Crystal Structure and Thermal Behavior of SbC2O4OH and SbC2O4OD
Abstract
:1. Introduction
2. Results
2.1. Infrared Spectra
2.2. X-Ray Powder Diffraction and Rietveld Analysis
2.3. Neutron Powder Diffraction and Rietveld Analysis
2.4. Thermal Analysis: DSC-TG-MS
2.5. Radiation Damage
2.6. Chemical Reactions with SbC2O4OH as a Precursor
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lu, J.; Li, Y.; Zhao, K.; Xu, J.Q.; Ju, J.H.; Li, G.H.; Zhang, X.; Bie, H.Y.; Wang, T.G. Novel oxalate coordination mode and roles: Synthesis, structure and fluorescence property of [Cd2(μ-ox)(μ3-OH)2] with 3-D structure. Inorg. Chem. Commun. 2004, 7, 1154–1156. [Google Scholar] [CrossRef]
- Hamdouni, M.; Walha, S.; Kabadou, A.; Duhayon, C.; Sutter, J.P. Synthesis and crystal structures of various phases of the microporous three-dimensional coordination polymer [Zr(OH)2(C2O4)]. Cryst. Growth Des. 2013, 13, 5100–5106. [Google Scholar] [CrossRef]
- Rivenet, M.; Roussel, P.; Abraham, F. One-dimensional inorganic arrangement in the bismuth oxalate hydroxide Bi(C2O4)OH. J. Solid State Chem. 2008, 181, 2586–2590. [Google Scholar] [CrossRef]
- Roumanille, P.; Baco-Carles, V.; Bonningue, C.; Gougeon, M.; Duployer, B.; Monfraix, P.; Trong, H.L.; Tailhades, P. Bi2(C2O4)3·7H2O and Bi(C2O4)OH Oxalates Thermal Decomposition Revisited. Formation of Nanoparticles with a Lower Melting Point than Bulk Bismuth. Inorg. Chem. 2017, 56, 9486–9496. [Google Scholar] [CrossRef] [Green Version]
- Nanda, B.N.; Pani, S. Diaquo-mono-oxalato-antimony complex. J. Ind. Chem. Soc. 1957, 34, 481–485. [Google Scholar]
- Ambe, S. Chemical properties of Sb(III)(C2O4)OH. J. Inorg. Nucl. Chem. 1975, 37, 2023. [Google Scholar] [CrossRef]
- Ambe, S.; Ambe, F. Mössbauer emission spectrum of 119Sn in 119Sb(OH)(C2O4). Inorg. Nucl. Chem. Lett. 1975, 11, 139–143. [Google Scholar] [CrossRef]
- Karlov, V.P.; Btutzov, G.N.; Dobrokhotova, T.F. Preparation and Properties of Antimony(III) Oxalate. Russ. J. Inorg. Chem. (Transl. Zh. Neorg. Khim.) 1983, 28, 1218–1219. [Google Scholar]
- Korzun, B.V.; Schorr, S.; Schmitz, W.; Fadzeyeva, A.A.; Kommichau, G.; Bente, K. Preparation of BaBi1/2Sb1/2O3 from Ba(COO)2·0.5H2O and Sb(COO)2(OH) oxalates and Bi2O3 oxide. J. Cryst. Growth 2005, 277, 205–209. [Google Scholar] [CrossRef]
- Kaduk, J.A.; Toft, M.A.; Golab, J.T. Crystal structure of antimony oxalate hydroxide, Sb(C2O4)OH. Powder Diffr. 2010, 25, 19–24. [Google Scholar] [CrossRef]
- de Oliveira, E.F.; Hase, Y. Infrared study and isotopic effect of magnesium hydroxide. Vib. Spectrosc. 2001, 25, 53–56. [Google Scholar] [CrossRef]
- Sears, V.F. Neutron scattering lengths and cross sections. Neutron News 1992, 3, 26–37. [Google Scholar] [CrossRef]
- Halasyamani, P.S. Asymmetric Cation Coordination in Oxide Materials: Influence of Lone-Pair Cations on the Intra-octahedral Distortion in d0 Transition Metals. Chem. Mater. 2004, 16, 3586–3592. [Google Scholar] [CrossRef]
- Beck, H.P.; Tratzky, H.; Kallmayer, V.; Stöwe, K. The InSnCl3-Type Arrangement. I. A New ABX3 Structure Type with Close Cation-Cation Contacts. J. Solid State Chem. 1999, 146, 344–350. [Google Scholar] [CrossRef]
- Walsh, A.; Payne, D.J.; Egdell, R.G.; Watson, G.W. Stereochemistry of post-transition metal oxides: Revision of the classical lone pair model. Chem. Soc. Rev. 2011, 40, 4455–4463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, R.J. Hydrogen and order—Disorder in PbO2 in lead/acid positive plates. J. Power Sources 1989, 25, 313–320. [Google Scholar] [CrossRef]
- Tabatabaee, M.; Poupon, M.; Eigner, V.; Vanek, P.; Dusek, M. The role of hydrogen bonds in order-disorder transition of a new incommensurate low temperature phase β-[Zn-(C7H4NO4)2]·3H2O. Z. Kristallogr. 2018, 233, 17–25. [Google Scholar] [CrossRef]
- Kohlmann, H.; Moyer, R.O., Jr.; Hansen, T.; Yvon, K. X-ray and neutron powder diffraction study of the order-disorder transition in Eu2IrH5 and the mixed crystal compounds Eu2−xAxIrH5 (A = Ca, Sr; x = 1.0, 1.5). J. Solid State Chem. 2003, 174, 35–43. [Google Scholar] [CrossRef]
- Kohlmann, H.; Yvon, K. Revision of the low-temperature structures of rhombohedral ZrCr2Dx (x ~ 3.8), and monoclinic ZrV2Dx (1.1 < x < 2.3) and HfV2Dx (x ~ 1.9). J. Alloys Compd. 2000, 309, 123–126. [Google Scholar]
- Kohlmann, H.; Fauth, F.; Fischer, P.; Skripov, A.V.; Yvon, K. Low-temperature deuterium ordering in the cubic Laves phase derivative α-ZrCr2D0.66. J. Alloys Compd. 2001, 327, L4–L9. [Google Scholar] [CrossRef]
- Petrov, I.; Petrushevski, V.; Al-kassab, A.W.; Liesegang, J.; James, B.D. Effect of Deuteration on Order-Disorder in Hydrogen Disulfate Compounds, M3H(SO4)2 (M = Na, K, Rb, Cs, NH4). Spectr. Lett. 1988, 21, 167–182. [Google Scholar] [CrossRef]
- Kumari, K.G.V.; Vasu, P.D.; Kumar, V.; Aoslan, T. Formation of Zinc–Antimony-Based Spinel Phases. J. Am. Ceram. Soc. 2002, 85, 703–705. [Google Scholar] [CrossRef]
- Bowden, E. Oxalic acid (Anhydrous). Org. Synth. 1921, 1, 67. [Google Scholar]
- Rodriguez-Carvajal, J. Recent advances in magnetic structure determination neutron powder diffraction. Z. Phys. B Condens. Matter 1993, 192, 55–69. [Google Scholar] [CrossRef]
- FULLPROF, version 5; Rodriguez-Carvajal, J. (ILL): Grenoble, France, 2012.
- Rodriguez-Carvajal, J. Recent Developments of the Program FULLPROF. Comm. Powder Diffr. (IUCr) Newsl. 2001, 26, 12–19. [Google Scholar]
- Franz, A.; Hoser, A. E9: The Fine Resolution Powder Diffractometer (FIREPOD) at BER II. J. Large Scale Res. Facil. 2017, 3, A103. [Google Scholar] [CrossRef] [Green Version]
Atom | Wyckoff Position | x | y | z | Biso/104 pm2 | Occupation |
---|---|---|---|---|---|---|
Sb | 4c | 0.1799(9) | ¼ | 0.5064(8) | 1.00(12) | 1 |
C | 8d | 0.1066(6) | 0.5245(3) | 0.5531(5) | 1.06(7) | 1 |
O1 | 4c | 0.5373(10) | ¼ | 0.7105(10) | 0.99(13) | 1 |
O2 | 8d | 0.2600(7) | 0.4519(4) | 0.6067(6) | 1.73(9) | 1 |
O3 | 8d | 0.1203(7) | 0.6353(3) | 0.5827(6) | 1.23(8) | 1 |
D | 8d | 0.6431(16) | 0.2844(8) | 0.6076(13) | 3.81(31) | 0.468(5) |
H | 8d | x(D) | y(D) | z(D) | Biso(D) | ½—occ(D) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kohlmann, H.; Rauchmaul, A.; Keilholz, S.; Franz, A. Crystal Structure and Thermal Behavior of SbC2O4OH and SbC2O4OD. Inorganics 2020, 8, 21. https://doi.org/10.3390/inorganics8030021
Kohlmann H, Rauchmaul A, Keilholz S, Franz A. Crystal Structure and Thermal Behavior of SbC2O4OH and SbC2O4OD. Inorganics. 2020; 8(3):21. https://doi.org/10.3390/inorganics8030021
Chicago/Turabian StyleKohlmann, Holger, Anne Rauchmaul, Simon Keilholz, and Alexandra Franz. 2020. "Crystal Structure and Thermal Behavior of SbC2O4OH and SbC2O4OD" Inorganics 8, no. 3: 21. https://doi.org/10.3390/inorganics8030021
APA StyleKohlmann, H., Rauchmaul, A., Keilholz, S., & Franz, A. (2020). Crystal Structure and Thermal Behavior of SbC2O4OH and SbC2O4OD. Inorganics, 8(3), 21. https://doi.org/10.3390/inorganics8030021