, F.; Schneider, R.d.C.d.S.; Helfer, G.A.; Tischer, B.; Teichmann, A.; da Costa, A.B. Fast Methodology for Identification of Olive Oil Adulterated with a Mix of Different Vegetable Oils. Food Anal. Methods 2019, 12, 293–304. [Google Scholar] [CrossRef]
- Poiana, M.A.; Alexa, E.; Munteanu, M.F.; Gligor, R.; Moigradean, D.; Mateescu, C. Use of ATR-FTIR spectroscopy to detect the changes in extra virgin olive oil by adulteration with soybean oil and high temperature heat treatment. Open Chem. 2015, 13, 689–698. [Google Scholar] [CrossRef]
- Rohman, A.; Che Man, Y.B.; Nurrulhidayah, A.F. Fourier-transform infrared spectra combined with chemometrics and fatty acid composition for analysis of pumpkin seed oil blended into olive oil. Int. J. Food Prop. 2015, 18, 1086–1096. [Google Scholar] [CrossRef]
- Rohman, A.; Che Man, Y.B.; Yusof, F.M. The use of FTIR spectroscopy and chemometrics for rapid authentication of extra virgin olive oil. JAOCS J. Am. Oil Chem. Soc. 2014, 91, 207–213. [Google Scholar] [CrossRef]
- Rohman, A.; Che Man, Y.B. Quantification and classification of corn and sunflower oils as adulterants in olive oil using chemometrics and FTIR spectra. Sci. World J. 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Lin, W.; Li, X.; Shen, Q.; Luo, H. Detection and quantification of extra virgin olive oil adulteration with edible oils by FT-IR spectroscopy and chemometrics. Anal. Methods 2015, 7, 3939–3945. [Google Scholar] [CrossRef]
- Rohman, A.; Man, Y.B.C. The chemometrics approach applied to FTIR spectral data for the analysis of rice bran oil in extra virgin olive oil. Chemom. Intell. Lab. Syst. 2012, 110, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Rohman, A.; Che Man, Y.B. Authentication of extra virgin olive oil from sesame oil using FTIR spectroscopy and gas chromatography. Int. J. Food Prop. 2012, 15, 1309–1318. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Hassan, M.M.; Kutsanedzie, F.Y.H.; Li, H.H.; Chen, Q.S. Evaluation of extra-virgin olive oil adulteration using FTIR spectroscopy combined with multivariate algorithms. Qual. Assur. Saf. Crop. Foods 2018, 10, 411–421. [Google Scholar] [CrossRef]
- Li, X.; Wang, S.; Shi, W.; Shen, Q. Partial Least Squares Discriminant Analysis Model Based on Variable Selection Applied to Identify the Adulterated Olive Oil. Food Anal. Methods 2016, 9, 1713–1718. [Google Scholar] [CrossRef]
- Georgouli, K.; Martinez Del Rincon, J.; Koidis, A. Continuous statistical modelling for rapid detection of adulteration of extra virgin olive oil using mid infrared and Raman spectroscopic data. Food Chem. 2017, 217, 735–742. [Google Scholar] [CrossRef] [Green Version]
- Didham, M.; Truong, V.K.; Chapman, J.; Cozzolino, D. Sensing the Addition of Vegetable Oils to Olive Oil: The Ability of UV–VIS and MIR Spectroscopy Coupled with Chemometric Analysis. Food Anal. Methods 2020, 13, 601–607. [Google Scholar] [CrossRef]
- Uncu, O.; Ozen, B. A comparative study of mid-infrared, UV–Visible and fluorescence spectroscopy in combination with chemometrics for the detection of adulteration of fresh olive oils with old olive oils. Food Control 2019, 105, 209–218. [Google Scholar] [CrossRef]
- Üçüncüoǧlu, D.; Küçük, V.A. A multivariate data approach for FTIR-ATR monitoring of virgin olive oils: Lipid structure during autoxidation. OCL - Oilseeds fats, Crop. Lipids 2019, 26, 42. [Google Scholar] [CrossRef]
- Hirri, A.; Bassbasi, M.; Platikanov, S.; Tauler, R.; Oussama, A. FTIR Spectroscopy and PLS-DA Classification and Prediction of Four Commercial Grade Virgin Olive Oils from Morocco. Food Anal. Methods 2016, 9, 974–981. [Google Scholar] [CrossRef]
- Jolayemi, O.S.; Tokatli, F.; Buratti, S.; Alamprese, C. Discriminative capacities of infrared spectroscopy and e-nose on Turkish olive oils. Eur. Food Res. Technol. 2017, 243, 2035–2042. [Google Scholar] [CrossRef]
- Abdallah, M.; Vergara-Barberán, M.; Lerma-García, M.J.; Herrero-Martínez, J.M.; Simó-Alfonso, E.F.; Guerfel, M. Cultivar discrimination and prediction of mixtures of Tunisian extra virgin olive oils by FTIR. Eur. J. Lipid Sci. Technol. 2016, 118, 1236–1242. [Google Scholar] [CrossRef]
- Jovic, O.; Smolic, T.; Jurišic, Z.; Meic, Z.; Hrenar, T. Chemometric analysis of Croatian extra virgin olive oils from Central Dalmatia Region. Croat. Chem. Acta 2013, 86, 335–344. [Google Scholar] [CrossRef]
- Bevilacqua, M.; Bucci, R.; Magrì, A.D.; Magrì, A.L.; Marini, F. Tracing the origin of extra virgin olive oils by infrared spectroscopy and chemometrics: A case study. Anal. Chim. Acta 2012, 717, 39–51. [Google Scholar] [CrossRef]
- Rohman, A.; Che Man, Y.B. Determination of extra virgin olive oil in quaternary mixture using FTIR spectroscopy and multivariate calibration. Spectroscopy 2011, 26, 203–211. [Google Scholar] [CrossRef]
- Maggio, R.M.; Cerretani, L.; Chiavaro, E.; Kaufman, T.S.; Bendini, A. A novel chemometric strategy for the estimation of extra virgin olive oil adulteration with edible oils. Food Control 2010, 21, 890–895. [Google Scholar] [CrossRef]
- Sinelli, N.; Casale, M.; Di Egidio, V.; Oliveri, P.; Bassi, D.; Tura, D.; Casiraghi, E. Varietal discrimination of extra virgin olive oils by near and mid infrared spectroscopy. Food Res. Int. 2010, 43, 2126–2131. [Google Scholar] [CrossRef]
- Villano, C.; Lisanti, M.T.; Gambuti, A.; Vecchio, R.; Moio, L.; Frusciante, L.; Aversano, R.; Carputo, D. Wine varietal authentication based on phenolics, volatiles and DNA markers: State of the art, perspectives and drawbacks. Food Control 2017, 80, 1–10. [Google Scholar] [CrossRef]
- Daniel, C. The role of visible and infrared spectroscopy combined with chemometrics to measure phenolic compounds in grape and wine samples. Molecules 2015, 20, 726–737. [Google Scholar] [CrossRef] [Green Version]
- Aleixandre-Tudo, J.L.; Buica, A.; Nieuwoudt, H.; Aleixandre, J.L.; Du Toit, W. Spectrophotometric Analysis of Phenolic Compounds in Grapes and Wines. J. Agric. Food Chem. 2017, 65, 4009–4026. [Google Scholar] [CrossRef]
- Basalekou, M.; Strataridaki, A.; Pappas, C.; Tarantilis, P.A.; Kotseridis, Y.; Kallithraka, S. Authenticity determination of greek-cretan mono-varietal white and red wines based on their phenolic content using attenuated total reflectance fourier transform infrared spectroscopy and chemometrics. Curr. Res. Nutr. Food Sci. 2016, 4, 54–62. [Google Scholar] [CrossRef]
- He, Z.H.; Duan, X.R.; Ma, Z.H. Measuring routine parameters of wine by ATR-MIR spectroscopy. Appl. Mech. Mater. 2013, 397–400, 1749–1752. [Google Scholar] [CrossRef]
- Banc, R.; Loghin, F.; Miere, D.; Fetea, F.; Socaciu, C. Romanian wines quality and authenticity using FT-MIR spectroscopy coupled with multivariate data analysis. Not. Bot. Horti Agrobot. 2014, 42, 556–564. [Google Scholar] [CrossRef] [Green Version]
- Parpinello, G.P.; Ricci, A.; Arapitsas, P.; Curioni, A.; Moio, L.; Segade, S.R.; Ugliano, M.; Versari, A. Multivariate characterisation of Italian monovarietal red wines using MIR spectroscopy. Oeno One 2019, 53, 741–751. [Google Scholar] [CrossRef] [Green Version]
- Basalekou, M.; Pappas, C.; Kotseridis, Y.; Tarantilis, P.A.; Kontaxakis, E.; Kallithraka, S. Red wine age estimation by the alteration of its color parameters: Fourier transform infrared spectroscopy as a tool to monitor wine maturation time. J. Anal. Methods Chem. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Ferreiro-González, M.; Ruiz-Rodríguez, A.; Barbero, G.F.; Ayuso, J.; Álvarez, J.A.; Palma, M.; Barroso, C.G. FT-IR, Vis spectroscopy, color and multivariate analysis for the control of ageing processes in distinctive Spanish wines. Food Chem. 2019, 277, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Geana, E.I.; Ciucure, C.T.; Apetrei, C.; Artem, V. Application of spectroscopic UV-Vis and FT-IR screening techniques coupled with multivariate statistical analysis for red wine authentication: Varietal and vintage year discrimination. Molecules 2019, 24, 4166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ioannou-Papayianni, E.; Kokkinofta, R.I.; Theocharis, C.R. Authenticity of cypriot sweet wine commandaria using FT-IR and chemometrics. J. Food Sci. 2011, 76, 420–427. [Google Scholar] [CrossRef]
- Hu, X.Z.; Liu, S.Q.; Li, X.H.; Wang, C.X.; Ni, X.L.; Liu, X.; Wang, Y.; Liu, Y.; Xu, C.H. Geographical origin traceability of Cabernet Sauvignon wines based on Infrared fingerprint technology combined with chemometrics. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Cavanna, D.; Righetti, L.; Elliott, C.; Suman, M. The scientific challenges in moving from targeted to non-targeted mass spectrometric methods for food fraud analysis: A proposed validation workflow to bring about a harmonized approach. Trends Food Sci. Technol. 2018, 80, 223–241. [Google Scholar] [CrossRef]
- Hidayatno, A.; Rahman, I.; Rahmadhani, A. Understanding the systemic relationship of industry 4.0 adoption in the Indonesian food and beverage industry. ACM Int. Conf. Proceeding Ser. 2019, 344–348. [Google Scholar] [CrossRef]
- Noor Hasnan, N.Z.; Yusoff, Y.M. Short review: Application Areas of Industry 4.0 Technologies in Food Processing Sector. In Proceedings of the 2018 IEEE 16th Student Conference on Research and Development SCOReD 2018, Selangor, Malaysia, 26–28 November 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Luque, A.; Peralta, M.E.; de las Heras, A.; Córdoba, A. State of the Industry 4.0 in the Andalusian food sector. Procedia Manuf. 2017, 13, 1199–1205. [Google Scholar] [CrossRef]
- Soosay, C.; Kannusamy, R. Scope for industry 4.0 in agri-food supply chain. In Proceedings of the The Road to a Digitalized Supply Chain Management: Smart and Digital Solutions for Supply Chain Management; Kersten, W.B., Thorsten Ringle, C.M., Eds.; Proceedings of the Hamburg International Conference of Logistics (HICL): Hamburg, Germany, 2018.
- Akyazi, T.; Goti, A.; Oyarbide, A.; Alberdi, E.; Bayon, F. A guide for the food industry to meet the future skills requirements emerging with industry 4.0. Foods 2020, 9, 492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esslinger, S.; Riedl, J.; Fauhl-Hassek, C. Potential and limitations of non-targeted fingerprinting for authentication of food in official control. Food Res. Int. 2014, 60, 189–204. [Google Scholar] [CrossRef]
Product/Reference | Sampling | Wavenumber Range (cm−1) | Multivariate Analysis | Aim/Comments |
---|---|---|---|---|
Green coffee beans [46] | ATR | 1775–1500 3030–2750 | PCA | Assessment of 48 green coffee samples based on their origin (Brazil, Colombia, Ethiopia, Kenya, and Yemen). |
Colombian coffee [49] | ATR | 4000–650 | PCA; PLS-DA | Comparative study of 1H-NMR, ATR-MIR, and NIR to discriminate 97 samples of roasted coffee beans from Colombia and other countries. |
Green Arabica coffee [50] | Transmission (KBr) | 1800–800 | SVM | Geographic classification of 20 genotypes |
Arabica coffee [47] | Transmission (KBr) | 4000–400 1900–800 | ANN (RBF) | Geographic and genotype authentication |
Roast ground coffee [54] | ATR | 4000–700 1735–700 | PLS | Simultaneous quantification of four adulterants (coffee husks, spent coffee grounds, barley, and corn) |
Roast ground coffee [55] | ATR DRIFT | 4000–700 | PLS-DA; Data Fusion | Comparing the performance of two acquisition modes (DRIFT and ATR) and employing data fusion (DF) in order to combine both data from DRIFT and ATR. |
Roast ground coffee [15,21] | DRIFT | 4000–400 3200–700 | PCA; LDA | DRIFT as a methodology for simultaneous discrimination between roasted coffee and multiple adulterants was confirmed. LDA classification models presented recognition and prediction abilities of 100%, being able to detect adulteration levels as low as 1 g/100 g. |
Roast ground coffee [56] | DRIFT | 4000–700 | PLS | PLS was employed for quantification of adulterants (pure or mixed) in roasted coffee samples using the DRIFT spectra as chemical descriptors, with adulteration levels ranging from 1% to 66% in mass |
Roast ground coffee [57] | ATR | 4000–600 | PCA; PLS | Identify adulteration in roasted and ground coffee by addition of coffee husks |
Roast ground Arabica coffee [58] | ATR | 4000–525 | PCA; PLS | DSC and FTIR coupled with PCA are able to discriminate adulterated from unadulterated samples of coffee by corn |
Arabica and Robusta coffee [59] | ATR | 4000–600 1500–2000 3000–2750 | PLS | Construction of a PLS calibration model to determine the Robusta content in Arabica coffee blends with 9.2 wt% accuracy |
Green Arabica coffee [22] | ATR DRIFT | 4000–700 | PCA; LDA | Discrimination between defective and non-defective Arabica green coffee beans |
Green Arabica coffee [51] | Transmission (KBR) ATR; DRIFT | 4000–700 | PCA; HCA | Comparison of three IR sampling techniques to discriminate between defective and non-defective green coffee beans |
Green Arabica coffee [52] | DRIFT | 3100–600 | PCA; LDA | Discrimination of defective and non-defective roasted coffee beans |
Green Arabica coffee [53] | ATR DRIFT | PCA; Elastic Net algorithm | Comparing the performance of MIR and NIR to discriminate between defective and non-defective roasted coffees | |
Arabica coffee [38] | ATR | 4000–600 | PCA, PLS-DA | Prediction of cup quality of coffees subjected to different roasting degrees |
Product/Reference | Sampling | Wavenumber Range (cm−1) | Multivariate Analysis | Aim/Comments |
---|---|---|---|---|
Cheddar cheese [60] | ATR | 1800–900 | PLSR; SIMCA | Characterization of cheese ripening and flavour, and classification of cheese samples based on their age |
Butter cheeses [65] | ATR | 3600–3050; 1000–400 and 3007 | PCA; PLS | Quantification of the adulteration in butter cheeses with soybean oil |
Butter cheeses [65] | ATR | 3600–2750; 1800–625 | PCA; PLSR | Identification and quantification adulterants in butter cheeses |
White cheese [66] | ATR | 1650–800 | PLSR | Determination of minor components (formaldehyde) in cheese samples |
Buffalo cheese [61] | ATR | 3000–2800; 1700–1500; 1500–900 | LR | Authentication of cheese quality and classification of products according to their manufacturing process |
Bovine milk [71] | ATR | 4000–800 | PCA; HCA; PLS; LS-SVM | Quantification of the adulteration in different types of milk by Cheese serum |
Infant formula powders [73] | ATR | 3600–2800; 1750–650 | PLSR; SIMCA | Quantification of melamine and cyanuric acid |
Milk (liquid and powder) [75] | ATR | 3000–3633; 100–1630; 806 | PLSR | Determination of melamine in dairy milk |
Milk [70] | ATR | 3500–3300; 1640–1500 | SIMCA; PLSR | Determination of several potential adulterants |
Goat milk [64] | ATR | 1373; 1454; 956 | SIMCA; PLSR | Detection and quantification of cow milk in goat milk |
Goat milk [76] | ATR | 3000–950 | PLS-DA | Characterization of milk samples according to different goat breeds |
Camel milk [77] | ATR | 3000–920 | PLSR | Adulteration of camel milk by addition of cow milk |
Milk [69] | ATR | 1630–1680 1510–1570 | PCA PLS-DA | Authentication of reconstituted raw milk |
Milk [78] | ATR | 1800–920 | PLSR | Adulteration of raw milk with addition of sucrose |
Butter [79] | Transmission; ATR | 3910–710 | PLS-DA | Adulteration of butter with mutton fat |
Products/Reference | Sampling | Wavenumber Range (cm−1) | Multivariate Analysis | Aim/Comments |
---|---|---|---|---|
Unifloral honey (Polish rape honeys) [80] | ATR | 4000–500 | DCA; MDS; MD-DA; CTA; HCA | Authentication of rape (Brassica) honey; potential identification of other unifloral honeys. |
Real Honey (samples produced by Apis spp. and Tetragonula spp.) and fake honey [82] | ATR | Authentication (1600–1700; 1175–1540; 940–1175; 700–940) Classification (1600–1700) | DA | Discrimination between real honey and fake honey and classification between honey from Apis spp. and stingless bee Tetragonula spp. |
Honey samples from Mexico [84] | ATR | 850–1200 | PCA; PLS | Discrimination of the type of adulterant contained in honey |
Honey harvested in Malaysia produced by stingless bees (Heterotrigona itama) [85] | ATR | 1180–750 | PCA; SIMCA; PLSR | Detection and quantification of adulterants in honey from H. itama |
Honey samples coming from Turkey [86] | ATR | 4000–600 | GILS; PLS | Determination of honey adulteration in different botanical and geographical origins |
Unifloral honey samples [87] | ATR | complete spectral region (4000–600) with emphasis on the fingerprint region from 1800 to 700 | PCA, PLSR PLS-DA coupled with ROC analysis | Rapid and reliable determination of nine unifloral honey types |
Anatolian honey samples and adulterated honey [88] | ATR | 1800–750 | PCA and HCA | Discrimination of honey samples from different botanical origins and differentiate inauthentic honey samples from the natural ones |
Threshold Value for Extra-Virgin Olive Oil | Analytical Method (Reported Results) | Elucidation of Criteria | ||
---|---|---|---|---|
Quality Criteria | Free fatty acids | ≤0.8 | Acid-base titration (% of oleic acid) | Indicative of TAGs enzymatic hydrolysis during manufacturing or storage; Higher values are correlated with worse olive quality or processing of unhealthy olives. |
Peroxide Value | ≤20.0 | Iodometric titration (meq O2/Kg oil) | Indicative of the initial oxidation state of olive oil; | |
Ultraviolet absorption | ≤2.50 (K232) ≤0.22 (K270) ≤0.01 (ΔK) | UV spectrophotometry at 232 and 270 nm | Indicative of the presence of oxidation products formed during refining process and higher oxidation states. | |
Fatty acids alkyl esters | ≤35 | Isolation by silica-gel column chromatography and subsequent GC-FID analysis (mg/Kg oil) | Indication of health condition of olives and storage conditions before processing. Reported to be a relevant criterion for detecting adulteration with low quality olive oil; | |
Purity Criteria | Fatty acid composition | Myristic ≤ 0.03 Palmitic 7.50–20.00 Palmitoleic 0.30–3.50 Heptadecanoic ≤ 0.40 Heptadecenoic ≤ 0.60 Stearic 0.50–5.00 Oleic 55.00–83.00 Linoleic 2.50–21.00 Linolenic ≤ 1.00 Arachidic ≤ 0.60 Eicosenoic ≤ 0.50 Behenic ≤ 0.20 Lignoceric ≤ 0.20 | GC-FID analysis after a previous methylation reaction (% m/m methyl esters) | Indicative of the presence of foreign oils |
Trans fatty acid content | Trans-oleic acid ≤ 0.05 Trans-linoleic + trans-linolenic acids ≤ 0.05 | GC-FID analysis after a previous methylation reaction (% m/m trans-methyl esters) | Indicative of adulteration with hydrogenated seed oils or low quality olive oil | |
ΔAECN42 * | |≤ 0.20| | HPLC-RI and GC-FID | Indicative of adulteration with unsaturated oils | |
Sterols | Cholesterol ≤ 0.5 Brassicasterol ≤ 0.1 Campesterol ≤ 4.0 Stigmasterol < campesterol δ-7-stigmastenol ≤ 0.5 Apparent β-sitosterol ≥ 93 | Several analytical steps: (i) Saponification of olive oil; (ii) Isolation by TLC; (iii) trimethylsilyl derivatization; (iv) GC-FID (% total sterols) | Indicative of the presence of foreign oils | |
Total sterols content | ≥ 1000 | Same as determination of sterols (mg/Kg) | Indicative of the presence of foreign oils | |
Triterpene alcohols | Erythrodiol + uvaol ≤ 4.5 | Same as determination of sterols (% total sterols) | Indicative of the presence of pomace oil as well as grape seed oil | |
Wax content | ≤ 150 | Isolation by silica-gel column chromatography and subsequent GC analysis (mg/Kg oil) | Indicative of the presence of pomace oils | |
Total aliphatic acids content | Total aliphatic acid content is used in combination with other parameters to distinguish the presence of lampante or pomace oils ** | Same as determination of wax content (mg/Kg oil) | Indicative of the presence of lampante and pomace oils | |
Stigmastadienes | ≤ 0.05 | Preparative chromatography followed by GC-FID (mg/Kg oil) | Indicative of the presence of refined oils | |
2-glycerylmonopalmitate | If C16:0 ≤ 14.00%; 2P < 0.9% If C16:0 > 14.00%, 2P ≤ 1.0% | Several analytical steps: (i) enzymatic hydrolysis of TAGs; (ii) silica gel chromatography; (iii) trimethylsilyl derivatization; (iv) GC-FID (%) | Indicative of the presence of refined oils |
Wavenumber (cm−1) | Functional Group | Type of Vibration |
---|---|---|
3005 | C–H | cis=C–H stretching |
2955 | –CH3 | Asymmetrical stretching |
2924 | –CH2 | Asymmetrical stretching |
2855 | –CH2 and CH3 | Symmetrical stretching |
1746 | C=O | C=O stretching (ester groups of TGAs) |
1653 | C=C | cis–CH=CH- stretching |
1462–1377 | C–H | –CH3 and –CH2 bending |
1162 | C–O | C–O stretching (ester groups) |
990–960 | C–H | trans=C–H bending |
Product/Reference | Sampling | Wavenumber Range (cm−1) | Multivariate Analysis | Aim/Comments |
---|---|---|---|---|
Australian commercial EVOO [123] | ATR | 4000–650 | PCA; PLS-DA | Identification and quantification of vegetable oils (canola and sunflower) to olive oil (artificial adulteration) |
Olive oils from Turkey (harvested in 2016 and 2015) [124] | ATR | 4000–650 | PLS-DA; oPLS-DA | Detection of adulteration of fresh olive oils with old olive oils |
Brazilian commercial EVOO [112] | ATR | 3200–650 | PLS | Identification of EVOO adulterated with different vegetable oils (soybean, sunflower, corn, and canola oil) at different levels (1 to 80%, v/v). |
EVOO [120] | ATR | 4000–700 | LDA; BP-ANN; LS-SVM | Adulteration of EVOO with pure peanut oil and pure rapeseed oil. LS-SVM showed the best performance. |
Italian and Greek EVOO [122] | ATR | 4000–550 | CLPP | Development of a novel continuous statistic model to rapidly detect adulteration of olive oil with hazelnut oil |
Commercial EVOO [109,114,115,116,118,119,131] | ATR | 3018–3002 and 1200–1000 (grape seed and soybean oils); 3029–2954 and 1125–667 (walnut oil); 3020–2995 and 1070–900 (pumpkin seed oil); 3028–2985 and 1200–987 (canola oil); 3027–3000, 1076–860 and 790–698 (corn oil); 3025–3000 and 1400–985 (sunflower oil); 3050–2927, 1517–1222 and 1207–1018 (sesame oil); 3020–3000 and 1200–900 (rice bran oil) | DA; PLS; PCR; | Adulteration of EVOO with grape seed, soybean, and walnut, pumpkin seed, canola, corn, sunflower, sesame and rice bran oils |
Commercial EVOO [121] | ATR | 1800–650; 3000–2800 | PLS-DA; MC-UVE | Adulteration of olive oil with peanut oil. PLS-DA model using the variables selected by the modified MC-UVE provided 97.6% accuracy, and 100% classification rate |
Commercial EVOO [113] | ATR | 4000–400 | - | Adulteration with soybean oil; Changes in oil in response to high temperatures |
EVOO from Italy, Greece, Spain and China [117] | ATR | 4000–650 | PCA; PLS; SLLE | Adulteration with camellia, soybean sunflower and corn oils (1 to 90%). SLLE gave satisfactory results. |
Italian commercial EVOO [132] | ATR | 4000–700 | PLS | A multi-stage strategy was developed as a powerful tool for monitoring the purity of EVOO and performing qualitative and quantitative determinations of adulterants. |
Turkish olive oils (including “Ayvalık” and “Memecik” cultivars) [125] | ATR | 4000–400 | PCA | Discrimination of VOO by cultivar, geographic origin and storage time |
Turkish olive oils (Ayvalik, Memecik, and Erkence cultivars) [127] | ATR | 4000–700 (3090–2750 and 1874–700) | PCA oPLS-DA | Comparison of the discriminant abilities of NIR, MIR, and e-nose on authentication of different varieties of Turkish olive oil. |
EVOO from seven Tunisian cultivars [128] | ATR | 4000–600 | LDA MLR | Classification of Tunisian EVOO according to their cultivar |
Moroccan virgin olive oils [126] | ATR | 4000–600 | PLS-DA | Discrimination of four commercial olive oil grades |
Italian monovarietal EVOO [133] | ATR Transmission (NIR) | 4000–700 | PCA LDA, SIMCA | Classification of Italian EVOO according to the cultivar. NIR and MIR techniques were compared giving similar results |
Croatian EVOO [129] | ATR | 4000–600 | PCA HCA | Geographic classification of 48 EVOO |
EVOO from Italy (Sabina PDO) and other countries [130] | ATR (MIR) Transmission (NIR) | 4000–630 | PLS-DA SIMCA | Comparison of NIR and MIR spectroscopy. NIR provided better predictions than MIR |
Product/Reference | Sampling | Wavenumber Range (cm−1) | Multivariate Analysis | Aims/Comments |
---|---|---|---|---|
Romanian red wines [143] | ATR | 1600–900 Coupled with UV-Vis (250–600 nm) | PCA; PLS-DA; LDA | Comparison of UV-vis and FTIR spectroscopy for discrimination and classification of red wines; UV-Vis spectroscopy is more appropriate for varietal discrimination while FT-IR spectroscopy was more appropriate for vintage year prediction |
White, rosé and red Romanian wines [139] | ATR | 1800–600 | PCA; HCA | Method able to discriminate each wine category as a consequence of their biological (cultivar) specificity. |
Italian mono varietal red wines (11 grape varieties) [140] | ATR | 1500–700 | PCA; DA; SVM; SIMCA | Evaluation of quality and authentication of red wines; A peculiar MIR pattern for some Italian grape cultivars was observed. The study of the effect of other variables such as vintage will be done in the future |
Sweet wines from Cyprus and other countries [144] | Transmission (KBr); ATR | 1900–750 | PCA; CA; LDA; CART | Diferentiation of Cypriot traditional sweet wine “Commandaria” from other sweet wines from various countries and of Cypriot provenance. |
Cabernet Sauvignon wines from Australia, Chile and China [145] | Transmission (KBr); ATR | 1750–1000 Coupled with NIR (4555–4353) | PCA; SIMCA; DA | Authenthication and geographical origin traceability |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendes, E.; Duarte, N. Mid-Infrared Spectroscopy as a Valuable Tool to Tackle Food Analysis: A Literature Review on Coffee, Dairies, Honey, Olive Oil and Wine. Foods 2021, 10, 477. https://doi.org/10.3390/foods10020477
Mendes E, Duarte N. Mid-Infrared Spectroscopy as a Valuable Tool to Tackle Food Analysis: A Literature Review on Coffee, Dairies, Honey, Olive Oil and Wine. Foods. 2021; 10(2):477. https://doi.org/10.3390/foods10020477
Chicago/Turabian StyleMendes, Eduarda, and Noélia Duarte. 2021. "Mid-Infrared Spectroscopy as a Valuable Tool to Tackle Food Analysis: A Literature Review on Coffee, Dairies, Honey, Olive Oil and Wine" Foods 10, no. 2: 477. https://doi.org/10.3390/foods10020477
APA StyleMendes, E., & Duarte, N. (2021). Mid-Infrared Spectroscopy as a Valuable Tool to Tackle Food Analysis: A Literature Review on Coffee, Dairies, Honey, Olive Oil and Wine. Foods, 10(2), 477. https://doi.org/10.3390/foods10020477