Development and Characterization of Monoclonal Antibodies for the Detection of Fish Protein
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Preparation of Protein Extracts
2.3. Fish Sample Preparation for Studying the Effect of Heating Times
2.4. Development of mAbs
2.5. Indirect Enzyme-Linked Immunosorbent Assay (iELISA)
2.6. Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Western Blot (WB)
3. Results and Discussion
3.1. Species Selectivity of the Newly Developed mAbs
3.2. Antigenic Components Recognized by the Newly Developed mAbs
3.3. Antigenic Protein Profile of Yellowfin Tuna and Swordfish
3.4. Thermal Stability of the mAb 8F5 Epitope
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Drug Administration (FDA). Food Allergen Labeling and Consumer Protection Act of 2004 (Public Law 108-282). Available online: http://www.fda.gov/downloads/Food/GuidanceRegulation/UCM179394.pdf (accessed on 21 July 2021).
- Burney, P.; Summers, C.; Chinn, S.; Hooper, R.; Ree, R.V.; Lidholm, J. Prevalence and Distribution of Sensitization to Foods in the European Community Respiratory Health Survey: A EuroPrevall Analysis. Allergy 2010, 65, 1182–1188. [Google Scholar] [CrossRef]
- Gupta, R.S.; Warren, C.M.; Smith, B.M.; Jiang, J.; Blumenstock, J.A.; Davis, M.M.; Schleimer, R.P.; Nadeau, K.C. Prevalence and Severity of Food Allergies among US Adults. JAMA Netw. Open 2019, 2, e185630. [Google Scholar] [CrossRef]
- Xepapadaki, P.; Christopoulou, G.; Stavroulakis, G.; Freidl, R.; Linhart, B.; Zuidmeer, L.; Lakoumentas, J.; van Ree, R.; Valenta, R.; Papadopoulos, N.G. Natural History of IgE-Mediated Fish Allergy in Children. J. Allergy Clin. Immunol. Pract. 2021, 9, 3147–3156.e5. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, S.; Aas, K. Characterization of a Major Allergen (Cod) Observations on Effect of Denaturation on the Allergenic Activity. J. Allergy Clin. Immun. 1971, 47, 283–291. [Google Scholar] [CrossRef]
- Matricardi, P.M.; Kleine-Tebbe, J.; Hoffmann, H.J.; Valenta, R.; Hilger, C.; Hofmaier, S.; Aalberse, R.C.; Agache, I.; Asero, R.; Ballmer-Weber, B.; et al. EAACI Molecular Allergology User’s Guide. Pediatr. Allergy Immu. 2016, 27, 1–250. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, M.; Kuehn, A.; Mills, E.N.C.; Costello, C.A.; Ollert, M.; Småbrekke, L.; Primicerio, R.; Wickman, M.; Klingenberg, C. Cross-Reactivity in Fish Allergy: A Double-Blind, Placebo-Controlled Food-Challenge Trial. J. Allergy Clin. Immun. 2017, 140, 1170–1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fæste, C.K.; Plassen, C. Quantitative Sandwich ELISA for the Determination of Fish in Foods. J. Immunol. Methods 2008, 329, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Shibahara, Y.; Uesaka, Y.; Wang, J.; Yamada, S.; Shiomi, K. A Sensitive Enzyme-Linked Immunosorbent Assay for the Determination of Fish Protein in Processed Foods. Food Chem. 2013, 136, 675–681. [Google Scholar] [CrossRef]
- Gajewski, K.G.; Hsieh, Y.-H.P. Monoclonal Antibody Specific to a Major Fish Allergen: Parvalbumin. J. Food. Protect. 2009, 72, 818–825. [Google Scholar] [CrossRef]
- Bublin, M.; Kostadinova, M.; Fuchs, J.E.; Ackerbauer, D.; Moraes, A.H.; Almeida, F.C.L.; Lengger, N.; Hafner, C.; Ebner, C.; Radauer, C.; et al. A Cross-Reactive Human Single-Chain Antibody for Detection of Major Fish Allergens, Parvalbumins, and Identification of a Major IgE-Binding Epitope. PLoS ONE 2015, 10, e0142625. [Google Scholar] [CrossRef] [Green Version]
- Saptarshi, S.R.; Sharp, M.F.; Kamath, S.D.; Lopata, A.L. Antibody Reactivity to the Major Fish Allergen Parvalbumin Is Determined by Isoforms and Impact of Thermal Processing. Food Chem. 2014, 148, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Hamada, Y.; Nagashima, Y.; Shiomi, K. Identification of Collagen as a New Fish Allergen. Biosci. Biotechnol. Biochem. 2001, 65, 285–291. [Google Scholar] [CrossRef]
- Liu, R.; Krishnan, H.B.; Xue, W.; Liu, C. Characterization of Allergens Isolated from the Freshwater Fish Blunt Snout Bream (Megalobrama Amblycephala). J. Agric. Food Chem. 2011, 59, 458–463. [Google Scholar] [CrossRef]
- González-Mancebo, E.; Gandolfo-Cano, M.; González-de-Olano, D.; Mohedano-Vicente, E.; Bartolome, B.; Pastor-Vargas, C. Identification of a Novel Protein Allergen in Mediterranean Silverside Fish Species. Ann. Allergy Asthma. Immunol. 2014, 113, 114–115. [Google Scholar] [CrossRef] [PubMed]
- Kuehn, A.; Hilger, C.; Lehners-Weber, C.; Codreanu-Morel, F.; Morisset, M.; Metz-Favre, C.; Pauli, G.; Blay, F.; Revets, D.; Muller, C.P.; et al. Identification of Enolases and Aldolases as Important Fish Allergens in Cod, Salmon and Tuna: Component Resolved Diagnosis Using Parvalbumin and the New Allergens. Clin. Exp. Allergy 2013, 43, 811–822. [Google Scholar] [CrossRef]
- Liu, R.; Holck, A.L.; Yang, E.; Liu, C.; Xue, W. Tropomyosin from Tilapia (Oreochromis Mossambicus) as an Allergen. Clin. Exp. Allergy 2013, 43, 365–377. [Google Scholar] [CrossRef]
- González-Fernández, J.; Alguacil-Guillén, M.; Cuéllar, C.; Daschner, A. Possible Allergenic Role of Tropomyosin in Patients with Adverse Reactions after Fish Intake. Immunol. Investig. 2018, 47, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ruethers, T.; Taki, A.C.; Khangurha, J.; Roberts, J.; Buddhadasa, S.; Clarke, D.; Hedges, C.E.; Campbell, D.E.; Kamath, S.D.; Lopata, A.L.; et al. Commercial Fish ELISA Kits Have a Limited Capacity to Detect Different Fish Species and Their Products. J. Sci. Food Agric. 2020, 100, 4353–4363. [Google Scholar] [CrossRef]
- Chen, Y.-T.; Hsieh, Y.-H.P. A Sandwich ELISA for the Detection of Fish and Fish Products. Food Control. 2014, 40, 265–273. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Güven, E.; Duus, K.; Lydolph, M.C.; Jørgensen, C.S.; Laursen, I.; Houen, G. Non-Specific Binding in Solid Phase Immunoassays for Autoantibodies Correlates with Inflammation Markers. J. Immunol. Methods 2014, 403, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Hartman, H.; Wang, Y.; Schroeder, H.W.; Cui, X. Absorbance Summation: A Novel Approach for Analyzing High-Throughput ELISA Data in the Absence of a Standard. PLoS ONE 2018, 13, e0198528. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.-C.; Lee, C.-L.; Ochiai, Y.; Watabe, S. Thermostability of Tropomyosins from the Fast Skeletal Muscles of Tropical Fish Species. Fish Physiol. Biochem. 2019, 45, 1189–1202. [Google Scholar] [CrossRef]
- Huang, M.-C.; Ochiai, Y. Fish Fast Skeletal Muscle Tropomyosins Show Species-Specific Thermal Stability. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2005, 141, 461–471. [Google Scholar] [CrossRef]
- Ochiai, Y.; Ozawa, H.; Huang, M.-C.; Watabe, S. Characterization of Two Tropomyosin Isoforms from the Fast Skeletal Muscle of Bluefin Tuna Thunnus thynnusorientalis. Arch. Biochem. Biophys. 2010, 502, 96–103. [Google Scholar] [CrossRef]
- Cai, Q.; Zhang, W.; Zhu, Q.; Chen, Q. Influence of Heat Treatment on the Structure and Core IgE-Binding Epitopes of RAra h 2.02. Food Chem. 2016, 202, 404–408. [Google Scholar] [CrossRef]
- Li, T.; Bu, G.; Xi, G. Effects of Heat Treatment on the Antigenicity, Antigen Epitopes, and Structural Properties of β-Conglycinin. Food Chem. 2021, 346, 128962. [Google Scholar] [CrossRef]
- Xi, J.; Yao, L.; Li, S. Identification of β-Conglycinin α’ Subunit Antigenic Epitopes Destroyed by Thermal Treatments. Food Res. Int. 2021, 139, 109806. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2020. Available online: http://www.fao.org/documents/card/en/c/ca9229en (accessed on 18 September 2021).
Market Name | Scientific Name | Immunoreactivity a | ||
---|---|---|---|---|
Fish Species | mAb 8F5 | mAb 2A4 | mAb 3F5 | |
Cod | Gadus Morhua | +++ | ++ | +++ |
Orange Roughy | Hoplostethus Atlanticus | +++ | ++ | ++ |
Striped Bass | Morone Saxatilis | +++ | ++ | +++ |
Gray Snapper | Lutjanus Griseus | +++ | ++ | +++ |
Black Sea Bass | Centropristis Striata | +++ | ++ | ++ |
Spotted Seatrout | Cynoscion Nebulosus | +++ | ++ | +++ |
Lane Snapper | Lutjanus Synagris | +++ | ++ | +++ |
Mahi-Mahi | Coryphaena Hippurus | +++ | ++ | ++ |
Cubera Snapper | Lutjanus Cyanopterus | +++ | ++ | +++ |
Sheephead | Archosargus Probatocephalus | +++ | ++ | +++ |
Vermilion Snapper | Rhomboplites Aurorubens | +++ | ++ | +++ |
Yellowtail Snapper | Ocyurus Chrysurus | +++ | ++ | +++ |
Tra | Pangasius Hypothalmus | ++ | ++ | ++ |
Red Grouper | Epinephelus Morio | +++ | ++ | +++ |
Gag Grouper | Mycteroperca Microlepis | +++ | ++ | ++ |
Tomato Hind | Serranus sonnerati | +++ | +++ | +++ |
Orange Spotted Grouper | Epinephelus coioides | +++ | ++ | +++ |
Atlantic Salmon | Salmo Salar | ++ | ++ | ++ |
Southern Flounder | Paralichthys Lethostigma | +++ | ++ | +++ |
Cobia | Rachycentron Canadum | +++ | ++ | +++ |
Black Grouper | Mycteroperca Bonaci | +++ | ++ | +++ |
Scamp Grouper | Mycteroperca Phenax | +++ | ++ | +++ |
Wahoo | Acanthocybium Solandri | + | ++ | ++ |
Haddock | Melanogrammus Aeglefinus | +++ | ++ | +++ |
Pollock | P. Pollachius | ++ | ++ | ++ |
Hog Snapper | Lachnolaimus Maximus | +++ | ++ | +++ |
Tilapia | Oreochromis Niloticus | +++ | ++ | +++ |
Red Snapper | Lutjanus Campechanus | +++ | ++ | ++ |
Pompano | Trachinotus Carolinus | +++ | ++ | +++ |
Mullet | Mugil Gyrans | +++ | ++ | +++ |
Yellow Edge Grouper | Variola Louti | +++ | ++ | +++ |
Alaskan Halibut | Hippoglossus Stenolepsis | +++ | ++ | +++ |
Rainbow Trout | Oncorhynchus mykiss | +++ | ++ | +++ |
Catfish | Ictalurus punctatus | +++ | ++ | +++ |
Bluegill | Lepomis macrochirus | +++ | ++ | +++ |
Chinook salmon | Oncorhynchus tshawytscha | +++ | ++ | +++ |
Ocean Perch | Sebastes alutus | +++ | ++ | +++ |
Mangrove Snapper | Lutjanus griseus | ++ | ++ | +++ |
Whiting | Menticirrhus littoralis | ++ | ++ | ++ |
Basa | Pangasius bocourti, | +++ | +++ | +++ |
Camouflage Grouper | Epinephelus polyphekadion | +++ | +++ | +++ |
Coral Trout | Plectropomus leopardus | +++ | +++ | +++ |
Dusky Grouper | Epinephelus marginatus | +++ | +++ | +++ |
Redmouth Grouper | Aethaloperca rogaa | +++ | +++ | +++ |
Squaretail Grouper | Plectropomus areolatus | +++ | ++ | +++ |
Trout Cod | Maccullochella macquariensis | +++ | +++ | +++ |
Wavy Lined Grouper | Epinephelus undulosus | +++ | ++ | +++ |
Caribbean Red Snapper | Lutjanus purpureus | +++ | ++ | ++ |
Yellowfin Tuna | Thunnus Albacares | - | ++ | ++ |
Swordfish | Xiphias Gladius | - | + | + |
Non-Fish Species | ||||
White Shrimp | Litopenaeus setiferus | - | - | - |
Blue Crab | Callinectes sapidus | - | - | - |
Scallop | Pectinidae | - | - | - |
Chicken | Gallus Domesticus | - | + | - |
Turkey | Meleagris | - | ++ | ++ |
Pork | Sus Scrofa Domesticus | - | ++ | ++ |
Beef | Bos Primigenius | - | ++ | ++ |
Lamb | Ovis Aries | - | + | - |
Rabbit | Oryctolagus Cuniculus | - | ++ | ++ |
Horse | Equus Ferus Caballus | - | ++ | ++ |
Deer | Cervidae | - | ++ | ++ |
Elk | Cervus canadensis | - | ++ | ++ |
Rat | Rattus | - | ++ | +++ |
Frog | Lithobates catesbeianus | - | ++ | +++ |
Food Additives | ||||
Gelatin | - | - | - | |
Egg albumin | - | - | - | |
Soy protein | - | - | - | |
Nonfat Dried Milk | - | - | - |
Immunoreactivity against | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
mAb | Isotype | Antigenic Protein (kDa) a | 50 Fish Species | 3 Shellfish Species | 11 Land Animal Species | 4 Food Additives | ||||
Positive | Negative | Positive | Negative | Positive | Negative | Positive | Negative | |||
8F5 | IgG2a | 36 | 48 | 2 (swordfish and yellowfin tuna) | 0 | 3 | 0 | 11 | 0 | 4 |
2A4 | IgG1 | 36 | 50 | 0 | 0 | 3 | 11 | 0 | 0 | 4 |
3F5 | IgG2b | 36 | 50 | 0 | 0 | 3 | 9 | 2 | 0 | 4 |
Heating Time | Yellowfin Tuna | Swordfish | Cod | |||
---|---|---|---|---|---|---|
Concentration (mg/mL) a | Ratio of Concentration (%) | Concentration (mg/mL) a | Ratio of Concentration (%) | Concentration (mg/mL) a | Ratio of Concentration (%) | |
0 min | 16.09 ± 0.64 | 100 | 8.73 ± 0.23 | 100 | 3.83 ± 0.09 | 100 |
1 min | 12.67 ± 0.13 | 78.7 | 7.69 ± 0.12 | 88.1 | 3.72 ± 0.08 | 97.1 |
3 min | 6.00 ± 0.11 | 37.3 | 3.70 ± 0.06 | 42.4 | 1.78 ± 0.04 | 46.4 |
5 min | 0.16 ± 0.02 | 1 | 0.30 ± 0.03 | 3.4 | 1.09 ± 0.04 | 28.5 |
10 min | 0.17 ± 0.01 | 1.1 | 0.27 ± 0.01 | 3.1 | 1.04 ± 0.03 | 27.2 |
15 min | 0.29 ± 0.02 | 1.8 | 0.31 ± 0.01 | 3.6 | 1.17 ± 0.01 | 30.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-T.; Hsieh, Y.-H.P. Development and Characterization of Monoclonal Antibodies for the Detection of Fish Protein. Foods 2021, 10, 2360. https://doi.org/10.3390/foods10102360
Chen Y-T, Hsieh Y-HP. Development and Characterization of Monoclonal Antibodies for the Detection of Fish Protein. Foods. 2021; 10(10):2360. https://doi.org/10.3390/foods10102360
Chicago/Turabian StyleChen, Yi-Tien, and Yun-Hwa Peggy Hsieh. 2021. "Development and Characterization of Monoclonal Antibodies for the Detection of Fish Protein" Foods 10, no. 10: 2360. https://doi.org/10.3390/foods10102360
APA StyleChen, Y.-T., & Hsieh, Y.-H. P. (2021). Development and Characterization of Monoclonal Antibodies for the Detection of Fish Protein. Foods, 10(10), 2360. https://doi.org/10.3390/foods10102360