Functional Haplotypes and Evolutionary Insight into the Granule-Bound Starch Synthase II (GBSSII) Gene in Korean Rice Accessions (KRICE_CORE)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Site
2.2. DNA Extraction, Resequencing and Variant Calling
2.3. Population Genetic Structure and Phylogenetic Study
2.4. Nucleotide Diversity, Tajima’s D, and the Fixation Index (FST Test)
2.5. Haplotype Network
3. Results
3.1. Identification of Genetic Variations
3.2. Haplotype Variations
3.3. Population Genetic Structure and Genetic Differentiation (FST Test)
3.4. Nucleotide Diversity Analysis
3.5. Tajima’s D Test
3.6. Haplotype Network and Phylogenetic Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cho, Y.-G.; Kang, K.-K. Functional Analysis of Starch Metabolism in Plants; Multidisciplinary Digital Publishing Institute: Basel, Switzerland, 2020. [Google Scholar]
- Martin, C.; Smith, A.M. Starch Biosynthesis. Plant Cell 1995, 7, 971. [Google Scholar]
- Vrinten, P.L.; Nakamura, T. Wheat Granule-Bound Starch Synthase I and II Are Encoded by Separate Genes That Are Expressed in Different Tissues. Plant Physiol. 2000, 122, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.-J.; Chen, J.-Y.; Wang, S.-J. Molecular Regulation of Starch Accumulation in Rice Seedling Leaves in Response to Salt Stress. Acta Physiol. Plant. 2008, 30, 135–142. [Google Scholar] [CrossRef]
- Fasahat, P.; Rahman, S.; Ratnam, W. Genetic Controls on Starch Amylose Content in Wheat and Rice Grains. J. Genet. 2014, 93, 279–292. [Google Scholar] [CrossRef] [PubMed]
- D’Hulst, C.; Wattebled, F.; Szydlowski, N. Starch biosynthesis in leaves and its regulation. In Starch; Springer: Berlin/Heidelberg, Germany, 2015; pp. 211–237. [Google Scholar]
- Dian, W.; Jiang, H.; Chen, Q.; Liu, F.; Wu, P. Cloning and Characterization of the Granule-Bound Starch Synthase II Gene in Rice: Gene Expression Is Regulated by the Nitrogen Level, Sugar and Circadian Rhythm. Planta 2003, 218, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wei, X.; Jiao, G.; Chen, W.; Wu, Y.; Sheng, Z.; Hu, S.; Xie, L.; Wang, J.; Tang, S. GBSS-BINDING PROTEIN, Encoding a CBM48 Domain-containing Protein, Affects Rice Quality and Yield. J. Integr. Plant Biol. 2020, 62, 948–966. [Google Scholar] [CrossRef] [Green Version]
- Seung, D.; Soyk, S.; Coiro, M.; Maier, B.A.; Eicke, S.; Zeeman, S.C. PROTEIN TARGETING TO STARCH Is Required for Localising GRANULE-BOUND STARCH SYNTHASE to Starch Granules and for Normal Amylose Synthesis in Arabidopsis. PLoS Biol. 2015, 13, e1002080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohmeier-Vogel, E.M.; Kerk, D.; Nimick, M.; Wrobel, S.; Vickerman, L.; Muench, D.G.; Moorhead, G.B. Arabidopsis At5g39790 Encodes a Chloroplast-Localized, Carbohydrate-Binding, Coiled-Coil Domain-Containing Putative Scaffold Protein. BMC Plant Biol. 2008, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Seung, D.; Boudet, J.; Monroe, J.; Schreier, T.B.; David, L.C.; Abt, M.; Lu, K.-J.; Zanella, M.; Zeeman, S.C. Homologs of PROTEIN TARGETING TO STARCH Control Starch Granule Initiation in Arabidopsis Leaves. Plant Cell 2017, 29, 1657–1677. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Yang, Y.; Chen, S.; Liu, X.; Zhu, J.; Zhou, L.; Lu, Y.; Li, Q.; Fan, X.; Tang, S. A Rare Waxy Allele Coordinately Improves Rice Eating and Cooking Quality and Grain Transparency. J. Integr. Plant Biol. 2021, 63, 889–901. [Google Scholar] [CrossRef]
- Chen, M.-H.; Bergman, C.J.; Pinson, S.R.; Fjellstrom, R.G. Waxy Gene Haplotypes: Associations with Pasting Properties in an International Rice Germplasm Collection. J. Cereal Sci. 2008, 48, 781–788. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, J.; Chen, S.; Liu, Q. Wxlv, the Ancestral Allele of Rice Waxy Gene. Multidiscip. Digit. Publ. Inst. Proc. 2020, 36, 140. [Google Scholar] [CrossRef] [Green Version]
- Luo, M.; Shi, Y.; Yang, Y.; Zhao, Y.; Zhang, Y.; Shi, Y.; Kong, M.; Li, C.; Feng, Z.; Fan, Y. Sequence Polymorphism of the Waxy Gene in Waxy Maize Accessions and Characterization of a New Waxy Allele. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Sharma, V.; Rahim, M.S.; Sonah, H.; Pal, D.; Mantri, S.; Sharma, T.R.; Roy, J. Genotyping-by-Sequencing Based QTL Mapping Identified a Novel Waxy Allele Contributing to High Amylose Starch in Wheat. Euphytica 2021, 217, 1–14. [Google Scholar] [CrossRef]
- Chen, X.; Shao, S.; Chen, M.; Hou, C.; Yu, X.; Xiong, F. Morphology and Physicochemical Properties of Starch from Waxy and Non-waxy Barley. Starch-Stärke 2020, 72, 1900206. [Google Scholar] [CrossRef]
- Karlström, A.; Calle, F.; Salazar, S.; Morante, N.; Dufour, D.; Ceballos, H. Biological Implications in Cassava for the Production of Amylose-Free Starch: Impact on Root Yield and Related Traits. Front. Plant Sci. 2016, 7, 604. [Google Scholar] [CrossRef] [Green Version]
- Aiemnaka, P.; Wongkaew, A.; Chanthaworn, J.; Nagashima, S.K.; Boonma, S.; Authapun, J.; Jenweerawat, S.; Kongsila, P.; Kittipadakul, P.; Nakasathien, S. Molecular Characterization of a Spontaneous Waxy Starch Mutation in Cassava. Crop Sci. 2012, 52, 2121–2130. [Google Scholar] [CrossRef]
- Zhang, H.; Jang, S.-G.; Lar, S.M.; Lee, A.-R.; Cao, F.-Y.; Seo, J.; Kwon, S.-W. Genome-Wide Identification and Genetic Variations of the Starch Synthase Gene Family in Rice. Plants 2021, 10, 1154. [Google Scholar] [CrossRef]
- Singh, N.; Singh, B.; Rai, V.; Sidhu, S.; Singh, A.K.; Singh, N.K. Evolutionary Insights Based on SNP Haplotypes of Red Pericarp, Grain Size and Starch Synthase Genes in Wild and Cultivated Rice. Front. Plant Sci. 2017, 8, 972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henry, R.J. Next-Generation Sequencing for Understanding and Accelerating Crop Domestication. Brief. Funct. Genom. 2012, 11, 51–56. [Google Scholar] [CrossRef]
- Shavrukov, Y.; Suchecki, R.; Eliby, S.; Abugalieva, A.; Kenebayev, S.; Langridge, P. Application of Next-Generation Sequencing Technology to Study Genetic Diversity and Identify Unique SNP Markers in Bread Wheat from Kazakhstan. BMC Plant Biol. 2014, 14, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Bai, X.; Xing, Y. A Rice Genetic Improvement Boom by Next-Generation Sequencing. Curr. Issues Mol. Biol. 2018, 27, 109–126. [Google Scholar] [CrossRef]
- Feng, P.; Zeng, T.; Yang, H.; Chen, G.; Du, J.; Chen, L.; Shen, J.; Tao, Z.; Wang, P.; Yang, L. Whole-Genome Resequencing Provides Insights into the Population Structure and Domestication Signatures of Ducks in Eastern China. BMC Genom. 2021, 22, 1–13. [Google Scholar] [CrossRef]
- Trung, K.H.; Nguyen, T.K.; Khuat, H.B.T.; Nguyen, T.D.; Khanh, T.D.; Xuan, T.D.; Nguyen, X.-H. Whole Genome Sequencing Reveals the Islands of Novel Polymorphisms in Two Native Aromatic Japonica Rice Landraces from Vietnam. Genome Biol. Evol. 2017, 9, 1816–1820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bindusree, G.; Natarajan, P.; Kalva, S.; Madasamy, P. Whole Genome Sequencing of Oryza Sativa L. Cv. Seeragasamba Identifies a New Fragrance Allele in Rice. PLoS ONE 2017, 12, e0188920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabeti, P.C.; Schaffner, S.F.; Fry, B.; Lohmueller, J.; Varilly, P.; Shamovsky, O.; Palma, A.; Mikkelsen, T.S.; Altshuler, D.; Lander, E.S. Positive Natural Selection in the Human Lineage. Science 2006, 312, 1614–1620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.R.; Sa, K.J.; Nam-Gung, M.; Park, K.J.; Ryu, S.-H.; Mo, C.Y.; Lee, J.K. Genetic Characterization and Association Mapping in Near-Isogenic Lines of Waxy Maize Using Seed Characteristics and SSR Markers. Genes Genom. 2021, 43, 79–90. [Google Scholar]
- Kim, K.-W.; Chung, H.-K.; Cho, G.-T.; Ma, K.-H.; Chandrabalan, D.; Gwag, J.-G.; Kim, T.-S.; Cho, E.-G.; Park, Y.-J. PowerCore: A Program Applying the Advanced M Strategy with a Heuristic Search for Establishing Core Sets. Bioinform. 2007, 23, 2155–2162. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.-S.; He, Q.; Kim, K.-W.; Yoon, M.-Y.; Ra, W.-H.; Li, F.P.; Tong, W.; Yu, J.; Oo, W.H.; Choi, B. Genome-Wide Resequencing of KRICE_CORE Reveals Their Potential for Future Breeding, as Well as Functional and Evolutionary Studies in the Post-Genomic Era. BMC Genom. 2016, 17, 408. [Google Scholar] [CrossRef] [Green Version]
- Doyle, J.J.; Doyle, J.L. Isolation Ofplant DNA from Fresh Tissue. Focus 1990, 12, 39–40. [Google Scholar]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T. The Variant Call Format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Picard Toolkit. Broad Institute, GitHub Repository. 2019. Available online: http://broadinstitute.github.io/picard (accessed on 20 April 2021).
- DePristo, M.A.; Banks, E.; Poplin, R.; Garimella, K.V.; Maguire, J.R.; Hartl, C.; Philippakis, A.A.; Del Angel, G.; Rivas, M.A.; Hanna, M. A Framework for Variation Discovery and Genotyping Using Next-Generation DNA Sequencing Data. Nat. Genet. 2011, 43, 491. [Google Scholar] [CrossRef] [PubMed]
- Van der Auwera, G.A.; O’Connor, B.D. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra; O’Reilly Media: Sebastopol, CA, USA, 2020. [Google Scholar]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for Association Mapping of Complex Traits in Diverse Samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef]
- Raj, A.; Stephens, M.; Pritchard, J.K. FastSTRUCTURE: Variational Inference of Population Structure in Large SNP Data Sets. Genetics 2014, 197, 573–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francis, R.M. Pophelper: An R Package and Web App to Analyse and Visualize Population Structure. Mol. Ecol. Resour. 2017, 17, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Leigh, J.W.; Bryant, D. POPART: Full-Feature Software for Haplotype Network Construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Clement, M.; Posada, D.; Crandall, K.A. TCS: A Computer Program to Estimate Gene Genealogies. Mol. Ecol. 2000, 9, 1657–1659. [Google Scholar] [CrossRef] [Green Version]
- Seung, D. Amylose in Starch: Towards an Understanding of Biosynthesis, Structure and Function. New Phytol. 2020, 228, 1490–1504. [Google Scholar] [CrossRef]
- Nakamura, T.; Vrinten, P.; Hayakawa, K.; Ikeda, J. Characterization of a Granule-Bound Starch Synthase Isoform Found in the Pericarp of Wheat. Plant Physiol. 1998, 118, 451–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dufayard, J.-F.; Duret, L.; Penel, S.; Gouy, M.; Rechenmann, F.; Perrière, G. Tree Pattern Matching in Phylogenetic Trees: Automatic Search for Orthologs or Paralogs in Homologous Gene Sequence Databases. Bioinformatics 2005, 21, 2596–2603. [Google Scholar] [CrossRef] [Green Version]
- Kharabian-Masouleh, A.; Waters, D.L.; Reinke, R.F.; Henry, R.J. Discovery of Polymorphisms in Starch-related Genes in Rice Germplasm by Amplification of Pooled DNA and Deeply Parallel Sequencing. Plant Biotechnol. J. 2011, 9, 1074–1085. [Google Scholar] [CrossRef]
- Lai, K.; Duran, C.; Berkman, P.J.; Lorenc, M.T.; Stiller, J.; Manoli, S.; Hayden, M.J.; Forrest, K.L.; Fleury, D.; Baumann, U. Single Nucleotide Polymorphism Discovery from Wheat Next-generation Sequence Data. Plant Biotechnol. J. 2012, 10, 743–749. [Google Scholar] [CrossRef] [Green Version]
- Lu, K.; Wei, L.; Li, X.; Wang, Y.; Wu, J.; Liu, M.; Zhang, C.; Chen, Z.; Xiao, Z.; Jian, H. Whole-Genome Resequencing Reveals Brassica Napus Origin and Genetic Loci Involved in Its Improvement. Nature Commun. 2019, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Jayaswall, K.; Sharma, H.; Bhandawat, A.; Sagar, R.; Yadav, V.K.; Sharma, V.; Mahajan, V.; Roy, J.; Singh, M. Development of Intron Length Polymorphic (ILP) Markers in Onion (Allium Cepa L.), and Their Cross-Species Transferability in Garlic (A. Sativum L.) and Wild Relatives. Genet. Resour. Crop Evol. 2019, 66, 1379–1388. [Google Scholar] [CrossRef]
- Mammadov, J.; Aggarwal, R.; Buyyarapu, R.; Kumpatla, S. SNP Markers and Their Impact on Plant Breeding. Int. J. Plant Genom. 2012, 2012. [Google Scholar] [CrossRef]
- Shorinola, O.; Balcárková, B.; Hyles, J.; Tibbits, J.F.; Hayden, M.J.; Holušova, K.; Valárik, M.; Distelfeld, A.; Torada, A.; Barrero, J.M. Haplotype Analysis of the Pre-Harvest Sprouting Resistance Locus Phs-A1 Reveals a Causal Role of TaMKK3-A in Global Germplasm. Front. Plant Sci. 2017, 8, 1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Min, M.-H.; Maung, T.Z.; Cao, Y.; Phitaktansakul, R.; Lee, G.-S.; Chu, S.-H.; Kim, K.-W.; Park, Y.-J. Haplotype Analysis of BADH1 by Next-Generation Sequencing Reveals Association with Salt Tolerance in Rice during Domestication. Int. J. Mol. Sci. 2021, 22, 7578. [Google Scholar] [CrossRef]
- Perez, C.M.; Palmiano, E.P.; Baun, L.C.; Juliano, B.O. Starch Metabolism in the Leaf Sheaths and Culm of Rice. Plant Physiol. 1971, 47, 404–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lian, S.; Tanaka, A. Behaviour of Photosynthetic Products Associated with Growth and Grain Production in the Rice Plant. Plant Soil 1967, 26, 333–347. [Google Scholar] [CrossRef]
- TOGARI, Y.; SATO, K. Studies on the Production and Behavior of Carbohydrates in Rice Plant: II. On the Accumulation and Distribution of Starches in the Organs of Rice Plant with Its Development of Growth. Jpn. J. Crop Sci. 1954, 22, 98–99. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, S.; Ahn, S.B. The Accumulation Process of Carbohydrate in Rice Varieties in Relation to Their Response to Nitrogen in the Tropics. Soil Sci. Plant Nutr. 1968, 14, 153–161. [Google Scholar] [CrossRef]
- Prathap, V.; Ali, K.; Singh, A.; Vishwakarma, C.; Krishnan, V.; Chinnusamy, V.; Tyagi, A. Starch Accumulation in Rice Grains Subjected to Drought during Grain Filling Stage. Plant Physiol. Biochem. 2019, 142, 440–451. [Google Scholar]
- Sugimura, Y.; Michiyama, H.; Hirano, T. Involvement of α-Amylase Genes in Starch Degradation in Rice Leaf Sheaths at the Post-Heading Stage. Plant Prod. Sci. 2015, 18, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Kukurba, K.R.; Montgomery, S.B. RNA Sequencing and Analysis. Cold Spring Harb. Protoc. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Li, M.-C.; Konaté, M.M.; Chen, L.; Das, B.; Karlovich, C.; Williams, P.M.; Evrard, Y.A.; Doroshow, J.H.; McShane, L.M. TPM, FPKM, or Normalized Counts? A Comparative Study of Quantification Measures for the Analysis of RNA-Seq Data from the NCI Patient-Derived Models Repository. J. Translat. Med. 2021, 19, 1–15. [Google Scholar] [CrossRef]
- Cuevas, R.P.; Fitzgerald, M.A. Genetic Diversity of Rice Grain Quality. Genet. Divers. Plants 2012, 286–310. [Google Scholar]
- Moonsap, P.; Laksanavilat, N.; Sinumporn, S.; Tasanasuwan, P.; Kate-Ngam, S.; Jantasuriyarat, C. Genetic Diversity of Indo-China Rice Varieties Using ISSR, SRAP and InDel Markers. J. Genet. 2019, 98, 1–11. [Google Scholar] [CrossRef]
- Muto, C.; Ishikawa, R.; Olsen, K.M.; Kawano, K.; Bounphanousay, C.; Matoh, T.; Sato, Y.-I. Genetic Diversity of the Wx Flanking Region in Rice Landraces in Northern Laos. Breed. Sci. 2016, 16032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eris, F.R.; Kartina, A.M.; Maryani, Y.; Aryani, T. Genetic Diversity of Red Rice Varieties Originating from West Java and Banten Based on SSR Marker Related to Palatability. In Earth and Environmental Science; IOP Conference Series; IOP Publishing: Philadelphia, PA, USA, 2020; Volume 482, p. 012037. [Google Scholar]
- Bao, J.S.; Corke, H.; Sun, M. Nucleotide Diversity in Starch Synthase IIa and Validation of Single Nucleotide Polymorphisms in Relation to Starch Gelatinization Temperature and Other Physicochemical Properties in Rice (Oryza Sativa L.). Theor. Appl. Genet. 2006, 113, 1171–1183. [Google Scholar] [CrossRef]
- Tatarinova, T.V.; Chekalin, E.; Nikolsky, Y.; Bruskin, S.; Chebotarov, D.; McNally, K.L.; Alexandrov, N. Nucleotide Diversity Analysis Highlights Functionally Important Genomic Regions. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef]
- Tam, N.T.; Dwiyanti, M.S.; Koide, Y.; Nagano, A.J.; Ky, H.; Tin, H.Q.; Hien, N.L.; Dung, L.V.; Kishima, Y. Profiling SNP and Nucleotide Diversity to Characterize Mekong Delta Rice Landraces in Southeast Asian Populations. Plant Genome 2019, 12, 190042. [Google Scholar] [CrossRef] [Green Version]
- Olsen, K.M.; Purugganan, M.D. Molecular Evidence on the Origin and Evolution of Glutinous Rice. Genetics 2002, 162, 941–950. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Qiao, W.-H.; Chen, Y.-T.; Wang, R.-S.; Cao, L.-R.; Zhang, W.-X.; Yuan, N.-N.; Li, Z.-C.; Zeng, H.-L.; Yang, Q.-W. Domestication and Geographic Origin of O Ryza Sativa in C Hina: Insights from Multilocus Analysis of Nucleotide Variation of O. Sativa and O. Rufipogon. Mol. Ecol. 2012, 21, 5073–5087. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, S.; Nakamura, I.; Watanabe, K.N.; Sato, Y.-I. Identification of SNPs in the Waxy Gene among Glutinous Rice Cultivars and Their Evolutionary Significance during the Domestication Process of Rice. Theor. Appl. Genet. 2004, 108, 1200–1204. [Google Scholar] [CrossRef]
- Huang, X.; Kurata, N.; Wang, Z.-X.; Wang, A.; Zhao, Q.; Zhao, Y.; Liu, K.; Lu, H.; Li, W.; Guo, Y. A Map of Rice Genome Variation Reveals the Origin of Cultivated Rice. Nature 2012, 490, 497–501. [Google Scholar] [CrossRef] [Green Version]
- Reif, J.C.; Zhang, P.; Dreisigacker, S.; Warburton, M.L.; van Ginkel, M.; Hoisington, D.; Bohn, M.; Melchinger, A.E. Wheat Genetic Diversity Trends during Domestication and Breeding. Theor. Appl. Genet. 2005, 110, 859–864. [Google Scholar] [CrossRef]
- Wright, S.I.; Bi, I.V.; Schroeder, S.G.; Yamasaki, M.; Doebley, J.F.; McMullen, M.D.; Gaut, B.S. The Effects of Artificial Selection on the Maize Genome. Science 2005, 308, 1310–1314. [Google Scholar] [CrossRef]
- Lam, H.-M.; Xu, X.; Liu, X.; Chen, W.; Yang, G.; Wong, F.-L.; Li, M.-W.; He, W.; Qin, N.; Wang, B. Resequencing of 31 Wild and Cultivated Soybean Genomes Identifies Patterns of Genetic Diversity and Selection. Nat. Genet. 2010, 42, 1053–1059. [Google Scholar] [CrossRef] [PubMed]
- Olsen, K.M.; Caicedo, A.L.; Polato, N.; McClung, A.; McCouch, S.; Purugganan, M.D. Selection under Domestication: Evidence for a Sweep in the Rice Waxy Genomic Region. Genetics 2006, 173, 975–983. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Zheng, H.; Wei, G.; Zhou, H.; Han, Y.; Bai, X.; Xing, Y.; Han, Y. Nucleotide Diversity and Molecular Evolution of the ALK Gene in Cultivated Rice and Its Wild Relatives. Plant Mol. Biol. Rep. 2016, 34, 923–930. [Google Scholar] [CrossRef]
- Yu, G.; Olsen, K.M.; Schaal, B.A. Molecular Evolution of the Endosperm Starch Synthesis Pathway Genes in Rice (Oryza Sativa L.) and Its Wild Ancestor, O. Rufipogon L. Mol. Biol. Evol. 2011, 28, 659–671. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Xia, D.; Zhao, D.; Li, Y.; Li, P.; Wu, B.; Gao, G.; Zhang, Q.; Wang, G.; Xiao, J. The Origin of Wxla Provides New Insights into the Improvement of Grain Quality in Rice. J. Integr. Plant Biol. 2021, 63, 878–888. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ralph, P. Local PCA Shows How the Effect of Population Structure Differs along the Genome. Genetics 2019, 211, 289–304. [Google Scholar] [CrossRef] [Green Version]
- Kitada, S.; Kitakado, T.; Kishino, H. Empirical Bayes Inference of Pairwise F ST and Its Distribution in the Genome. Genetics 2007, 177, 861–873. [Google Scholar] [CrossRef]
- Holsinger, K.E.; Weir, B.S. Genetics in Geographically Structured Populations: Defining, Estimating and Interpreting F ST. Nat. Rev. Genet. 2009, 10, 639–650. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.Z.; Khalequzzaman, M.; Prince, M.; Siddique, M.A.; Rashid, E.; Ahmed, M.S.U.; Pittendrigh, B.R.; Ali, M.P. Diversity and Population Structure of Red Rice Germplasm in Bangladesh. PLoS ONE 2018, 13, e0196096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.-S.; Yang, J.-Y.; Yu, J.-K.; Lee, Y.; Park, Y.-J.; Kang, K.-K.; Cho, Y.-G. Breeding of High Cooking and Eating Quality in Rice by Marker-Assisted Backcrossing (MABc) Using KASP Markers. Plants 2021, 10, 804. [Google Scholar] [CrossRef]
- Emms, D.M.; Kelly, S. OrthoFinder: Phylogenetic Orthology Inference for Comparative Genomics. Genome Biol. 2019, 20, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Group | Subgroup (Ecotype) | Total No. of Variations | No. of Accessions | ||||
---|---|---|---|---|---|---|---|
SNP | Ins (2) | Del (3) | Dupl (4) | DV (5) | |||
Cultivated rice | Temperate Japonica | 193 | 16 | 21 | 1 | 1 | 279 |
Tropical Japonica | 122 | 3 | 7 | 0 | 0 | 26 | |
Indica | 196 | 13 | 15 | 1 | 1 | 102 | |
Aus | 200 | 12 | 16 | 1 | 1 | 9 | |
Aromatic | 101 | 4 | 5 | 0 | 0 | 2 | |
Admixture | 146 | 6 | 10 | 0 | 1 | 3 | |
Wild rice | O. nivara | 121 | 5 | 5 | 0 | 0 | 3 |
O. rufipogon | 120 | 6 | 9 | 1 | 0 | 3 | |
Others (1) | 276 | 25 | 43 | 1 | 0 | 48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maung, T.Z.; Chu, S.-H.; Park, Y.-J. Functional Haplotypes and Evolutionary Insight into the Granule-Bound Starch Synthase II (GBSSII) Gene in Korean Rice Accessions (KRICE_CORE). Foods 2021, 10, 2359. https://doi.org/10.3390/foods10102359
Maung TZ, Chu S-H, Park Y-J. Functional Haplotypes and Evolutionary Insight into the Granule-Bound Starch Synthase II (GBSSII) Gene in Korean Rice Accessions (KRICE_CORE). Foods. 2021; 10(10):2359. https://doi.org/10.3390/foods10102359
Chicago/Turabian StyleMaung, Thant Zin, Sang-Ho Chu, and Yong-Jin Park. 2021. "Functional Haplotypes and Evolutionary Insight into the Granule-Bound Starch Synthase II (GBSSII) Gene in Korean Rice Accessions (KRICE_CORE)" Foods 10, no. 10: 2359. https://doi.org/10.3390/foods10102359
APA StyleMaung, T. Z., Chu, S.-H., & Park, Y.-J. (2021). Functional Haplotypes and Evolutionary Insight into the Granule-Bound Starch Synthase II (GBSSII) Gene in Korean Rice Accessions (KRICE_CORE). Foods, 10(10), 2359. https://doi.org/10.3390/foods10102359