Effect of Dry-Aging on Quality and Palatability Attributes and Flavor-Related Metabolites of Pork Loins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection, Preparation, and Processing
2.2. Aging Loss, Processing Loss, and Saleable Yield
2.3. pH Measurement
2.4. Water-Holding Capacity Measurement
2.5. Warner–Bratzler Shear Force Measurement
2.6. Display Color Stability
2.7. Lipid Oxidation
2.8. Microbial Analysis
2.9. Consumer Sensory Analysis
2.10. Metabolomics Analysis
2.10.1. Metabolite Extraction
2.10.2. Ultra-Performance Liquid Chromatography-Mass Spectrometer Analysis
2.11. Statistical Analysis
3. Results and Discussion
3.1. Processing Loss and Total Yield
3.2. pH, Water-Holding Capacity, and Shear Force
3.3. Display Color Stability
3.4. Lipid Oxidation
3.5. Microbial Analysis
3.6. Demographic and Survey Data
3.7. Consumer Panel Evaluation
3.8. Metabolomics Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Lonergan, S.M.; Huff-Lonergan, E.; Rowe, L.J.; Kuhlers, D.L.; Jungst, S.B. Selection for lean growth efficiency in Duroc pigs influences pork quality. J. Anim. Sci. 2001, 79, 2075–2085. [Google Scholar] [CrossRef] [Green Version]
- Hoa, V.B.; Seong, P.-N.; Cho, S.-H.; Kang, S.-M.; Kim, Y.-S.; Moon, S.-S.; Choi, Y.-M.; Kim, J.-H.; Seol, K.-H. Quality characteristics and flavor compounds of pork meat as a function of carcass quality grade. Asian-Australas. J. Anim. Sci. 2019, 32, 1448–1457. [Google Scholar] [CrossRef]
- Channon, H.A.; D’Souza, D.N.; Dunshea, F.R.; Channon, H.A.; D’Souza, D.N.; Dunshea, F.R. Guaranteeing consistently high quality Australian pork: Are we any closer? Anim. Prod. Sci. 2017, 57, 2386–2397. [Google Scholar] [CrossRef]
- Fortin, A.; Robertson, W.M.; Tong, A.K.W. The eating quality of Canadian pork and its relationship with intramuscular fat. Meat Sci. 2005, 69, 297–305. [Google Scholar] [CrossRef]
- Miller, R. Drivers of Consumer Liking for Beef, Pork, and Lamb: A Review. Foods 2020, 9, 428. [Google Scholar] [CrossRef] [Green Version]
- Baublits, R.T.; Meullenet, J.F.; Sawyer, J.T.; Mehaffey, J.M.; Saha, A. Pump rate and cooked temperature effects on pork loin instrumental, sensory descriptive and consumer-rated characteristics. Meat Sci. 2006, 72, 741–750. [Google Scholar] [CrossRef] [PubMed]
- Sheard, P.R.; Tali, A. Injection of salt, tripolyphosphate and bicarbonate marinade solutions to improve the yield and tenderness of cooked pork loin. Meat Sci. 2004, 68, 305–311. [Google Scholar] [CrossRef]
- Prestat, C.; Jensen, J.; McKeith, F.K.; Brewer, M.S. Cooking method and endpoint temperature effects on sensory and color characteristics of pumped pork loin chops. Meat Sci. 2002, 60, 395–400. [Google Scholar] [CrossRef]
- Verbeke, W.; Pérez-Cueto, F.J.A.; de Barcellos, M.D.; Krystallis, A.; Grunert, K.G. European citizen and consumer attitudes and preferences regarding beef and pork. Meat Sci. 2010, 84, 284–292. [Google Scholar] [CrossRef]
- Kim, Y.H.B.; Ma, D.; Setyabrata, D.; Farouk, M.M.; Lonergan, S.M.; Huff-Lonergan, E.; Hunt, M.C. Understanding postmortem biochemical processes and post-harvest aging factors to develop novel smart-aging strategies. Meat Sci. 2018, 144, 74–90. [Google Scholar] [CrossRef]
- Park, S.Y.; Kim, H.Y.; Choe, J. Application of an electric field refrigeration system on pork loin during dry aging. Food Sci. Anim. Resour. 2019, 39, 668–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.H.B.; Kemp, R.; Samuelsson, L.M. Effects of dry-aging on meat quality attributes and metabolite profiles of beef loins. Meat Sci. 2016, 111, 168–176. [Google Scholar] [CrossRef]
- Campbell, R.E.; Hunt, M.C.; Levis, P.; Chambers IV, E. Dry-aging effects on palatability of beef longissimus muscle. J. Food Sci. 2001, 66, 196–199. [Google Scholar] [CrossRef]
- Mottram, D.S. Flavour formation in meat and meat products: A review. Food Chem. 1998, 62, 415–424. [Google Scholar] [CrossRef]
- Ma, D.; Kim, Y.H.B.; Cooper, B.; Oh, J.-H.; Chun, H.; Choe, J.-H.; Schoonmaker, J.P.; Ajuwon, K.; Min, B. Metabolomics Profiling to Determine the Effect of Postmortem Aging on Color and Lipid Oxidative Stabilities of Different Bovine Muscles. J. Agric. Food Chem. 2017, 65, 6708–6716. [Google Scholar] [CrossRef]
- Abraham, A.; Dillwith, J.W.; Mafi, G.G.; VanOverbeke, D.L.; Ramanathan, R. Metabolite Profile Differences between Beef Longissimus and Psoas Muscles during Display. Meat Muscle Biol. 2017, 1, 18. [Google Scholar] [CrossRef] [Green Version]
- D’Alessandro, A.; Rinalducci, S.; Marrocco, C.; Zolla, V.; Napolitano, F.; Zolla, L. Love me tender: An Omics window on the bovine meat tenderness network. J. Proteom. 2012, 75, 4360–4380. [Google Scholar] [CrossRef]
- Setyabrata, D.; Cooper, B.R.; Sobreira, T.J.P.; Legako, J.F.; Martini, S.; Kim, Y.H.B. Elucidating mechanisms involved in flavor generation of dry-aged beef loins using metabolomics approach. Food Res. Int. 2021, 139, 109969. [Google Scholar] [CrossRef]
- Juárez, M.; Caine, W.R.; Dugan, M.E.R.; Hidiroglou, N.; Larsen, I.L.; Uttaro, B.; Aalhus, J.L. Effects of dry-ageing on pork quality characteristics in different genotypes. Meat Sci. 2011, 88, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, J.H.; Yoon, D.K.; Ji, D.S.; Jang, H.J.; Lee, C.H. A comparison of dry and wet aging on physicochemical and sensory characteristics of pork loin with two aging times. Food Sci. Biotechnol. 2018, 27, 1551–1559. [Google Scholar] [CrossRef]
- Hwang, S.I.; Hong, G.P. Effects of high pressure in combination with the type of aging on the eating quality and biochemical changes in pork loin. Meat Sci. 2020, 162, 108028. [Google Scholar] [CrossRef]
- Jin, S.K.; Yim, D.G. Comparison of effects of two aging methods on the physicochemical traits of pork loin. Food Sci. Anim. Resour. 2020, 40, 844–851. [Google Scholar] [CrossRef]
- Smith, A.M.; Harris, K.B.; Griffin, D.B.; Miller, R.K.; Kerth, C.R.; Savell, J.W. Retail yields and palatability evaluations of individual muscles from wet-aged and dry-aged beef ribeyes and top sirloin butts that were merchandised innovatively. Meat Sci. 2014, 97, 21–26. [Google Scholar] [CrossRef]
- Lepper-Blilie, A.N.; Berg, E.P.; Buchanan, D.S.; Berg, P.T. Effects of post-mortem aging time and type of aging on palatability of low marbled beef loins. Meat Sci. 2016, 112, 63–68. [Google Scholar] [CrossRef]
- Ryu, S.; Park, M.R.; Maburutse, B.E.; Lee, W.J.; Park, D.J.; Cho, S.; Hwang, I.; Oh, S.; Kim, Y. Diversity and characteristics of the meat microbiological community on dry aged beef. J. Microbiol. Biotechnol. 2018, 28, 105–108. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Yoon, J.W.; Kim, M.; Oh, H.; Yoon, Y.; Jo, C. Changes in microbial composition on the crust by different air flow velocities and their effect on sensory properties of dry-aged beef. Meat Sci. 2019, 153, 152–158. [Google Scholar] [CrossRef]
- Chun, H.H.; Kim, J.Y.; Lee, B.D.; Yu, D.J.; Song, K.B. Effect of UV-C irradiation on the inactivation of inoculated pathogens and quality of chicken breasts during storage. Food Control 2010, 21, 276–280. [Google Scholar] [CrossRef]
- Ganan, M.; Hierro, E.; Hospital, X.F.; Barroso, E.; Fernández, M. Use of pulsed light to increase the safety of ready-to-eat cured meat products. Food Control 2013, 32, 512–517. [Google Scholar] [CrossRef]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- Kim, Y.H.B.; Luc, G.; Rosenvold, K. Pre rigor processing, ageing and freezing on tenderness and colour stability of lamb loins. Meat Sci. 2013, 95, 412–418. [Google Scholar] [CrossRef]
- AMSA. Meat Color Measurement Guidelines; American Meat Science Association: Champaign, IL, USA, 2012; ISBN 8005172672. [Google Scholar]
- Buege, J.A.; Aust, S.D. Microsomal Lipid Peroxidation; Academic Press: New York, NY, USA, 1978; ISBN 9780121819521. [Google Scholar]
- Setyabrata, D.; Kim, Y.H.B. Impacts of aging/freezing sequence on microstructure, protein degradation and physico-chemical properties of beef muscles. Meat Sci. 2019, 151, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Setyabrata, D.; Xue, S.; Vierck, K.R.; Legako, J.F.; Ebner, P.; Zuelly, S.M. Impact of Various Dry-Aging Methods on Meat Quality and Palatability Attributes of Beef Loins from Cull Cow. Meat Muscle Biol. 2021, 3, 45. [Google Scholar] [CrossRef]
- Pang, Z.; Chong, J.; Zhou, G.; Anderson De Lima Morais, D.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.E.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef] [PubMed]
- Berger, J.; Kim, Y.H.B.; Legako, J.F.; Martini, S.; Lee, J.; Ebner, P.; Zuelly, S.M.S. Dry-aging improves meat quality attributes of grass-fed beef loins. Meat Sci. 2018, 145, 285–291. [Google Scholar] [CrossRef]
- Ahnström, M.L.; Seyfert, M.; Hunt, M.C.; Johnson, D.E. Dry aging of beef in a bag highly permeable to water vapour. Meat Sci. 2006, 73, 674–679. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Babol, J.; Wallby, A.; Lundström, K. Meat quality, microbiological status and consumer preference of beef gluteus medius aged in a dry ageing bag or vacuum. Meat Sci. 2013, 95, 229–234. [Google Scholar] [CrossRef]
- Hwang, Y.H.; Sabikun, N.; Ismail, I.; Joo, S.T. Comparison of meat quality characteristics of wet- and dry-aging pork belly and shoulder blade. Korean J. Food Sci. Anim. Resour. 2018, 38, 950–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edeghor, U.; Lennox, J.A.; Agbo, B.E.; Aminadokiari, D. Bread Fermentation using Synergistic Activity Between Lactic Acid Bacteria (Lactobacillus bulgaricus) and Baker’s Yeast (Sacchromyces cerevisae). Pak. J. Food Sci. 2016, 26, 2226–5899. [Google Scholar]
- Horiuchi, H.; Sasaki, Y. Short communication: Effect of oxygen on symbiosis between Lactobacillus bulgaricus and Streptococcus thermophilus. J. Dairy Sci. 2012, 95, 2904–2909. [Google Scholar] [CrossRef]
- Dikeman, M.E.; Obuz, E.; Gök, V.; Akkaya, L.; Stroda, S. Effects of dry, vacuum, and special bag aging; USDA quality grade; and end-point temperature on yields and eating quality of beef Longissimus lumborum steaks. Meat Sci. 2013, 94, 228–233. [Google Scholar] [CrossRef]
- Brewer, M.S.; Zhu, L.G.; McKeith, F.K. Marbling effects on quality characteristics of pork loin chops: Consumer purchase intent, visual and sensory characteristics. Meat Sci. 2001, 59, 153–163. [Google Scholar] [CrossRef]
- Mancini, R.A.; Hunt, M.C. Current research in meat color. Meat Sci. 2005, 71, 100–121. [Google Scholar] [CrossRef]
- Richardson, E.L.; Fields, B.; Dilger, A.C.; Boler, D.D. The effects of ultimate pH and color on sensory traits of pork loin chops cooked to a medium-rare degree of doneness. J. Anim. Sci. 2018, 96, 3768–3776. [Google Scholar] [CrossRef]
- Brewer, M.S.; Novakofski, J.; Freise, K. Instrumental evaluation of pH effects on ability of pork chops to bloom. Meat Sci. 2006, 72, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, F.A.; Lau, S.K.; Pflanzer, S.B.; Subbiah, J.; Calkins, C.R. Color and lipid stability of dry aged beef during retail display. Meat Sci. 2021, 171, 108274. [Google Scholar] [CrossRef] [PubMed]
- Papuc, C.; Goran, G.V.; Predescu, C.N.; Nicorescu, V. Mechanisms of Oxidative Processes in Meat and Toxicity Induced by Postprandial Degradation Products: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 96–123. [Google Scholar] [CrossRef] [PubMed]
- Jongberg, S.; Lund, M.N.; Skibsted, L.H. Protein oxidation in meat and meat products. Challenges for antioxidative protection. In Global Food Security and Wellness; Springer New York: New York, NY, USA, 2017; pp. 315–337. ISBN 9781493964963. [Google Scholar]
- Elmossalami, E.; Wassef, N. Penetration of some Microorganisms in Meat. Zent. Für Veterinärmedizin R. B 1971, 18, 329–336. [Google Scholar] [CrossRef]
- Maxcy, R.B. Surface Microenvironment and Penetration of Bacteria into Meat. J. Food Prot. 1981, 44, 550–552. [Google Scholar] [CrossRef]
- Shirai, H.; Datta, A.K.; Oshita, S. Penetration of aerobic bacteria into meat: A mechanistic understanding. J. Food Eng. 2017, 196, 193–207. [Google Scholar] [CrossRef]
- Klehm, B.J.; King, D.A.; Dilger, A.C.; Shackelford, S.D.; Boler, D.D. Effect of packaging type during postmortem aging and degree of doneness on pork chop sensory traits of loins selected to vary in color and marbling. J. Anim. Sci 2018, 96, 1736–1744. [Google Scholar] [CrossRef]
- Moeller, S.J.; Miller, R.K.; Aldredge, T.L.; Logan, K.E.; Edwards, K.K.; Zerby, H.N.; Boggess, M.; Box-Steffensmeier, J.M.; Stahl, C.A. Trained sensory perception of pork eating quality as affected by fresh and cooked pork quality attributes and end-point cooked temperature. Meat Sci. 2010, 85, 96–103. [Google Scholar] [CrossRef]
- Wilson, K.B.; Overholt, M.F.; Shull, C.M.; Schwab, C.; Dilger, A.C.; Boler, D.D. The effects of instrumental color and extractable lipid content on sensory characteristics of pork loin chops cooked to a medium-rare degree of doneness. J. Anim. Sci. 2017, 95, 2052–2060. [Google Scholar] [CrossRef]
- Fan, Y. The flavor chemistry of pork broth: A review. IOP Conf. Ser. Earth Environ. Sci. 2021, 705, 012014. [Google Scholar] [CrossRef]
- Borrisser-Pairó, F.; Panella-Riera, N.; Gil, M.; Kallas, Z.; Linares, M.B.; Egea, M.; Garrido, M.D.; Oliver, M.A. Consumers’ sensitivity to androstenone and the evaluation of different cooking methods to mask boar taint. Meat Sci. 2017, 123, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Panella-Riera, N.; Blanch, M.; Kallas, Z.; Chevillon, P.; Garavaldi, A.; Gil, M.; Gil, J.M.; Font-i-Furnols, M.; Oliver, M.A. Consumers’ segmentation based on the acceptability of meat from entire male pigs with different boar taint levels in four European countries: France, Italy, Spain and United Kingdom. Meat Sci. 2016, 114, 137–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Font-i-Furnols, M.; Tous, N.; Esteve-Garcia, E.; Gispert, M. Do all the consumers accept marbling in the same way? The relationship between eating and visual acceptability of pork with different intramuscular fat content. Meat Sci. 2012, 91, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Canavari, M.; Biasco, D.; Wongprawmas, R. Is Dry Aging for Pork Relevant to Consumers? J. Int. Food Agribus. Mark. 2018, 30, 291–303. [Google Scholar] [CrossRef]
- Lucherk, L.W.; O’Quinn, T.G.; Legako, J.F.; Rathmann, R.J.; Brooks, J.C.; Miller, M.F. Consumer and trained panel evaluation of beef strip steaks of varying marbling and enhancement levels cooked to three degrees of doneness. Meat Sci. 2016, 122, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Wilfong, A.K.; McKillip, K.V.; Gonzalez, J.M.; Houser, T.A.; Unruh, J.A.; Boyle, E.A.E.; O’Quinn, T.G. The effect of branding on consumer palatability ratings of beef strip loin steaks. J. Anim. Sci. 2016, 94, 4930–4942. [Google Scholar] [CrossRef] [Green Version]
- Nyquist, K.M.; O’Quinn, T.G.; Drey, L.N.; Lucherk, L.W.; Brooks, J.C.; Miller, M.F.; Legako, J.F. Palatability of beef chuck, loin, and round muscles from three USDA quality grades. J. Anim. Sci. 2018, 96, 4276–4292. [Google Scholar] [CrossRef]
- Vierck, K.R.; Gonzalez, J.M.; Houser, T.A.; Boyle, E.A.E.; O’Quinn, T.G. Marbling Texture’s Effects on Beef Palatability. Meat Muscle Biol. 2018, 2, 127. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.W.; Lee, J.R.; Kim, M.K.; Jo, C.; Lee, K.H.; You, I.; Jung, S. Quality improvement of pork loin by dry aging. Korean J. Food Sci. Anim. Resour. 2016, 36, 369–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calkins, C.R.; Hodgen, J.M. A fresh look at meat flavor. Meat Sci. 2007, 77, 63–80. [Google Scholar] [CrossRef] [PubMed]
- Koutsidis, G.; Elmore, J.S.; Oruna-Concha, M.J.; Campo, M.M.; Wood, J.D.; Mottram, D. Water soluble precursor of beef flavor: I. Effect of diet and breed. Meat Sci. 2008, 79, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Jousse, F.; Jongen, T.; Agterof, W.; Russell, S.; Braat, P. Simplified kinetic scheme of flavor formation by the Maillard reaction. J. Food Sci. 2002, 67, 2534–2542. [Google Scholar] [CrossRef]
- Li, L.; Belloch, C.; Flores, M. The Maillard Reaction as Source of Meat Flavor Compounds in Dry Cured Meat Model Systems under Mild Temperature Conditions. Molecules 2021, 26, 223. [Google Scholar] [CrossRef]
- Bryhni, E.A.; Byrne, D.V.; Rødbotten, M.; Møller, S.; Claudi-Magnussen, C.; Karlsson, A.; Agerhem, H.; Johansson, M.; Martens, M. Consumer and sensory investigations in relation to physical/chemical aspects of cooked pork in Scandinavia. Meat Sci. 2003, 65, 737–748. [Google Scholar] [CrossRef]
- Martins, S.I.F.S.; Jongen, W.M.F.; Van Boekel, M.A.J.S. A review of Maillard reaction in food and implications to kinetic modelling. Trends Food Sci. Technol. 2000, 11, 364–373. [Google Scholar] [CrossRef]
- Aaslyng, M.D.; Meinert, L. Meat flavour in pork and beef—From animal to meal. Meat Sci. 2017, 132, 112–117. [Google Scholar] [CrossRef]
- Raza, A.; Song, H.; Raza, J.; Li, P.; Li, K.; Yao, J. Formation of beef-like odorants from glutathione-enriched yeast extract via Maillard reaction. Food Funct. 2020, 11, 8583–8601. [Google Scholar] [CrossRef]
- Hartman, G.J.; Scheide, J.D.; Ho, C.T. Effect of Water Activity on the Major Volatileś Produced in a Model System Approximating Cooked Meat. J. Food Sci. 1984, 49, 607–613. [Google Scholar] [CrossRef]
- Chepeleva, A.D.; Grobov, A.M.; Sirik, A.V.; Pliss, E.M. Antioxidant Activity of Hydroquinone in the Oxidation of 1,4-Substituted Butadiene. Russ. J. Phys. Chem. A 2021, 95, 1077–1079. [Google Scholar] [CrossRef]
- Kwak, J.Y.; Ham, H.J.; Kim, C.M.; Hwang, E.S. Nicotinamide Exerts Antioxidative Effects on Senescent Cells. Mol. Cells 2015, 38, 229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noda, Y.; Kaneyuki, T.; Mori, A.; Packer, L. Antioxidant Activities of Pomegranate Fruit Extract and Its Anthocyanidins: Delphinidin, Cyanidin, and Pelargonidin. J. Agric. Food Chem. 2001, 50, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Chisti, Y.; Banerjee, U.C. Production of shikimic acid. Biotechnol. Adv. 2012, 30, 1425–1431. [Google Scholar] [CrossRef] [PubMed]
Treatments | Shrink/Purge Loss (%) | Crust Loss (%) | Fat/Skin Loss (%) | Bone Loss (%) | Total Processing Loss (%) | Total Yield (%) |
---|---|---|---|---|---|---|
WA | 3.20 b | 0.00 b | 34.57 | 21.02 | 45.04 b | 54.96 a |
DA | 16.13 a | 8.52 a | 34.23 | 23.50 | 58.54 a | 41.46 b |
UDA | 16.47 a | 8.29 a | 32.35 | 22.21 | 59.12 a | 40.88 b |
SEM | 0.65 | 0.53 | 2.18 | 1.52 | 1.78 | 1.78 |
p-value | <0.0001 | <0.0001 | 0.7439 | 0.1996 | <0.0001 | <0.0001 |
Treatments | pH | Drip Loss (%) | Display Loss (%) | Freeze/Thaw Loss (%) | Cook Loss (%) | Shear Force (N) |
---|---|---|---|---|---|---|
WA | 5.58 b | 1.42 a | 4.37 a | 2.86 a | 21.92 | 26.41 |
DA | 5.59 b | 0.85 b | 3.57 b | 1.92 b | 22.83 | 25.08 |
UDA | 5.62 a | 0.77 b | 3.48 b | 1.79 b | 21.98 | 27.05 |
SEM | 0.0117 | 0.1611 | 0.2562 | 0.2426 | 0.7548 | 1.3044 |
p-value | 0.0311 | 0.0159 | 0.0285 | 0.0083 | 0.5573 | 0.3274 |
Location | Treatment | APC (log10 CFU/mL Rinsate) | LAB (log10 CFU/mL Rinsate) | Mold (log10 CFU/mL Rinsate) | Yeast (log10 CFU/mL Rinsate) |
---|---|---|---|---|---|
Lean | WA | 0.72 c | 0.40 b | BDL | BDL |
DA | 0.54 c | 1 BDL | 0.13 b | BDL | |
UDA | 0.29 c | 0.14 b | 0.17 b | BDL | |
Surface/Crust | WA | 2.69 a | 2.33 a | 1.82 a | 0.24 |
DA | 1.37 b | 0.10 b | 1.39 a | 0.64 | |
UDA | 0.15 c | BDL | BDL | BDL | |
SEM | 0.25 | 0.13 | 0.26 | 0.19 | |
p-value | Treatment | 0.0004 | <0.0001 | 0.0136 | 0.2379 |
Location | <0.0001 | <0.0001 | 0.0004 | 0.0644 | |
Interaction | <0.0001 | <0.0001 | 0.0007 | 0.2379 |
End Survey Questions | Response Options | Frequency (%) |
---|---|---|
Have you ever eaten dry-aged products? | Yes | 52.5 |
No | 14.2 | |
Not Sure | 33.3 | |
If you have eaten dry-aged product, where did you purchase the product from? | Local butcher store | 19.1 |
Local retail/supermarket | 23.8 | |
Restaurant | 39.7 | |
Other | 17.5 | |
If you answered “Other” in the previous question, where did you get the product from? | Personally made | 45.5 |
Research panels/projects | 36.4 | |
School events | 18.2 | |
Is aging a positive or negative term? | Positive | 85.8 |
Negative | 14.2 | |
Do you think dry-aged product is safe? | Safer | 10.8 |
Less Safe | 2.5 | |
Same as other product | 65.8 | |
Not sure | 20.8 | |
Would you be willing to pay $1.00 more per 1 lb. of dry-aged pork? | Yes | 55.8 |
No | 44.2 |
Traits | WA | DA | UDA | SEM | p-Value |
---|---|---|---|---|---|
Likeness | |||||
Flavor | 63.79 | 62.15 | 61.03 | 2.43 | 0.6184 |
Tenderness | 61.53 | 61.80 | 60.78 | 3.04 | 0.9621 |
Juiciness | 66.02 | 65.31 | 67.31 | 2.38 | 0.7876 |
Overall | 62.99 | 62.72 | 63.89 | 2.60 | 0.9315 |
Acceptability | |||||
Tenderness Acceptability | 85.26 | 87.52 | 88.14 | 3.59 | 0.7950 |
Juiciness Acceptability | 76.29 | 77.70 | 79.14 | 4.52 | 0.8762 |
Flavor Acceptability | 86.26 | 82.33 | 84.14 | 3.77 | 0.7152 |
Overall Acceptability | 82.14 | 83.62 | 85.09 | 3.62 | 0.8366 |
Perceived Quality | |||||
Unsatisfactory Quality | 13.82 | 15.47 | 13.82 | 3.48 | 0.9146 |
Everyday Quality | 48.22 | 50.85 | 48.22 | 4.90 | 0.8981 |
Better Than Everyday Quality | 25.25 | 30.68 | 30.39 | 4.36 | 0.5861 |
Premium Quality | 8.00 a | 1.23 b | 4.49 a,b | 3.05 | 0.0416 |
Mass | RT | HMDB ID | Name | Highest Abundance | WA | DA | UDA |
---|---|---|---|---|---|---|---|
Protein-derived | |||||||
155.0350 | 0.69 | HMDB0000177 | l-Histidine | DA/UDA | 4.43 b | 4.85 a | 4.73 a |
226.0959 | 5.76 | HMDB0001904 | 3-Nitrotyrosine | DA/UDA | 5.20 b | 5.37 a | 5.32 a |
157.1467 | 19.41 | HMDB0000459 | 3-Methylcrotonylglycine | UDA/DA | 5.10 b | 5.17 a | 5.18 a |
165.1162 | 4.41 | HMDB0000159 | l-Phenylalanine | UDA | 6.20 b | 6.21 b | 6.31 a |
129.0425 | 0.88 | HMDB0000267 | Pyroglutamic acid | WA | 5.73 a | 5.63 b | 5.61 b |
145.1101 | 0.79 | HMDB0003464 | 4-Guanidinobutanoic acid | WA | 6.18 a | 6.00 b | 6.01 b |
181.1018 | 2.31 | HMDB0000158 | l-Tyrosine | WA/DA | 6.07 a | 6.02 a | 5.96 b |
Carbohydrate-derived | |||||||
260.1372 | 4.86 | HMDB0000124 | Fructose 6-phosphate | DA/UDA | 5.11 b | 5.21 a | 5.18 a |
164.0475 | 2.31 | HMDB0000174 | l-Fucose | WA | 7.34 a | 7.28 b | 7.23 c |
Nucleotide-derived | |||||||
128.1316 | 0.52 | HMDB0000079 | Dihydrothymine | DA/UDA | 6.41 b | 6.46 a | 6.45 a |
242.1268 | 5.40 | HMDB0000273 | Thymidine | DA/UDA | 5.68 b | 5.85 a | 5.83 a |
329.1949 | 7.60 | HMDB0000058 | Cyclic AMP | DA/UDA | 5.49 b | 5.68 a | 5.66 a |
348.0591 | 1.70 | HMDB0000175 | Inosine monophosphate | DA/UDA | 5.23 b | 6.17 a | 6.06 a |
136.0387 | 4.12 | HMDB0000157 | Hypoxanthine | UDA/DA | 7.45 b | 7.53 a | 7.58 a |
243.1835 | 18.87 | HMDB0000089 | Cytidine | UDA/DA | 5.55 b | 5.61 a | 5.62 a |
79.0424 | 1.58 | HMDB0000926 | Pyridine | WA | 6.00 a | 5.78 b | 5.78 b |
135.0665 | 1.65 | HMDB0000034 | Adenine | WA | 5.41 a | 5.20 b | 5.15 b |
252.1108 | 4.17 | HMDB0000071 | Deoxyinosine | WA | 5.17 a | 4.74 b | 4.63 b |
Others | |||||||
85.0892 | 4.00 | HMDB0002039 | 2-Pyrrolidinone | DA/UDA | 6.11 b | 6.24 a | 6.20 a |
212.0800 | 1.05 | HMDB0014814 | Benzyl benzoate | DA | 4.88 b | 5.00 a | 4.94 a,b |
132.0247 | 1.28 | HMDB0001844 | Methylsuccinic acid | WA | 7.14 a | 7.05 b | 7.02 b |
84.0213 | 0.68 | HMDB0001184 | Methyl propenyl ketone | WA | 4.87 a | 4.72 b | 4.75 b |
110.9992 | 0.51 | HMDB0002434 | Hydroquinone | WA/DA | 6.16 a | 6.15 a | 6.13 b |
122.0371 | 2.31 | HMDB0001406 | Niacinamide (vitb3) | WA/DA | 6.17 a | 6.12 a | 6.07 b |
174.1133 | 0.63 | HMDB0003070 | Shikimic acid | WA | 5.42 a | 5.31 b | 5.26 b |
226.1075 | 0.65 | HMDB0000245 | Porphobilinogen | WA | 6.92 a | 6.88 b | 6.85 b |
271.1644 | 1.05 | HMDB0003263 | Pelargonidin | WA/DA | 5.15 a | 5.12 a | 4.92 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Setyabrata, D.; Wagner, A.D.; Cooper, B.R.; Kim, Y.H.B. Effect of Dry-Aging on Quality and Palatability Attributes and Flavor-Related Metabolites of Pork Loins. Foods 2021, 10, 2503. https://doi.org/10.3390/foods10102503
Setyabrata D, Wagner AD, Cooper BR, Kim YHB. Effect of Dry-Aging on Quality and Palatability Attributes and Flavor-Related Metabolites of Pork Loins. Foods. 2021; 10(10):2503. https://doi.org/10.3390/foods10102503
Chicago/Turabian StyleSetyabrata, Derico, Anna D. Wagner, Bruce R. Cooper, and Yuan H. Brad Kim. 2021. "Effect of Dry-Aging on Quality and Palatability Attributes and Flavor-Related Metabolites of Pork Loins" Foods 10, no. 10: 2503. https://doi.org/10.3390/foods10102503
APA StyleSetyabrata, D., Wagner, A. D., Cooper, B. R., & Kim, Y. H. B. (2021). Effect of Dry-Aging on Quality and Palatability Attributes and Flavor-Related Metabolites of Pork Loins. Foods, 10(10), 2503. https://doi.org/10.3390/foods10102503