Occurrence of Pesticide Residues in Spanish Honey Measured by QuEChERS Method Followed by Liquid and Gas Chromatography–Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Analytes and Standard Solutions
2.3. Honey Samples
2.4. Extraction Sample
2.5. Quality Control
2.6. Chromatographic Analysis
2.7. GC–MS/MS
2.8. LC–MS/MS
2.9. Dietary Risk Assessment
3. Results and Discussion
3.1. Pesticide Residues
3.2. Dietary Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Comission. Bees Honey. Available online: https://ec.europa.eu/food/animals/live_animals/bees_en (accessed on 31 August 2021).
- Bogdanov, S. Contaminants of bee products. Apidologie 2006, 37, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Nicolopoulou-Stamatti, P.; Malpas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical pesticides and human health: The urgent need for a new concept in agriculture. Front. Public Health 2016, 4, 148. [Google Scholar] [CrossRef] [Green Version]
- EFSA (European Food Safety Authority). Conclusion on the peer review of the pesticide risk assessment for bees for the active substance clothianidin considering the uses as seed treatments and granules. EFSA J. 2018, 16, 5177. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Conclusions on the peer review of the pesticide risk assessment for bees for the active substance thiamethoxam considering the uses as seed treatments and granules. EFSA J. 2018, 16, 5179. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Gill, J.P.S.; Bedi, J.S.; Kumar, A. Pesticide residues in Indian raw honeys, an indicator of environmental pollution. Environ. Sci. Pollut. Res. 2018, 25, 34005–34016. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, S.; Lázaro, R.; Pérez-Arquillué, C.; Herrera, A. Determination of synthetic acaricides residues in beeswax by high-performance liquid chromatography with photodiode array detector. Anal. Chim. Acta 2007, 581, 95–101. [Google Scholar] [CrossRef] [PubMed]
- European Comission. Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on Maximum Residue Levels of Pesticides in or on Food and Feed of Plant and Animal Origin and Amending Council Directive 91/414/EEC; Committee for Standardization: Brussels, Belgium, 2005. [Google Scholar]
- Ðurović, R.; Ðorđević, T. Modern extraction techniques for pesticide residues determination in plant and soil samples. In Pesticides in the Modern World—Trends in Pesticides Analysis; IntechOpen: London, UK, 2011; pp. 221–246. [Google Scholar]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and ‘dispersive solid-phase extraction’ for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [Green Version]
- European Committee for Standardization. Foods of Plant Origin—Multimethod for the Determination of Pesticide Residues Using GC-and LC-Based Analysis Following Acetonitrile Extraction/Partitioning and Clean-Up by Dispersive SPE—Modular QuEChERS-Method; European Committee for Standardization: Brussels, Belgium, 2018. [Google Scholar]
- Niell, S.; Jesus, F.; Perez, C.; Mendoza, Y.; Diaz, R.; Franco, J.; Cesio, V.; Heinzen, H. QuEChERS adaptability for the analysis of pesticide residues in beehive products seeking the development of an agroecosystem sustainability monitor. J. Agric. Food Chem. 2015, 63, 4484–4492. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, L.M.; Labella, G.F.; Panseri, S.; Britti, D.; Galbiati, F.; Villa, R.; Arioli, F. Accelerated solvent extraction by using an ‘in-line’clean-up approach for multiresidue analysis of pesticides in organic honey. Food Addit. Contam. Part A 2017, 34, 809–818. [Google Scholar]
- Gaweł, M.; Kiljanek, T.; Niewiadowska, S.; Semeniuk, A.; Goliszek, M.; Burek, O.; Posyniak, A. Determination of neonicotinoids and 199 other pesticide residues in honey by liquid and gas chromatography coupled with tandem mass spectrometry. Food Chem. 2019, 282, 36–47. [Google Scholar] [CrossRef]
- Shendy, A.H.; Al-Ghobashy, M.A.; Mohammed, M.N.; Alla, S.A.G.; Lotfy, H.M. Simultaneous determination of 200 pesticide residues in honey using gas chromatography-tandem mass spectrometry in conjunction with streamlined quantification approach. J. Chromatogr. A 2016, 1427, 142–160. [Google Scholar] [CrossRef] [PubMed]
- Zamudio, A.M.; Vanoy, N.; Díaz-Moreno, C.; Ahumada, D.A. Development and validation of a multiresidue method for pesticide analysis in honey by UFLC-MS. Rev. Colomb. Química 2017, 46, 24–36. [Google Scholar]
- European Comission. Commission Implementing Regulation (EU) 2019/533 of 28 March 2019 Concerning a Coordinated Multiannual Control Programme of the Union for 2020, 2021 and 2022 to Ensure Compliance with Maximum Residue Levels of Pesticides and to Assess the Consumer Exposure; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- European Commission DG-SANTE. Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- European Comission. Commission Regulation (EU) No 37/2010 of 22 December 2009 on Pharmacologically Active Substances and Their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin; European Commission: Brussels, Belgium, 2010. [Google Scholar]
- Hepperle, J.; Mack, D.; Sigalov, I.; Schüler, S.; Anastassiades, M. Analysis of ‘amitraz (sum)’ in pears with incurred residues—Comparison of the approach covering the individual metabolites via LC-MS/MS with the approach involving cleavage to 2,4-dimethylaniline. Food Chem. 2015, 166, 240–247. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority); Medina-Pastor, P.; Triacchini, G. The 2018 European Union report on pesticide residues in food. EFSA J. 2020, 18, 6057. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization; Inter-Organization Programme for the Sound Management of Chemicals. IPCS Risk Assessment Terminology. 2004. Available online: http://www.inchem.org/documents/harmproj/harmproj/harmproj1.pdf (accessed on 31 August 2021).
- Ministerio de Agricultura Pesca y Alimentación. Informe del Consumo de Alimentación en España 2019. 2020. Available online: https://www.mapa.gob.es/es/alimentacion/temas/consumo-tendencias/informe2019_v2_tcm30-540250.pdf (accessed on 26 August 2021).
- European Comission. Commission Regulation (EC) No 2076/2002 of 20 November 2002 Extending the Time Period Referred to in Article 8(2) of Council Directive 91/414/EEC and Concerning the Non-Inclusion of Certain Active Substances in Annex I to that Directive and the Withdrawal; European Commission: Brussels, Belgium, 2002. [Google Scholar]
- Lozano, A.; Hernando, M.D.; Uclés, S.; Hakme, E.; Fernández-Alba, A.R. Identification and measurement of veterinary drug residues in beehive products. Food Chem. 2019, 274, 61–70. [Google Scholar] [CrossRef]
- Saitta, M.; Di Bella, G.; Fede, M.R.; Lo Turco, V.; Potortì, A.G.; Rando, R.; Russo, M.T.; Dugo, G. Gas chromatography-tandem mass spectrometry multi-residual analysis of contaminants in Italian honey samples. Food Addit. Contam. Part A 2017, 34, 800–808. [Google Scholar] [CrossRef]
- Balayiannis, G.; Balayiannis, P. Bee honey as an environmental bioindicator of pesticides’ occurrence in six agricultural areas of Greece. Arch. Environ. Contam. Toxicol. 2008, 55, 462. [Google Scholar] [CrossRef]
- Bajuk, B.P.; Babnik, K.; Snoj, T.; Milčinski, L.; Ocepek, M.P.; Škof, M.; Jenčič, V.; Filazi, A.; Štajnbaher, D.; Kobal, S. Coumaphos residues in honey, bee brood, and beeswax after Varroa treatment. Apidologie 2017, 48, 588–598. [Google Scholar] [CrossRef]
- Lazarus, M.; Lovaković, B.T.; Orct, T.; Sekovanić, A.; Bilandžić, N.; Đokić, M.; Kolanović, B.; Varenina, I.; Jurič, A.; Lugomer, M.D.; et al. Difference in pesticides, trace metal(loid)s and drug residues between certified organic and conventional honeys from Croatia. Chemosphere 2021, 266, 128954. [Google Scholar] [CrossRef]
- Alonso-Prados, E.; Muñoz, I.; De la Rúa, P.; Serrano, J.; Fernández-Alba, A.R.; García-Valcárcel, A.I.; Hernando, M.D.; Alonso, Á.; Alonso-Prados, J.; Bartolomé, C.; et al. The toxic unit approach as a risk indicator in honey bees surveillance programmes: A case of study in Apis mellifera iberiensis. Sci. Total Environ. 2020, 698, 134208. [Google Scholar] [CrossRef] [PubMed]
- Juan-Borrás, M.; Domenech, E.; Escriche, I. Mixture-risk-assessment of pesticide residues in retail polyfloral honey. Food Control 2016, 67, 127–134. [Google Scholar] [CrossRef]
- Bommuraj, V.; Chen, Y.; Klein, H.; Sperling, R.; Barel, S.; Shimshoni, J.A. Pesticide and trace element residues in honey and beeswax combs from Israel in association with human risk assessment and honey adulteration. Food Chem. 2019, 299, 125123. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, L.M.; Labella, G.F.; Giorgi, A.; Panseri, S.; Pavlovic, R.; Bonacci, S.; Arioli, F. The occurrence of pesticides and persistent organic pollutants in Italian organic honeys from different productive areas in relation to potential environmental pollution. Chemosphere 2016, 154, 482–490. [Google Scholar] [CrossRef] [PubMed]
- López, D.R.; Ahumada, D.A.; Díaz, A.C.; Guerrero, J.A. Evaluation of pesticide residues in honey from different geographic regions of Colombia. Food Control 2014, 37, 33–40. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations; World Health Organization. FAO Panel of Experts on Pesticide Residues in Food and the Environment; WHO Expert Group on Pesticide Residues. Pesticide residues in food: 1994. In Proceedings of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Expert Group on Pesticide Residues, Rome, Italy, 19–28 September 1994; FAO: Rome, Italy, 1994. [Google Scholar]
- EFSA (European Food Safety Authority). Setting of maximum residue levels for amitraz, coumaphos, flumequine, oxytetracycline, permethrin and streptomycin in certain products of animal origin. EFSA J. 2016, 14, 8. [Google Scholar] [CrossRef]
- Agbaje, R.; Hassan, C.Z.; Norlelawati, A.; Rahman, A.A.; Huda-Faujan, N. Development and physico-chemical analysis of granola formulated with puffed glutinous rice and selected dried Sunnah foods. Int. Food Res. J. 2016, 23, 498–506. [Google Scholar]
- Kaur, R.; Ahluwalia, P.; Sachdev, P.A.; Kaur, A. Development of gluten-free cereal bar for gluten intolerant population by using quinoa as major ingredient. J. Food Sci. Technol. 2018, 55, 3584–3591. [Google Scholar] [CrossRef] [PubMed]
- Arvanitoyannis, I.S.; Bosinas, K.P.; Bouletis, A.D.; Gkagtzis, D.C.; Hadjichristodoulou, C.; Papaloucas, C. Study of the effect of atmosphere modification in conjunction with honey on the extent of shelf life of Greek bakery delicacy ‘touloumpaki’. Anaerobe 2011, 17, 300–302. [Google Scholar] [CrossRef] [PubMed]
- Anwar, N.Z.R.; Hashim, N.A.; Zulkifli, N.A. Melting Characteristics of Milk Chocolate with Different Sweetener Blends. Int. J. Eng. Technol. 2018, 7, 154–157. [Google Scholar] [CrossRef]
- Hashim, I.B.; McWatters, K.H.; Hung, Y.C. Marination method and honey level affect physical and sensory characteristics of roasted chicken. J. Food Sci. 1999, 64, 163–166. Available online: http://agris.fao.org/agris-search/search.do?recordID=US201302913565 (accessed on 31 August 2021). [CrossRef]
- Karo, F.Y.; Hidayati, P.I.; Krisnaningsih, A.T.N. The effect of honey as natural preservative to quality of meat with temperature variation on the save 4 °C. J. Sains Peternak. 2017, 4. [Google Scholar] [CrossRef]
- López-Velasco, D.S.; Sosa-Montes, E.; González-Cerón, F.; Pró-Martínez, A.; Vargas-Galicia, A.J. Efecto antioxidante de la miel de abeja sobre la carne de conejo almacenada en refrigeración. CienciaUAT 2021, 15, 135–143. Available online: https://dialnet.unirioja.es/servlet/oaiart?codigo=7781203 (accessed on 31 August 2021). [CrossRef]
- Stijepic, M.J.; Glusac, J.R.; Milosevic-Djurdjevic, D.M. Prebiotic effect of honey addition on fermentation and physico-chemical properties of probiotic drink produced from goat milk/Probioticko djelovanje meda na fermentaciju i svojstva kozjeg i kravljeg probiotickog jogurta. Prehrambena Ind. (Serbia) 2009, 20, 116–122. Available online: http://agris.fao.org/agris-search/search.do?recordID=RS2010000417 (accessed on 31 August 2021).
- Moriano, M.E.; Alamprese, C. Honey, trehalose and erythritol as sucrose-alternative sweeteners for artisanal ice cream. A pilot study. LWT—Food Sci. Technol. 2017, 75, 329–334. [Google Scholar] [CrossRef]
- Caldeira, I.; Lopes, D.; Delgado, T.; Canas, S.; Anjos, O. Development of blueberry liquor: Influence of distillate, sweetener and fruit quantity. J. Sci. Food Agric. 2018, 98, 1088–1094. Available online: http://explore.bl.uk/primo_library/libweb/action/display.do?tabs=detailsTab&gathStatTab=true&ct=display&fn=search&doc=ETOCRN389462273&indx=1&recIds=ETOCRN389462273 (accessed on 23 August 2021). [CrossRef]
- EFSA (European Food Safety Authority); Craig, P.S.; Dujardin, B.; Hart, A.; Hernandez-Jerez, A.F.; Hougaard Bennekou, S.; Kneuer, C.; Ossendorp, B.; Pedersen, R.; Wolterink, G.; et al. Scientific report on the cumulative dietary risk characterisation of pesticides that have chronic effects on the thyroid. EFSA J. 2020, 18, 6088. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority); Craig, P.S.; Dujardin, B.; Hart, A.; Hernandez-Jerez, A.F.; Hougaard Bennekou, S.; Kneuer, C.; Ossendorp, B.; Pedersen, R.; Wolterink, G.; et al. Scientific report on cumulative dietary risk characterisation of pesticides that have acute effects on the nervous system. EFSA J. 2020, 18, 6087. [Google Scholar] [CrossRef]
Botanical Origin | Number of Samples | Number of Positive Samples | Residue Detected | Residue Level (ng g−1 Honey) |
---|---|---|---|---|
Multifloral | 54 | 3 | Chlorfenvinphos | 2.0 ± 1.0 |
2.0 ± 1.0 | ||||
4.5 ± 2.3 | ||||
6 | Coumaphos | 26.5 ± 13.2 | ||
9.1 ± 4.6 | ||||
12.0 ± 6.0 | ||||
37.0 ± 18.5 | ||||
8.8 ± 4.4 | ||||
15.2 ± 7.6 | ||||
Lamiaceae (Rosmarinus officinalis + Thymus vulgaris) | 20 | 1 | Chlorfenvinphos | 7.8 ± 3.9 |
Blackberry (Rubus sp.) | 10 | 3 | Chlorfenvinphos | 2.0 ± 1.0 |
2.0 ± 1.0 | ||||
3.9 ± 2.0 | ||||
Fruit trees (Prunus + Pyrus) | 7 | 0 | - | - |
Residue | Age Group | EDI 1 (μg kg−1 Body Weight/Day) | ADI (mg kg−1 Body Weight/Day) | HQ (%) |
---|---|---|---|---|
Chlorfenvinphos | Adults | 3.38 × 10−7 | 0.0005 (47) | 0.07 |
Children | 1.97 × 10−6 | 0.39 | ||
Coumaphos | Adults | 1.56 × 10−6 | 0.00025 (44) | 0.62 |
Children | 9.13 × 10−6 | 3.65 |
Product | Applications | Featured References |
---|---|---|
Cereals and cereal-based products | Sweetener | [37,38] |
Nutrient ingredient | ||
Adhesive material | ||
Binding agent | ||
Improves colour, aroma, and viscosity | ||
Improves darkening | ||
Improves shelf life | ||
Bakery and pastry | Increases water retentionImproves colour, aroma, and texture | [39] |
Improves darkening | ||
Improves shelf life | ||
Good mouthfeel in reduced fat products | ||
Sweetener | ||
Functional ingredient | ||
Sweet | Sweetener | [40] |
Topping | ||
Binding agent | ||
Improves viscosity and texture flavouring | ||
Meat and meat products | Increases water retention | [41,42,43] |
Improves colour | ||
Improves browning | ||
Reduces the formation of heterocyclic aromatic amines and their mutagenic effectsFlavouring | ||
Good mouthfeel in reduced fat products | ||
Dairy products and ice creams | Natural preservative | [44,45] |
Sweetener | ||
Ingredient prebiotic | ||
Reduces freezing point | ||
Flavouring | ||
Beverages | Sweetener | [46] |
Clarifying | ||
Colour enhancement | ||
Flavouring |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lasheras, R.J.; Lázaro, R.; Burillo, J.C.; Bayarri, S. Occurrence of Pesticide Residues in Spanish Honey Measured by QuEChERS Method Followed by Liquid and Gas Chromatography–Tandem Mass Spectrometry. Foods 2021, 10, 2262. https://doi.org/10.3390/foods10102262
Lasheras RJ, Lázaro R, Burillo JC, Bayarri S. Occurrence of Pesticide Residues in Spanish Honey Measured by QuEChERS Method Followed by Liquid and Gas Chromatography–Tandem Mass Spectrometry. Foods. 2021; 10(10):2262. https://doi.org/10.3390/foods10102262
Chicago/Turabian StyleLasheras, Roberto Jesús, Regina Lázaro, Juan Carlos Burillo, and Susana Bayarri. 2021. "Occurrence of Pesticide Residues in Spanish Honey Measured by QuEChERS Method Followed by Liquid and Gas Chromatography–Tandem Mass Spectrometry" Foods 10, no. 10: 2262. https://doi.org/10.3390/foods10102262
APA StyleLasheras, R. J., Lázaro, R., Burillo, J. C., & Bayarri, S. (2021). Occurrence of Pesticide Residues in Spanish Honey Measured by QuEChERS Method Followed by Liquid and Gas Chromatography–Tandem Mass Spectrometry. Foods, 10(10), 2262. https://doi.org/10.3390/foods10102262