M[B2(SO4)4] (M = Mn, Zn)—Syntheses and Crystal Structures of Two New Phyllosilicate Analogue Borosulfates
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgment
Conflicts of Interest
References
- Liebau, F. Structural Chemistry of Silicates; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Deer, W.A.; Howie, R.A.; Zussmann, J. An Introduction to Rock-Forming Minerals; Langmanns: London, UK, 1966. [Google Scholar]
- Krivovichev, S.V. Minerals as Advanced Materials II; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Ying, J.Y.; Mehnert, C.P.; Wong, M.S. Synthesis and Applications of Supramolecular-Templated Mesoporous Materials. Angew. Chem. Int. Ed. 1999, 38, 56–77. [Google Scholar] [CrossRef]
- Wang, X.; Zhuang, J.; Chen, J.; Zhou, K.; Li, Y. Thermally Stable Silicate Nanotubes. Angew. Chem. Int. Ed. 2004, 43, 2017–2020. [Google Scholar] [CrossRef] [PubMed]
- Oliver, S.; Kupermann, A.; Ozin, G.A. A New Model for Aluminophosphate Formation: Transformation of a Linear Chain Aluminophosphate to Chain, Layer, and Framework Structures. Angew. Chem. Int. Ed. 1998, 37, 46–62. [Google Scholar] [CrossRef]
- Santilli, D.S.; Zones, S.I. Synthesis of Microporous Materials: Vol. 1: Molecular Sieves; Van Nostrand Reinhold: New York, NY, USA, 1992. [Google Scholar]
- Kniep, R.; Gözel, G.; Eisenmann, B.; Röhr, C.; Asbrand, M.; Kizilyalli, M. Borophosphates—A Neglected Class of Compounds: Crystal Structures of MII[BPO5] (MII = Ca, Sr) and Ba3[BP3O12]. Angew. Chem. Int. Ed. 1994, 33, 749–751. [Google Scholar] [CrossRef]
- Marakatti, V.S.; Halgeri, A.B. Metal ion-exchanged Zeolites as highly active Solid acid Catalysts for the Green Synthesis of Glycerol Carbonate from Glycerol. RSC Adv. 2015, 5, 14286–14293. [Google Scholar] [CrossRef]
- Marakatti, V.; Halgeri, A.B.; Shanbhag, G.V. Metal ion-exchanged Zeolites as Solid acid Catalysts for the Green Synthesis of nopol from Prins reaction. Catal. Sci. Technol. 2014, 4, 4065–4074. [Google Scholar] [CrossRef]
- Pauling, L. The Principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 1929, 51, 1010–1026. [Google Scholar] [CrossRef]
- Höppe, H.A.; Kazmierczak, K.; Daub, M.; Förg, K.; Fuchs, F.; Hillebrecht, H. The First Borosulfate K5[B(SO4)4]. Angew. Chem. Int. Ed. 2012, 51, 6255–6257. [Google Scholar] [CrossRef]
- Gross, P.; Kirchhain, A.; Höppe, H.A. The Borosulfates K4[BS4O15(OH)], Ba[B2S3O13], and Gd2[B2S6O24]. Angew. Chem. Int. Ed. 2016, 55, 4353–4355. [Google Scholar] [CrossRef]
- Bruns, J.; Podewitz, M.; Janka, O.; Pöttgen, R.; Liedl, K.; Huppertz, H. Cu[B2(SO4)4] and Cu[B(SO4)2(HSO4)]—Two silicate analogue borosulfates differing in their dimensionality: A comparative study of stability and acidity. Angew. Chem. Int. Ed. 2018, 130, 9693–9697. [Google Scholar] [CrossRef] [Green Version]
- Netzsch, P.; Hämmer, M.; Gross, P.; Bariss, H.; Block, T.; Heletta, L.; Pöttgen, R.; Bruns, J.; Huppertz, H.; Höppe, H.A. RE2[B2(SO4)6] (RE = Y, La–Nd, Sm, Eu, Tb–Lu): A silicate-analogues host structure with weak coordination behaviour. Dalton Trans. 2019, 48, 4387–4397. [Google Scholar] [CrossRef]
- Bruns, J.; Podewitz, M.; Schauperl, M.; Liedl, K.; Janka, O.; Pöttgen, R.; Huppertz, H. Ag[B(SO4)2]—Synthesis, crystal structure and characterization of the first precious-metal borosulfate. Eur. J. Inorg. Chem. 2017, 34, 3981–3989. [Google Scholar] [CrossRef]
- Schönegger, S.; Bruns, J.; Gartner, B.; Wurst, K.; Liedl, K.; Huppertz, H. Synthesis and characterization of the first lead(II) borosulfate Pb[B2(SO4)4]. Z. Allg. Anorg. Chem. 2018, 644, 1702–1706. [Google Scholar] [CrossRef] [Green Version]
- Bruns, J.; Podewitz, M.; Schauperl, M.; Joachim, B.; Liedl, K.; Huppertz, H. CaB2S4O16: A borosulfate exhibiting a new structure type with phyllosilicate topology. Chem. Eur. J. 2017, 23, 16773–16781. [Google Scholar] [CrossRef]
- Daub, M.; Hillebrecht, H. Borosulfates Cs2B2S3O13, Rb4B2S4O17, and A3HB4S2O14 (A= Rb, Cs)—Crystalline Approximants for Vitreous B2O3? Eur. J. Inorg. Chem. 2015, 2015, 4176–4181. [Google Scholar] [CrossRef]
- Daub, M.; Höppe, H.A.; Hillebrecht, H. Further New Borosulfates: Synthesis, crystal Structure, and vibrational spectra of A[B(SO4)2] (A = Na, K, NH4) and the crystal structures of Li5[B(SO4)4] and NH4[B(S2O7)2]. Z. Anorg. Allg. Chem. 2014, 640, 2914–2921. [Google Scholar] [CrossRef]
- Daub, M.; Kazmierczak, K.; Höppe, H.A.; Hillebrecht, H. The borosulfate story goes on-From alkali and oxonium salts to polyacids. Chem. Eur. J. 2013, 19, 16954–16962. [Google Scholar] [CrossRef] [PubMed]
- Logemann, C.; Wickleder, M.S. B2S2O9—A boron sulfate with phyllosilicate topology. Angew. Chem. Int. Ed. 2013, 52, 14229–14232. [Google Scholar] [CrossRef]
- Netzsch, P.; Gross, P.; Takahashi, H.; Höppe, H.A. Synthesis and characterization of the first borosulfates of magnesium, manganese, cobat nickel, and zinc. Inorg. Chem. 2018, 57, 8530–8539. [Google Scholar] [CrossRef]
- Daub, M.; Kazmierczak, K.; Gross, P.; Höppe, H.A.; Hillebrecht, H. Exploring a New Structure Family: Alkali Borosulfates Na5[B(SO4)4], A3[B(SO4)3] (A = K, Rb), Li[B(SO4)2], and Li[B(S2O7)2]. Inorg. Chem. 2013, 52, 6011–6020. [Google Scholar] [CrossRef]
- CSD-434487. Available online: www.ccdc.cam.ac.uk/structures (accessed on 11 December 2019).
- Mairesse, G.; Drache, M. The Crystal Structure of Potassium Tetraehlorosulfatoborate, K[B(SO3Cl)4]. Acta Cryst. 1978, 34, 1771–1776. [Google Scholar] [CrossRef]
- Marsch, R.E. Potassium tetrachlorosulfatoborate: Change in space group. Acta Cryst. 1980, 36, 219–220. [Google Scholar] [CrossRef]
- Mairesse, G.; Drache, M. Lithium Tetrakis(chlorosulfato)borate. Acta Cryst. 1980, 36, 2767–2768. [Google Scholar] [CrossRef]
- Ruchkina, E.A.; Belokoneva, E.L. Structural Features of Pb, Fe, and Alkali Metal Borophosphates as analysed in terms of topologically similar structural blocks. Russ. J. Inorg. Chem. 2003, 48, 1812–1821. [Google Scholar]
- Kniep, R.; Schäfer, G.; Engelhardt, G.; Boy, I. K[ZnBP2O8] and A[ZnBP2O8] (A = NH4+, Rb+, Cs+): Zincoborophosphates as a New Class of Compounds with Tetrahedral Framework Structures. Angew. Chem. Int. Ed. 1999, 38, 3642–3644. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Cryst. 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- TOPAS4.2; Bruker: Karlsruhe, Germany, 2009.
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. Sect. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SADABS 2014/5; University of Göttingen: Gottingen, Germany, 1996. [Google Scholar]
Sum formula | Mn[B2(SO4)4] | Zn[B2(SO4)4] |
---|---|---|
Formula weight | 460.80 | 471.23 |
Temperature/K | 173(2) | 183(2) |
Crystal system | monoclinic | monoclinic |
Space group | P21/n | P21/n |
a/Å | 8.0435(4) | 7.8338(4) |
b/Å | 7.9174(4) | 8.0967(4) |
c/Å | 9.3082(4) | 9.0399(4) |
β/° | 110.94(1) | 111.26(1) |
Volume/Å3 | 553.63(5) | 534.36(5) |
Z | 2 | 2 |
ρcalc/g/cm3 | 2.764 | 2.929 |
μ/mm−1 | 2.052 | 3.189 |
F(000) | 454 | 464 |
Crystal size/mm3 | 0.07 × 0.055 × 0.03 | 0.5 × 0.3 × 0.11 |
Radiation | Mo-Kα1 (λ = 0.71073) | Mo-Kα1 (λ = 0.71073) |
2Θ range for data collection/° | 5.76 to 82.54 | 5.91 to 78.95 |
Index ranges | −14 ≤ h ≤ 14, −14 ≤ k ≤ 14, −17 ≤ l ≤ 17 | −14 ≤ h ≤ 13, −14 ≤ k ≤ 14, −16 ≤ l ≤ 16 |
Reflections collected | 58531 | 26941 |
Independent reflections | 3710 [Rint = 0.0417, Rsigma = 0.0169] | 3202 [Rint = 0.0278, Rsigma = 0.0151] |
Data/restraints/parameters | 3710/0/106 | 3202/0/107 |
Goodness-of-fit on F2 | 1.078 | 1.110 |
Final R indexes [I ≥ 2σ(Io)] | R1 = 0.0209, wR2 = 0.0534 | R1 = 0.0168, wR2 = 0.0460 |
Final R indexes [all data] | R1 = 0.0271, wR2 = 0.0553 | R1 = 0.0186, wR2 = 0.0468 |
Largest diff. peak/hole/eÅ−3 | 0.48/−0.61 | 0.64/−0.46 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasqualini, L.C.; Huppertz, H.; Bruns, J. M[B2(SO4)4] (M = Mn, Zn)—Syntheses and Crystal Structures of Two New Phyllosilicate Analogue Borosulfates. Inorganics 2019, 7, 145. https://doi.org/10.3390/inorganics7120145
Pasqualini LC, Huppertz H, Bruns J. M[B2(SO4)4] (M = Mn, Zn)—Syntheses and Crystal Structures of Two New Phyllosilicate Analogue Borosulfates. Inorganics. 2019; 7(12):145. https://doi.org/10.3390/inorganics7120145
Chicago/Turabian StylePasqualini, Leonard C., Hubert Huppertz, and Jörn Bruns. 2019. "M[B2(SO4)4] (M = Mn, Zn)—Syntheses and Crystal Structures of Two New Phyllosilicate Analogue Borosulfates" Inorganics 7, no. 12: 145. https://doi.org/10.3390/inorganics7120145
APA StylePasqualini, L. C., Huppertz, H., & Bruns, J. (2019). M[B2(SO4)4] (M = Mn, Zn)—Syntheses and Crystal Structures of Two New Phyllosilicate Analogue Borosulfates. Inorganics, 7(12), 145. https://doi.org/10.3390/inorganics7120145