Plant-Based Alternatives to Yogurt: State-of-the-Art and Perspectives of New Biotechnological Challenges
Abstract
:1. Introduction
2. Ingredients
3. Texture: Role of the Bioprocessing Options
3.1. Physical Treatments and Bioprocessing
3.2. Synthesis of Exopolisaccharides
4. Nutritional and Functional Aspects: Matrix- and Fermentation-Related Effects
4.1. PBYL Variability and Main Differences with Conventional Yogurt
4.2. Starters and Effect of Fermentation on the Nutritional and Functional PBYL Features
4.3. Degradation of Anti-Nutritional Compounds
4.4. Use of Sprouted Grains
4.5. PBYL as Probiotic Carriers
5. Sensory Profile and Consumer Acceptance
6. Shelf-Life
7. Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- European Commission. Report from the Commission to the Council and the European Parliament on the Development of Plant Proteins in the European Union; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Coda, R.; Montemurro, M.; Rizzello, C.G. Yogurt-like beverages made with cereals. In Yogurt in Health and Disease Prevention; Shah, N.P., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 183–201. [Google Scholar]
- Jeske, S.; Zannini, E.; Arendt, E.K. Past, present and future: The strength of plant-based dairy substitutes based on gluten-free raw materials. Food Res. Int. 2018, 110, 42–51. [Google Scholar] [CrossRef] [PubMed]
- FONA International. Non-Dairy Yogurt 2018-Trend Insight Report; FONA International: Geneva, Switzerland, 2018; Available online: http://www.fona.com/wp-content/uploads/2018/04/FONA_Non-Dairy-Yogurt-report-FINAL.pdf (accessed on 18 December 2020).
- Granato, D.; Branco, G.F.; Nazzaro, F.; Cruz, A.G.; Faria, J.A. Functional foods and nondairy probiotic food development: Trends, concepts, and products. Compr. Rev. Food Sci. Food Saf. 2010, 9, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Henchion, M.; Hayes, M.; Mullen, A.M.; Fenelon, M.; Tiwari, B. Future protein supply and demand: Strategies and factors influencing a sustainable equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandan, R.C.; Kilara, A. Manufacturing Yogurt and Fermented Milks; Wiley-Blackwell: Hoboken, NJ, USA, 2013. [Google Scholar]
- Lee, W.J.; Lucey, J.A. Structure and physical properties of yogurt gels: Effect of inoculation rate and incubation temperature. J. Dairy Sci. 2004, 87, 3153–3164. [Google Scholar] [CrossRef]
- Mäkinen, O.E.; Wanhalinna, V.; Zannini, E.; Arendt, E.K. Foods for special dietary needs: Non-dairy plant-based milk substitutes and fermented dairy-type products. Crit. Rev. Food Sci. Nutr. 2016, 56, 339–349. [Google Scholar] [CrossRef]
- Bernat, N.; Cháfer, M.; Chiralt, A.; González-Martínez, C. Vegetable milks and their fermented derivative products. Int. J. Food Stud. 2014, 3, 201. [Google Scholar] [CrossRef]
- Hickisch, A.; Beer, R.; Vogel, R.F.; Toelstede, S. Influence of lupin-based milk alternative heat treatment and exopolysaccharide-producing lactic acid bacteria on the physical characteristics of lupin-based yogurt alternatives. Food Res. Int. 2016, 84, 180–188. [Google Scholar] [CrossRef]
- Ripari, V. Techno-functional role of exopolysaccharides in cereal-based, yogurt-like beverages. Beverages 2019, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Coda, R.; Lanera, A.; Trani, A.; Gobbetti, M.; Di Cagno, R. Yogurt-like beverages made of a mixture of cereals, soy and grape must: Microbiology, texture, nutritional and sensory properties. Int. J. Food Microbiol. 2012, 155, 120–127. [Google Scholar] [CrossRef]
- Pontonio, E.; Raho, S.; Dingeo, C.; Centrone, D.; Carofiglio, V.E.; Rizzello, C.G. Nutritional, functional, and technological characterization of a novel gluten-and lactose-free yogurt-style snack produced with selected lactic acid bacteria and Leguminosae flours. Front. Microbiol. 2020, 11, 1664. [Google Scholar] [CrossRef]
- Gobbetti, M.; De Angelis, M.; Di Cagno, R.; Polo, A.; Rizzello, C.G. The sourdough fermentation is the powerful process to exploit the potential of legumes, pseudo-cereals and milling by-products in baking industry. Crit. Rev. Food Sci. Nutr. 2020, 60, 2158–2173. [Google Scholar] [CrossRef] [PubMed]
- Curiel, J.A.; Coda, R.; Centomani, I.; Summo, C.; Gobbetti, M.; Rizzello, C.G. Exploitation of the nutritional and functional characteristics of traditional Italian legumes: The potential of sourdough fermentation. Int. J. Food Microbiol. 2015, 196, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Leroy, F.; De Vuyst, L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 2004, 15, 67–78. [Google Scholar] [CrossRef]
- Kreisz, S.; Arendt, E.K.; Hübner, F.; Zarnkov, M. Cereal-based gluten-free functional drinks. In Gluten-Free Cereal Products and Beverages; Arendt, E., Dal Bello, F., Eds.; Academic Press: Cambridge, MA, USA, 2008; pp. 373–392. [Google Scholar]
- Filannino, P.; Di Cagno, R.; Gobbetti, M. Metabolic and functional paths of lactic acid bacteria in plant foods: Get out of the labyrinth. Curr. Opin. Biotech. 2018, 49, 64–72. [Google Scholar] [CrossRef]
- Senok, A.C.; Ismaeel, A.Y.; Botta, G.A. Probiotics: Facts and myths. Clin. Microbiol. Infect. 2005, 11, 958–966. [Google Scholar] [CrossRef] [Green Version]
- Ranadheera, C.S.; Vidanarachchi, J.K.; Rocha, R.S.; Cruz, A.G.; Ajlouni, S. Probiotic delivery through fermentation: Dairy vs. non-dairy beverages. Fermentation 2017, 3, 67. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.; Harris, H.M.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Brückner-Gühmann, M.; Vasil’eva, E.; Culetu, A.; Duta, D.; Sozer, N.; Drusch, S. Oat protein concentrate as alternative ingredient for non-dairy yoghurt-type product. J. Sci. Food Agric. 2019, 99, 5852–5857. [Google Scholar] [CrossRef]
- Levy, R.; Okun, Z.; Davidovich-Pinhas, M.; Shpigelman, A. Utilization of high-pressure homogenization of potato protein isolate for the production of dairy-free yogurt-like fermented product. Food Hydrocoll. 2020, 113, 106442. [Google Scholar] [CrossRef]
- Klost, M.; Drusch, S. Structure formation and rheological properties of pea protein-based gels. Food Hydrocoll. 2019, 94, 622–630. [Google Scholar] [CrossRef] [Green Version]
- Al-Nabulsi, A.; Shaker, R.; Osaili, T.; Al-Taani, M.; Olaimat, A.; Awaisheh, S.; Abushelaibi, A.; Holley, R. Sensory evaluation of flavored soy milk-based yogurt: A comparison between Jordanian and Malaysian consumers. J. Food Sci. Eng. 2014, 4, 27. [Google Scholar]
- Cáceres, P.J.; Peñas, E.; Martínez-Villaluenga, C.; García-Mora, P.; Frías, J. Development of a multifunctional yogurt-like product from germinated brown rice. LWT 2019, 99, 306–312. [Google Scholar] [CrossRef] [Green Version]
- Donkor, O.N.; Henriksson, A.; Vasiljevic, T.; Shah, N.P. Probiotic strains as starter cultures improve angiotensin-converting enzyme inhibitory activity in soy yogurt. J. Food Sci. 2005, 70, m375–m381. [Google Scholar] [CrossRef]
- Cheng, Y.J.; Thompson, L.D.; Brittin, H.C. Sogurt, a yogurt-like soybean product: Development and properties. J. Food Sci. 1990, 55, 1178–1179. [Google Scholar] [CrossRef]
- Di Stefano, E.; White, J.; Seney, S.; Hekmat, S.; McDowell, T.; Sumarah, M.; Reid, G. A novel millet-based probiotic fermented food for the developing world. Nutrients 2017, 9, 529. [Google Scholar] [CrossRef] [Green Version]
- Bernat, N.; Cháfer, M.; Chiralt, A.; González-Martínez, C. Probiotic fermented almond “milk” as an alternative to cow-milk yoghurt. Int. J. Food Stud. 2015, 4, 276. [Google Scholar] [CrossRef]
- Coda, R.; Rizzello, C.G.; Trani, A.; Gobbetti, M. Manufacture and characterization of functional emmer beverages fermented by selected lactic acid bacteria. Food Microbiol. 2011, 28, 526–536. [Google Scholar] [CrossRef]
- Lorusso, A.; Coda, R.; Montemurro, M.; Rizzello, C.G. Use of selected lactic acid bacteria and quinoa flour for manufacturing novel yogurt-like beverages. Foods 2018, 7, 51. [Google Scholar] [CrossRef] [Green Version]
- Nionelli, L.; Coda, R.; Curiel, J.A.; Poutanen, K.; Gobbetti, M.; Rizzello, C.G. Manufacture and characterization of a yogurt-like beverage made with oat flakes fermented by selected lactic acid bacteria. Int. J. Food Microbiol. 2014, 185, 17–26. [Google Scholar]
- Zannini, E.; Jeske, S.; Lynch, K.M.; Arendt, E.K. Development of novel quinoa-based yoghurt fermented with dextran producer Weissella cibaria MG1. Int. J. Food Microbiol. 2018, 268, 19–26. [Google Scholar] [CrossRef]
- Rui, X.; Zhang, Q.; Huang, J.; Li, W.; Chen, X.; Jiang, M.; Dong, M. Does lactic fermentation influence soy yogurt protein digestibility: A comparative study between soymilk and soy yogurt at different pH. J. Sci. Food Agric. 2019, 99, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Hwang, C.E.; Haque, M.A.; Lee, J.H.; Song, Y.H.; Lee, H.Y.; Kim, S.C.; Cho, K.M. Bioconversion of γ-aminobutyric acid and isoflavone contents during the fermentation of high-protein soy powder yogurt with Lactobacillus brevis. Appl. Biol. Chem. 2018, 61, 409–421. [Google Scholar] [CrossRef] [Green Version]
- Bansal, S.; Mangal, M.; Sharma, S.K.; Yadav, D.N.; Gupta, R.K. Optimization of process conditions for developing yoghurt like probiotic product from peanut. LWT 2016, 73, 6–12. [Google Scholar] [CrossRef]
- Park, S.Y.; Lee, D.K.; An, H.M.; Kim, J.R.; Kim, M.J.; Cha, M.K.; Lee, S.W.; Kim, S.O.; Choi, K.S.; Lee, K.O.; et al. Producing functional soy-based yogurt incubated with Bifidobacterium longum SPM1205 isolated from healthy adult Koreans. Biotechnol. Biotechnol. Equip. 2012, 26, 2759–2764. [Google Scholar] [CrossRef] [Green Version]
- Dias, S.; Castanheira, E.; Fortes, A.G.; Pereira, D.M.; Gonçalves, M.S.T. Natural pigments of anthocyanin and betalain for coloring soy-based yogurt alternative. Foods 2020, 9, 771. [Google Scholar] [CrossRef] [PubMed]
- Grasso, N.; Alonso-Miravalles, L.; O’Mahony, J.A. Composition, physicochemical and sensorial properties of commercial plant-based yogurts. Foods 2020, 9, 252. [Google Scholar] [CrossRef] [Green Version]
- Greis, M.; Sainio, T.; Katina, K.; Kinchla, A.J.; Nolden, A.; Partanen, R.; Seppä, L. Dynamic texture perception in plant-based yogurt alternatives: Identifying temporal drivers of liking by TDS. Food Qual. Prefer. 2020, 86, 104019. [Google Scholar] [CrossRef]
- Oatly. Available online: https://www.oatly.com/int/products/oatgurt-natural (accessed on 18 December 2020).
- Alpro. Available online: https://www.alpro.com/it/prodotti/alternativa-vegetale-allo-yogurt/alternative-vegetali-allo-yogurt-150g/alpro-naturale-150-gr/ (accessed on 18 December 2020).
- Fazer. Available online: https://www.fazer.com/products/our-international-brand-selection/yosa/products/ (accessed on 18 December 2020).
- Kandylis, P.; Pissaridi, K.; Bekatorou, A.; Kanellaki, M.; Koutinas, A.A. Dairy and non-dairy probiotic beverages. Curr. Opin. Food Sci. 2016, 7, 58–63. [Google Scholar] [CrossRef]
- Blandino, A.; Al-Aseeri, M.E.; Pandiella, S.S.; Cantero, D.; Webb, C. Cereal-based fermented foods and beverages. Food Res. Int. 2003, 36, 527–543. [Google Scholar] [CrossRef]
- Taylor, J.; Awika, J. Gluten-Free Ancient Grains: Cereals, Pseudocereals, and Legumes: Sustainable, Nutritious, and Health-Promoting Foods for the 21st Century; Woodhead Publishing: Cambridge, UK, 2017. [Google Scholar]
- Åman, P.; Rimsten, L.; Andersson, R. Molecular weight distribution of β-glucan in oat-based foods. Cereal Chem. 2004, 81, 356–360. [Google Scholar] [CrossRef]
- Walsh, H.; Ross, J.; Hendricks, G.; Guo, M. Physico-chemical properties, probiotic survivability, microstructure, and acceptability of a yogurt-like symbiotic oats-based product using pre-polymerized whey protein as a gelation agent. J. Food Sci. 2010, 75, M327–M337. [Google Scholar] [CrossRef] [PubMed]
- EU Commission. Commission Regulation (EU) No 432/2012 of 16 May 2012 Establishing a List of Permitted Health Claims Made on Foods, Other than Those Referring to the Reduction of Disease Risk and to Children’s Development and Health. Available online: https://eur-lex.europa.eu/legal-content/IT/ALL/?uri=celex%3A32012R0432 (accessed on 18 December 2020).
- Hoffmanová, I.; Sánchez, D.; Szczepanková, A.; Tlaskalová-Hogenová, H. The pros and cons of using oat in a gluten-free diet for celiac patients. Nutrients 2019, 11, 2345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsh, A.J.; Hill, C.; Ross, R.P.; Cotter, P.D. Fermented beverages with health-promoting potential: Past and future perspectives. Trends Food Sci. Technol. 2014, 38, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Corbo, M.R.; Bevilaqua, A.; Petruzzelli, L.; Casanova, F.P.; Sinigaglia, M. Functional beverages: The emerging side of functional foods. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1192–1206. [Google Scholar] [CrossRef]
- Molteberg, E.L.; Magnus, E.M.; Bjørge, J.M.; Nilsson, A. Sensory and chemical studies of lipid oxidation in raw and heat-treated oat flours. Cereal Chem. 1996, 73, 579–587. [Google Scholar]
- Descalzo, A.M.; Rizzo, S.A.; Servent, A.; Rossetti, L.; Lebrun, M.; Pérez, C.D.; Boulanger, R.; Mestres, C.; Pallet, D.; Dhuique-Mayer, C. Oxidative status of a yogurt-like fermented maize product containing phytosterols. J. Food Sci. Technol. 2018, 55, 1859–1869. [Google Scholar] [CrossRef]
- Mejía, D. Maize: Post-Harvest Operation; Food and Agriculture Organization of the United Nations (FAO): Quebec City, QC, Canada, 2003; Available online: http://www.fao.org/3/a-av007e.pdf (accessed on 18 December 2020).
- Gong, E.S.; Luo, S.; Li, T.; Liu, C.; Zhang, G.; Chen, J.; Zen, Z.; Liu, R.H. Phytochemical profiles and antioxidant activity of processed brown rice products. Food Chem. 2017, 232, 67–78. [Google Scholar] [CrossRef]
- Gull, A.; Prasad, K.; Kumar, P. Evaluation of functional, antinutritional, pasting and microstructural properties of Millet flours. J. Food Meas. Charact. 2016, 10, 96–102. [Google Scholar] [CrossRef]
- Song, X.; Sun, X.; Ban, Q.; Cheng, J.; Zhang, S.; Guo, M. Gelation and microstructural properties of a millet-based yogurt-like product using polymerized whey protein and xanthan gum as thickening agents. J. Food Sci. 2020, 85, 3927–3933. [Google Scholar] [CrossRef]
- Montemurro, M.; Pontonio, E.; Rizzello, C.G. Quinoa flour as an ingredient to enhance the nutritional and functional features of cereal-based foods. In Flour and Breads and their Fortification in Health and Disease Prevention; Preedy, V.R., Watson, R.R., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 453–464. [Google Scholar]
- Väkeväinen, K.; Ludena-Urquizo, F.; Korkala, E.; Lapveteläinen, A.; Peräniemi, S.; von Wright, A.; Plumed-Ferrer, C. Potential of quinoa in the development of fermented spoonable vegan products. LWT 2020, 120, 108912. [Google Scholar] [CrossRef]
- Phillips, G.O.; Williams, P.A. Handbook of Food Proteins; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Mital, B.K.; Steinkraus, K.H. Fermentation of soy milk by lactic acid bacteria. A review. J. Food Prot. 1979, 42, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.C.; Hou, J.W. Growth of bifidobacteria in soymilk and their survival in the fermented soymilk drink during storage. Int. J. Food Microbiol. 2000, 56, 11–121. [Google Scholar] [CrossRef]
- Heron, T.; Prado, P.; West, C. Global value chains and the governance of “embedded” food commodities: The case of soy. Glob. Policy 2018, 9, 29–37. [Google Scholar] [CrossRef]
- Waglay, A.; Karboune, S. Potato proteins: Functional food ingredients. In Advances in Potato Chemistry and Technology; Singh, J., Kaur, L., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 75–104. [Google Scholar]
- Foster, T.; Wolf, B. Hydrocolloid gums-Their role and interactions in foods. In Practical Food Rheology: An Interpretive Approach; Norton, I.T., Spyropoulos, F., Cox, P., Eds.; Wiley: Hoboken, NJ, USA, 2011; pp. 61–84. [Google Scholar]
- FDA (Food and Drug Administration). Milk and Cream. Subpart B—Requirements for Specific Standardized Milk and Cream Sec. 131.200 Yogurt; United States Government Publishing Office: Washington, DC, USA, 2019. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=131.200 (accessed on 18 December 2020).
- Lund, D.; Lorenz, K.J. Influence of time, temperature, moisture, ingredients, and processing conditions on starch gelatinization. Crit. Rev. Food Sci. Nutr. 1984, 20, 249–273. [Google Scholar] [CrossRef] [PubMed]
- Cruz, N.; Capellas, M.; Hernández, M.; Trujillo, A.J.; Guamis, B.; Ferragut, V. Ultra high pressure homogenization of soymilk: Microbiological, physicochemical and microstructural characteristics. Food Res. Int. 2007, 40, 725–732. [Google Scholar] [CrossRef]
- Walstra, P.; Wouters, J.T.M.; Geurts, T.J. Dairy Science and Technology, 2nd ed.; Taylor and Francis: Milton Park, UK, 2014. [Google Scholar]
- Levy, R.; Okun, Z.; Shpigelman, A. High-pressure homogenization: Principles and applications beyond microbial inactivation. Food Eng. Rev. 2020. [Google Scholar] [CrossRef]
- Angioloni, A.; Collar, C. Small and large deformation viscoelastic behaviour of selected fibre blends with gelling properties. Food Hydrocoll. 2009, 23, 742–748. [Google Scholar] [CrossRef]
- Dave, S.R.; Vaishnav, A.M.; Upadhyay, K.H.; Tipre, D.R. Microbial exopolysaccharide—An inevitable product for living beings and environment. J. Bacteriol. Mycol. 2016, 2, 00034. [Google Scholar] [CrossRef]
- Welman, A.D.; Maddox, I.S. Exopolysaccharides from lactic acid bacteria: Perspectives and challenges. Trends Biotechnol. 2003, 21, 269–274. [Google Scholar] [CrossRef]
- Lynch, K.M.; Zannini, E.; Coffey, A.; Arendt, E.K. Lactic acid bacteria exopolysaccharides in foods and beverages: Isolation, properties, characterization, and health benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 155–176. [Google Scholar] [CrossRef]
- Behare, P.V.; Rameshwar, S.; Kumar, M.; Prajapati, J.B.; Singh, R.P. Exopolysaccharides of lactic acid bacteria: A review. J. Food Sci. Technol. 2009, 46, 1–11. [Google Scholar]
- Doleyres, Y.; Schaub, L.; Lacroix, C. Comparison of the functionality of exopolysaccharides produced in situ or added as bioingredients on yogurt properties. J. Dairy Sci. 2005, 88, 4146–4156. [Google Scholar] [CrossRef]
- Galle, S.; Arendt, E.K. Exopolysaccharides from sourdough lactic acid bacteria. Crit. Rev. Food Sci. Nutr. 2014, 54, 891–901. [Google Scholar] [CrossRef]
- Chandan, R.C. An overview of yogurt production and composition. In Yogurt in Health and Disease Prevention; Shah, N.P., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 31–47. [Google Scholar]
- Lonnie, M.; Hooker, E.; Brunstrom, J.M.; Corfe, B.M.; Green, M.A.; Watson, A.W.; Williams, E.A.; Stevenson, E.J.; Penson, S.; Johnstone, A.M. Protein for life: Review of optimal protein intake, sustainable dietary sources and the effect on appetite in ageing adults. Nutrients 2018, 10, 360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukushima, D. Soy Proteins. In Handbook of Food Proteins; Williams, P.A., Phillips, G.O., Eds.; Woodhead Publishing: Cambridge, UK, 2011; pp. 210–232. [Google Scholar]
- Ling, W.H.; Jones, P.J.H. Dietary phytosterols: A review of metabolism, benefits and side effects. Life Sci. 1995, 57, 195–206. [Google Scholar] [CrossRef]
- Rondanelli, M.; Monteferrario, F.; Faliva, M.A.; Perna, S.; Antoniello, N. Key points for maximum effectiveness and safety for cholesterol-lowering properties of plant sterols and use in the treatment of metabolic syndrome. J. Sci. Food Agric. 2013, 93, 2605–2610. [Google Scholar] [CrossRef]
- Niamsiri, N.; Batt, C.A. Dairy products. In Encyclopedia of Microbiology, 3rd ed.; Schaechter, M., Ed.; Academic Press: Cambridge, MA, USA, 2009; pp. 34–44. [Google Scholar]
- Hewitt, D.; Bancroft, H.J. Nutritional value of yogurt. J. Dairy Res. 1985, 52, 197–207. [Google Scholar] [CrossRef]
- Mann, B.; Athira, S.; Sharma, R.; Bajaj, R. Bioactive peptides in yogurt. In Yogurt in Health and Disease Prevention; Shah, N.P., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 411–426. [Google Scholar]
- Abd El-Fattah, A.; Sakr, S.; El-Dieb, S.; Elkashef, H. Developing functional yogurt rich in bioactive peptides and gamma-aminobutyric acid related to cardiovascular health. LWT 2018, 98, 390–397. [Google Scholar] [CrossRef]
- Tangyu, M.; Muller, J.; Bolten, C.J.; Wittmann, C. Fermentation of plant-based milk alternatives for improved flavour and nutritional value. Appl. Microbiol. Biotechnol. 2019, 103, 9263–9275. [Google Scholar] [CrossRef] [Green Version]
- Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C. Thai fermented foods as a versatile source of bioactive microorganisms—a comprehensive review. Sci. Pharm. 2018, 86, 37. [Google Scholar] [CrossRef] [Green Version]
- Ashaolu, T.J. A review on selection of fermentative microorganisms for functional foods and beverages: The production and future perspectives. Int. J. Food Sci. Technol. 2019, 54, 2511–2519. [Google Scholar] [CrossRef]
- De Angelis, M.; Rizzello, C.G.; Alfonsi, G.; Arnault, P.; Cappelle, S.; Di Cagno, R.; Gobbetti, M. Use of sourdough lactobacilli and oat fibre to decrease the glycaemic index of white wheat bread. Br. J. Nutr. 2007, 98, 1196–1205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verni, M.; Verardo, V.; Rizzello, C.G. How fermentation affects the antioxidant properties of cereals and legumes. Foods 2019, 8, 362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charalampopoulos, D.; Pandiella, S.S.; Webb, C. Growth studies of potentially probiotic lactic acid bacteria in cereal-based substrates. J. Appl. Microbiol. 2002, 92, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Prado, F.C.; Parada, J.L.; Pandey, A.; Soccol, C.R. Trends in non-dairy probiotic beverages. Food Res. Int. 2008, 41, 111–123. [Google Scholar] [CrossRef]
- Salmerón, I.; Thomas, K.; Pandiella, S.S. Effect of potentially probiotic lactic acid bacteria on the physicochemical composition and acceptance of fermented cereal beverages. J. Funct. Foods 2015, 15, 106–115. [Google Scholar] [CrossRef]
- Inoue, K.; Shirai, T.; Ochiai, H.; Kasao, M.; Hayakawa, K.; Kimura, M.; Sansawa, H. Blood-pressure-lowering effect of a novel fermented milk containing γ-aminobutyric acid (GABA) in mild hypertensives. Eur. J. Clin. Nutr. 2003, 57, 490–495. [Google Scholar] [CrossRef] [Green Version]
- Nikmaram, N.; Dar, B.N.; Roohinejad, S.; Koubaa, M.; Barba, F.J.; Greiner, R.; Johnson, S.K. Recent advances in γ-aminobutyric acid (GABA) properties in pulses: An overview. J. Sci. Food Agric. 2017, 97, 2681–2689. [Google Scholar] [CrossRef] [Green Version]
- Nejati, F.; Rizzello, C.G.; Di Cagno, R.; Sheikh-Zeinoddin, M.; Diviccaro, A.; Minervini, F.; Gobbetti, M. Manufacture of a functional fermented milk enriched of Angiotensin-I Converting Enzyme (ACE)-inhibitory peptides and γ-amino butyric acid (GABA). LWT 2013, 51, 183–189. [Google Scholar] [CrossRef]
- Cui, Y.; Miao, K.; Niyaphorn, S.; Qu, X. Production of gamma-aminobutyric acid from lactic acid bacteria: A systematic review. Int. J. Mol. Sci. 2020, 21, 995. [Google Scholar] [CrossRef] [Green Version]
- Collar, C.; Mascaros, A.F.; Prieto, J.A.; De Barber, C.B. Changes in free amino acids during fermentation of wheat doughs started with pure culture of lactic acid bacteria. Cereal Chem. 1991, 68, 66–72. [Google Scholar]
- Rollan, G.C.; Gerez, C.L.; LeBlanc, J.G. Lactic fermentation as a strategy to improve the nutritional and functional values of pseudocereals. Front. Nutr. 2019, 6, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gobbetti, M.; De Angelis, M.; Di Cagno, R.; Calasso, M.; Archetti, G.; Rizzello, C.G. Novel insights on the functional/nutritional features of the sourdough fermentation. Int. J. Food Microbiol. 2019, 302, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Zamudio, M.; Gonzalez, A.; Medina, J.A. Lactobacillus plantarum phytase activity is due to non-specific acid phosphatase. Lett. Appl. Microbiol. 2001, 32, 181–184. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.; Angural, S.; Rana, M.; Puri, N.; Kondepudi, K.K.; Gupta, N. Phytase producing lactic acid bacteria: Cell factories for enhancing micronutrient bioavailability of phytate rich foods. Trends Food Sci. Technol. 2020, 96, 1–12. [Google Scholar] [CrossRef]
- Jiménez, N.; Esteban-Torres, M.; Mancheño, J.M.; de las Rivas, B.; Muñoz, R. Tannin degradation by a novel tannase enzyme present in some Lactobacillus plantarum strains. Appl. Environ. Microbiol. 2014, 80, 2991–2997. [Google Scholar] [CrossRef] [Green Version]
- Oku, T.; Nakamura, S. Digestion, absorption, fermentation, and metabolism of functional sugar substitutes and their available energy. Pure Appl. Chem. 2002, 74, 1253–1261. [Google Scholar] [CrossRef]
- Verni, M.; Wang, C.; Montemurro, M.; De Angelis, M.; Katina, K.; Rizzello, C.G.; Coda, R. Exploring the microbiota of faba bean: Functional characterization of lactic acid bacteria. Front. Microbiol. 2017, 8, 2461. [Google Scholar] [CrossRef]
- Teixeira, J.S.; McNeill, V.; Gänzle, M.G. Levansucrase and sucrose phoshorylase contribute to raffinose, stachyose, and verbascose metabolism by lactobacilli. Food Microbiol. 2012, 31, 278–284. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Dhewa, T. Plant food anti-nutritional factors and their reduction strategies: An overview. Food Prod. Process Nutr. 2020, 2, 1–14. [Google Scholar] [CrossRef]
- Hung, P.V.; Maeda, T.; Yamamoto, S.; Morita, N. Effects of germination on nutritional composition of waxy wheat. J. Sci. Food Agric. 2012, 92, 667–672. [Google Scholar] [CrossRef] [PubMed]
- De Pasquale, I.; Pontonio, E.; Gobbetti, M.; Rizzello, C.G. Nutritional and functional effects of the lactic acid bacteria fermentation on gelatinized legume flours. Int. J. Food Microbiol. 2020, 316, 108426. [Google Scholar] [CrossRef] [PubMed]
- Montemurro, M.; Pontonio, E.; Gobbetti, M.; Rizzello, C.G. Investigation of the nutritional, functional and technological effects of the sourdough fermentation of sprouted flours. Int. J. Food Microbiol. 2019, 302, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization; World Health Organization. Probiotics in Food: Health and Nutritional Properties and Guidelines for Evaluation; FAO: Rome, Italy, 2006; Available online: http://www.fao.org/3/a-a0512e.pdf (accessed on 18 December 2020).
- Gupta, S.; Abu-Ghannam, N. Probiotic fermentation of plantased products: Possibilities and opportunities. Crit. Rev. Food Sci. Nutr. 2012, 52, 183–199. [Google Scholar] [CrossRef] [PubMed]
- Soccol, C.R.; De Dea Lindner, J.; Yamaguishi, C.T.; Spier, M.R.; Porto De Souza Vandenberghe, L.; Soccol, V.T. Probiotic nondairy beverages. In Handbook of Plant-Based Fermented Food and Beverage Technology; Hui, Y.H., Ed.; Taylor & Francis Group: Florence, Italy, 2012. [Google Scholar]
- Shortt, C. The probiotic century: Historical and current perspectives. Trends Food Sci. Technol. 1999, 10, 411–417. [Google Scholar] [CrossRef]
- Wu, Y.F.; Molaison, E.F.; Pope, J.F.; Reagan, S. Attitudes and acceptability of soy-based yogurt by college students. Nutr. Food Sci. 2005, 35, 253–257. [Google Scholar] [CrossRef]
- Peyer, L.C.; Zannini, E.; Arendt, E.K. Lactic acid bacteria as sensory biomodulators for fermented cerealbased beverages. Trends Food Sci. Technol. 2016, 54, 17–25. [Google Scholar] [CrossRef]
- Klensporf, D.; Jeleń, H.H. Effect of heat treatment on the flavor of oat flakes. J. Cereal Sci. 2008, 48, 656–661. [Google Scholar] [CrossRef]
- Meyners, M. Panel and panelist agreement for product comparisons in studies of Temporal Dominance of Sensations. Food Qual. Prefer. 2011, 22, 365–370. [Google Scholar] [CrossRef]
- Arancibia, C.; Castro, C.; Jublot, L.; Costell, E.; Bayarri, S. Colour, rheology, flavour release and sensory perception of dairy desserts. Influence of thickener and fat content. LWT 2015, 62, 408–416. [Google Scholar] [CrossRef]
- Coolbear, T.; Weimer, B.C.; Wilkinson, M.G. Lactic acid bacteria: Lactic acid bacteria in flavor development. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, Y.W., Ed.; Academic Press: Cambridge, MA, USA, 2011; pp. 160–165. [Google Scholar]
- Irigoyen, A.; Ortigosa, M.; Garcia, S.; Ibanez, F.C.; Torre, P. Comparison of free amino acids and volatile components in three fermented milks. Int. J. Dairy Technol. 2012, 65, 578–584. [Google Scholar] [CrossRef]
- Donkor, O.N.; Henriksson, A.; Vasiljevic, T.; Shah, N.P. Rheological properties and sensory characteristics of set-type soy yogurt. J. Agric. Food Chem. 2007, 55, 9868–9876. [Google Scholar] [CrossRef] [PubMed]
- Donkor, O.N.; Nilmini, S.L.I.; Stolic, P.; Vasiljevic, T.; Shah, N.P. Survival and activity of selected probiotic organisms in set-type yoghurt during cold storage. Int. Dairy J. 2007, 17, 657–665. [Google Scholar] [CrossRef]
Main Ingredients | Starters | Texture Processing, Structuring Agents | Development Level | Reference |
---|---|---|---|---|
Oat protein concentrate (15% w/w) | Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus (commercial strains for yogurt production) | Heat treatment at 90 °C for 30 min | Experimental | [23] |
Potato protein isolate (5% w/v) | Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus (commercial strains for yogurt production) | High-pressure homogenization (200 MPa) | Experimental | [24] |
Pea protein isolate (10% w/w) | Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus (commercial strains for yogurt production) | Heat treatment 60°C for 60min and high-pressure homogenisation (3 MPa) | Experimental | [25] |
Soymilk (6.8% solids) | Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus (commercial strains for yogurt production) | Concentration (heat treatment at 90 °C for 15 min), addition of strawberry or orange jam (30% w/w) | Experimental | [26] |
Brown rice, soaked rice, or germinated rice (22% w/v) | Commercial thermophilic starters | Gelatin supplementation, heat treatment at 95°C for 30min, filtration | Experimental | [27] |
Soymilk | Streptococcus thermophilus St1342, Lactobacillus delbrueckii subsp. bulgaricus Lb1466 and a probiotic strain (Lactobacillus acidophilus L10, Lacticaseibacillus paracasei L26, Bifidobacterium lactis B94) | Heat treatment at 90 °C for 30 min | Experimental | [28] |
Defatted soy flour (11.6% w/w) | Streptococcus thermophilus ATCC 19987 and Lacticaseibacillus casei ATCC 393 | Heat treatment at 121 °C for 15 min and supplementation with gelatin | Experimental | [29] |
Millet flour (8% w/v) | Lacticaseibacillus rhamnosus GR-1 and Streptococcus thermophilus C106 | Heat treatment at 90-95 °C for 60 min | Experimental | [30] |
Almond (8% w/w) | Limosilactobacillus reuteri ATCC 55730 (probiotic) and Streptococcus thermophilus CECT 986 | High pressure homogenisation (172 MPa for 2-4 sec) and heat treatment at 85 °C for 30 min | Experimental | [31] |
Emmer flour (30% w/v) | Lactiplantibacillus plantarum 6E, Lacticaseibacillus rhamnosus SP1, Weissella cibaria WC4 (EPS-producer) | Starch gelatinization at 60° for 30 min, use of EPS-producer LAB strain | Experimental | [32] |
Quinoa (35% w/v) | Lactiplantibacillus plantarum T6B10, Lacticaseibacillus rhamnosus SP1 (probiotic), Weissella confusa DSM 20194, (EPS-producer) | Starch gelatinization at 63 °C for ca. 19 min. | Experimental | [33] |
Lupin protein isolate (2% w/v) | Lactiplantibacillus plantarum TMW 1.460 and TMW 1.1468, or Pediococcus pentosaceus BGT B34 and Levilactobacillus brevis BGT L150 | Heat treatment (140 °C for 10 s or 80 °C for 60 s) and EPS-producer LAB strain | Experimental | [11] |
Oat flakes (25% w/w) | Lactiplantibacillus plantarum LP09 | Enzymatic treatments (xylanase and α-amylase) | Experimental | [34] |
Rice (10% w/w), lentil (5% w/w), and chickpea (5% w/w) flours | Lactiplantibacillus plantarum DSM33326, Levilactobacillus brevis DSM33325, Lacticaseibacillus rhamnosus SP1 (probiotic) | Heat treatment at 80°C for 15 min | Experimental | [14] |
Quinoa flour (14.3% w/w) | Weissella cibaria MG1 (EPS producer) | Heat treatment at 121 °C for 15 min, α-amylase and protease treatments, high-pressure homogenisation (180 MPa) | Experimental | [35] |
Soy (10% w/v) | Lactiplantibacillus plantarum B1-6 | Heat treatment at 108 °C for 15 min | Experimental | [36] |
Soy, soaked soy, or germinated soy (10% w/v) | Levilactobacillus brevis KCTC 3320 | Heat treatment at 121 °C for 15 min | Experimental | [37] |
Peanut (16.7% w/w) | Enterococcus faecalis T110 (probiotic) | Heat treatment in autoclave at 121 °C and 15 psi for 3–5 min | Experimental | [38] |
Soymilk (12.5% w/w) | Bifidobacterium longum SPM1205 | Heat treatment at 95 °C for 5 min, supplementation with agar, strawberry syrup (20% w/w) and 0.05% (w/w) of freeze-dried diced strawberry | Experimental | [39] |
Soy and a pigment rich extract (red beetroot, hibiscus, opuntia, red radish) | - | - | Experimental | [40] |
Hulled soy beans (7.9% w/v) | Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus (commercial strains for yogurt production) | Supplementation with pectin | Commercial | [41] |
Hulled soy beans (9% w/v) | Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus (commercial strains for yogurt production) | - | Commercial | [41] |
Coconut cream (20% w/v) and modified maize starch | Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus (commercial strains for yogurt production) | Supplementation with pectin | Commercial | [41] |
Cashew “milk” (97% v/v) and tapioca starch | Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus (commercial strains for yogurt production) | Supplementation with carob gum | Commercial | [41] |
Almond “milk” (95% v/v) and tapioca starch | Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus (commercial strains for yogurt production) | Supplementation with carob gum | Commercial | [41] |
Hemp juice 96% (water, hemp seed 3% w/v) and rice starch | Selected strain of Bifidobacterium and Lactobacillus acidophilus | Supplementation with agar | Commercial | [41] |
Oat 12% (w/v) | - | Supplementation with potato starch and potato protein | Commercial | [42] |
Oat 8.5% (w/v) | - | Supplementation with modified starch, pectin | Commercial | [42] |
Oat 8% (w/v) | - | Supplementation with potato protein, starch (corn, potato), pectin | Commercial | [42] |
Oat 12% (w/v) | - | Supplementation with potato protein, tapioca starch, potato starch, xanthan, locust bean gum | Commercial | [42] |
Oat | - | Supplementation with pea protein, modified potato starch | Commercial | [42] |
Oat 12% (w/v) (OATLY®) | Commercial strains for yogurt production | Supplementation with potato starch | Commercial (Oatly AB, Sweden) | [43] |
Soy 10.7% (w/v) (ALPRO ®) | Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus (commercial strains for yogurt production) | Supplementation with pectin | Commercial (Alpro, Belgium) | [44] |
Oat 8% (w/v) (YOSA ®) | Bifidobacterium BB12 and Lacticaseibacillus rhamnosus GG | Supplementation with pectin | Commercial (Fazer Oy, Finland) | [45] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montemurro, M.; Pontonio, E.; Coda, R.; Rizzello, C.G. Plant-Based Alternatives to Yogurt: State-of-the-Art and Perspectives of New Biotechnological Challenges. Foods 2021, 10, 316. https://doi.org/10.3390/foods10020316
Montemurro M, Pontonio E, Coda R, Rizzello CG. Plant-Based Alternatives to Yogurt: State-of-the-Art and Perspectives of New Biotechnological Challenges. Foods. 2021; 10(2):316. https://doi.org/10.3390/foods10020316
Chicago/Turabian StyleMontemurro, Marco, Erica Pontonio, Rossana Coda, and Carlo Giuseppe Rizzello. 2021. "Plant-Based Alternatives to Yogurt: State-of-the-Art and Perspectives of New Biotechnological Challenges" Foods 10, no. 2: 316. https://doi.org/10.3390/foods10020316