Photophysical and Electrocatalytic Properties of Rhenium(I) Triazole-Based Complexes
Abstract
:1. Introduction
2. Results
2.1. Ligand Synthesis and Characterization
2.2. Cyclic Voltammetry
2.3. Electronic Structure
2.4. CO2 Electroreduction
3. Experimental Section
3.1. Synthesis of [Re(pymtz)(CO)3Cl (2)
3.2. Synthesis of [Re(pyztz)(CO)3Cl] (3)
3.3. Electrochemistry
3.4. Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kuramochi, Y.; Ishitani, O.; Ishida, H. Reaction mechanisms of catalytic photochemical CO2 reduction using Re(I) and Ru(II) complexes. Coord. Chem. Rev. 2018, 373, 333–356. [Google Scholar] [CrossRef]
- Sinopoli, A.; La Porte, N.T.; Wasielewski, M.R.; Sohail, M. Photosensitisers for CO2 photoreduction: From metal complexes to rylenes, an overview. In Organometallic Chemistry; Royal Society of Chemistry: London, UK, 2019; Volume 42, pp. 80–124. [Google Scholar]
- Takeda, H.; Ishitani, O. Development of efficient photocatalytic systems for CO2 reduction using mononuclear and multinuclear metal complexes based on mechanistic studies. Coord. Chem. Rev. 2010, 254, 346–354. [Google Scholar] [CrossRef]
- Windle, C.D.; Perutz, R.N. Advances in molecular photocatalytic and electrocatalytic CO2 reduction. Coord. Chem. Rev. 2012, 256, 2562–2570. [Google Scholar] [CrossRef]
- Crowley, J.D.; McMorran, D.A. “Click-triazole” coordination chemistry: Exploiting 1,4-disubstituted-1,2,3-triazoles as ligands. Top. Heterocycl. Chem. 2012, 28, 31–83. [Google Scholar] [CrossRef]
- Elliott, P.I.P. Chapter 1 Organometallic complexes with 1,2,3-triazole-derived ligands. In Organometallic Chemistry; The Royal Society of Chemistry: London, UK, 2014; Volume 39, pp. 1–25. [Google Scholar]
- Scattergood, P.A.; Elliott, P.I.P. An unexpected journey from highly tunable phosphorescence to novel photochemistry of 1,2,3-triazole-based complexes. Dalton Trans. 2017, 46, 16343–16356. [Google Scholar] [CrossRef] [PubMed]
- Scattergood, P.A.; Sinopoli, A.; Elliott, P.I.P. Photophysics and photochemistry of 1,2,3-triazole-based complexes. Coord. Chem. Rev. 2017, 350, 136–154. [Google Scholar] [CrossRef]
- Bertrand, H.C.; Clede, S.; Guillot, R.; Lambert, F.; Policar, C. Luminescence Modulations of Rhenium Tricarbonyl Complexes Induced by Structural Variations. Inorg. Chem. 2014, 53, 6204–6223. [Google Scholar] [CrossRef]
- Boulay, A.; Seridi, A.; Zedde, C.; Ladeira, S.; Picard, C.; Maron, L.; Benoist, E. Tricarbonyl Re(I) Complexes from Functionalised Pyridine-Triazole Derivatives: From Mononuclear to Unexpected Dimeric Complexes. Eur. J. Inorg. Chem. 2010, 5058–5062. [Google Scholar] [CrossRef]
- Elliott, A.B.S.; Lewis, J.E.M.; van der Salm, H.; McAdam, C.J.; Crowley, J.D.; Gordon, K.C. Luminescent Cages: Pendant Emissive Units on [Pd2L4]4+ “Click” Cages. Inorg. Chem. 2016, 55, 3440–3447. [Google Scholar] [CrossRef]
- He, M.; Ching, H.Y.V.; Policar, C.; Bertrand, H.C. Rhenium tricarbonyl complexes with arenethiolate axial ligands. New J. Chem. 2018, 42, 11312–11323. [Google Scholar] [CrossRef]
- Kim, T.Y.; Elliott, A.B.S.; Shaffer, K.J.; John McAdam, C.; Gordon, K.C.; Crowley, J.D. Rhenium(I) complexes of readily functionalized bidentate pyridyl-1,2,3-triazole click ligands: A systematic synthetic, spectroscopic and computational study. Polyhedron 2013, 52, 1391–1398. [Google Scholar] [CrossRef]
- Lewis, J.E.M.; Elliott, A.B.S.; McAdam, C.J.; Gordon, K.C.; Crowley, J.D. “Click” to functionalise: Synthesis, characterisation and enhancement of the physical properties of a series of exo- and endo-functionalised Pd2L4 nanocages. Chem. Sci. 2014, 5, 1833–1843. [Google Scholar] [CrossRef]
- Lo, W.K.C.; Huff, G.S.; Cubanski, J.R.; Kennedy, A.D.W.; McAdam, C.J.; McMorran, D.A.; Gordon, K.C.; Crowley, J.D. Comparison of Inverse and Regular 2-Pyridyl-1,2,3-triazole “Click” Complexes: Structures, Stability, Electrochemical, and Photophysical Properties. Inorg. Chem. 2015, 54, 1572–1587. [Google Scholar] [CrossRef] [PubMed]
- Obata, M.; Kitamura, A.; Mori, A.; Kameyama, C.; Czaplewska, J.A.; Tanaka, R.; Kinoshita, I.; Kusumoto, T.; Hashimoto, H.; Harada, M.; et al. Syntheses, structural characterization and photophysical properties of 4-(2-pyridyl)-1,2,3-triazole rhenium(I) complexes. Dalton Trans. 2008, 3292–3300. [Google Scholar] [CrossRef]
- Suntrup, L.; Klenk, S.; Klein, J.; Sobottka, S.; Sarkar, B. Gauging Donor/Acceptor Properties and Redox Stability of Chelating Click-Derived Triazoles and Triazolylidenes: A Case Study with Rhenium(I) Complexes. Inorg. Chem. 2017, 56, 5771–5783. [Google Scholar] [CrossRef]
- Wang, J.; Delavaux-Nicot, B.; Wolff, M.; Mallet-Ladeira, S.; Metivier, R.; Benoist, E.; Fery-Forgues, S. The unsuspected influence of the pyridyl-triazole ligand isomerism upon the electronic properties of tricarbonyl rhenium complexes: An experimental and theoretical insight. Dalton Trans. 2018, 47, 8087–8099. [Google Scholar] [CrossRef]
- Wolff, M.; Munoz, L.; Francois, A.; Carrayon, C.; Seridi, A.; Saffon, N.; Picard, C.; Machura, B.; Benoist, E. Tricarbonylrhenium complexes from 2-pyridyl-1,2,3-triazole ligands bearing a 4-substituted phenyl arm: A combined experimental and theoretical study. Dalton Trans. 2013, 42, 7019–7031. [Google Scholar] [CrossRef]
- Uppal, B.S.; Booth, R.K.; Ali, N.; Lockwood, C.; Rice, C.R.; Elliott, P.I.P. Synthesis and characterisation of luminescent rhenium tricarbonyl complexes with axially coordinated 1,2,3-triazole ligands. Dalton Trans. 2011, 40, 7610–7616. [Google Scholar] [CrossRef]
- Aimene, Y.; Eychenne, R.; Mallet-Ladeira, S.; Saffon, N.; Winum, J.-Y.; Nocentini, A.; Supuran, C.T.; Benoist, E.; Seridi, A. Novel Re(I) tricarbonyl coordination compounds based on 2-pyridyl-1,2,3-triazole derivatives bearing a 4-amino-substituted benzenesulfonamide arm: Synthesis, crystal structure, computational studies and inhibitory activity against carbonic anhydrase I, II, and IX isoforms. J. Enzyme Inhib. Med. Chem. 2019, 34, 773–782. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.V.; Lo, W.K.C.; Brooks, H.J.L.; Hanton, L.R.; Crowley, J.D. Antimicrobial Properties of Mono- and Di-fac-rhenium Tricarbonyl 2-Pyridyl-1,2,3-triazole Complexes†. Aust. J. Chem. 2016, 69, 489–498. [Google Scholar] [CrossRef] [Green Version]
- Seridi, A.; Wolff, M.; Boulay, A.; Saffon, N.; Coulais, Y.; Picard, C.; Machura, B.; Benoist, E. Rhenium(I) and technetium(I) complexes of a novel pyridyltriazole-based ligand containing an arylpiperazine pharmacophore: Synthesis, crystal structures, computational studies and radiochemistry. Inorg. Chem. Commun. 2011, 14, 238–242. [Google Scholar] [CrossRef]
- Czaplewska, J.A.; Theil, F.; Altuntas, E.; Niksch, T.; Freesmeyer, M.; Happ, B.; Pretzel, D.; Schaefer, H.; Obata, M.; Yano, S.; et al. Glycoconjugated Rhenium(I) and 99m-Technetium(I) Carbonyl Complexes from Pyridyltriazole Ligands Obtained by “Click Chemistry”. Eur. J. Inorg. Chem. 2014, 2014, 6290–6297. [Google Scholar] [CrossRef]
- Fernandez, E.; Rodriguez, G.; Hostachy, S.; Clede, S.; Cocera, M.; Sandt, C.; Lambert, F.; de la Maza, A.; Policar, C.; Lopez, O. A rhenium tris-carbonyl derivative as a model molecule for incorporation into phospholipid assemblies for skin applications. Colloids Surf. B 2015, 131, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Clede, S.; Delsuc, N.; Laugel, C.; Lambert, F.; Sandt, C.; Baillet-Guffroy, A.; Policar, C. An easy-to-detect nona-arginine peptide for epidermal targeting. Chem. Commun. 2015, 51, 2687–2689. [Google Scholar] [CrossRef] [PubMed]
- Clede, S.; Lambert, F.; Saint-Fort, R.; Plamont, M.-A.; Bertrand, H.; Vessieres, A.; Policar, C. Influence of the Side-Chain Length on the Cellular Uptake and the Cytotoxicity of Rhenium Triscarbonyl Derivatives: A Bimodal Infrared and Luminescence Quantitative Study. Chem. Eur. J. 2014, 20, 8714–8722. [Google Scholar] [CrossRef]
- Clede, S.; Lambert, F.; Sandt, C.; Gueroui, Z.; Refregiers, M.; Plamont, M.-A.; Dumas, P.; Vessieres, A.; Policar, C. A rhenium tris-carbonyl derivative as a single core multimodal probe for imaging (SCoMPI) combining infrared and luminescent properties. Chem. Commun. 2012, 48, 7729–7731. [Google Scholar] [CrossRef]
- Clede, S.; Lambert, F.; Sandt, C.; Kascakova, S.; Unger, M.; Harte, E.; Plamont, M.-A.; Saint-Fort, R.; Deniset-Besseau, A.; Gueroui, Z.; et al. Detection of an estrogen derivative in two breast cancer cell lines using a single core multimodal probe for imaging (SCoMPI) imaged by a panel of luminescent and vibrational techniques. Analyst 2013, 138, 5627–5638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francois, A.; Auzanneau, C.; Le Morvan, V.; Galaup, C.; Godfrey, H.S.; Marty, L.; Boulay, A.; Artigau, M.; Mestre-Voegtle, B.; Leygue, N.; et al. A functionalized heterobimetallic 99mTc/Re complex as a potential dual-modality imaging probe: Synthesis, photophysical properties, cytotoxicity and cellular imaging investigations. Dalton Trans. 2014, 43, 439–450. [Google Scholar] [CrossRef]
- Henry, L.; Delsuc, N.; Laugel, C.; Lambert, F.; Sandt, C.; Hostachy, S.; Bernard, A.-S.; Bertrand, H.C.; Grimaud, L.; Baillet-Guffroy, A.; et al. Labeling of Hyaluronic Acids with a Rhenium-tricarbonyl Tag and Percutaneous Penetration Studied by Multimodal Imaging. Bioconjugate Chem. 2018, 29, 987–991. [Google Scholar] [CrossRef]
- Hostachy, S.; Swiecicki, J.M.; Sandt, C.; Delsuc, N.; Policar, C. Photophysical properties of single core multimodal probe for imaging (SCoMPI) in a membrane model and in cells. Dalton Trans. 2016, 45, 2791–2795. [Google Scholar] [CrossRef] [Green Version]
- Marty, L.; Francois, A.; Krachko, T.; Galaup, C.; Picard, C.; Amirkhanov, V.M.; Benoist, E. Ternary rhenium(I) complexes: From fluorescent reporters to interesting scaffolds for dual-imaging heterobimetallic probes. Fr.-Ukr. J. Chem. 2013, 1, 148–152. [Google Scholar]
- Mattson, E.C.; Unger, M.; Clede, S.; Lambert, F.; Policar, C.; Imtiaz, A.; D’Souza, R.; Hirschmugl, C.J. Toward optimal spatial and spectral quality in widefield infrared spectromicroscopy of IR labelled single cells. Analyst 2013, 138, 5610–5618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ching, H.Y.V.; Wang, X.; He, M.; Perujo Holland, N.; Guillot, R.; Slim, C.; Griveau, S.; Bertrand, H.C.; Policar, C.; Bedioui, F.; et al. Rhenium complexes based on 2-pyridyl-1,2,3-triazole ligands: A new class of CO2 reduction catalysts. Inorg. Chem. 2017, 56, 2966–2976. [Google Scholar] [CrossRef] [PubMed]
- Scattergood, P.A.; Ranieri, A.M.; Charalambou, L.; Comia, A.; Ross, D.A.W.; Rice, C.R.; Hardman, S.J.O.; Heully, J.-L.; Dixon, I.M.; Massi, M.; et al. Unravelling the Mechanism of Excited-State Interligand Energy Transfer and the Engineering of Dual Emission in [Ir(C∧N)2(N∧N)]+ Complexes. Inorg. Chem. 2020, 59, 1785–1803. [Google Scholar] [CrossRef] [PubMed]
- Scattergood, P.A.; Roberts, J.; Omar, S.A.E.; Elliott, P.I.P. Observation of an inversion in photophysical tuning in a systematic study of luminescent triazole-based osmium(II) complexes. Inorg. Chem. 2019, 58, 8607–8621. [Google Scholar] [CrossRef]
- Smieja, J.M.; Kubiak, C.P. Re(bipy-tBu)(CO)3Cl-improved Catalytic Activity for Reduction of Carbon Dioxide: IR-Spectroelectrochemical and Mechanistic Studies. Inorg. Chem. 2010, 49, 9283–9289. [Google Scholar] [CrossRef]
- Roell, S.A.; Schrage, B.R.; Ziegler, C.J.; White, T.A. Isolating substituent effects in Re(I)-phenanthroline electrocatalysts for CO2 reduction. Inorg. Chim. Acta 2020, 503, 119397. [Google Scholar] [CrossRef]
- Dixon, I.M.; Heully, J.L.; Alary, F.; Elliott, P.I.P. Theoretical illumination of highly original photoreactive 3MC states and the mechanism of the photochemistry of Ru(II) tris(bidentate) complexes. Phys. Chem. Chem. Phys. 2017, 19, 27765–27778. [Google Scholar] [CrossRef]
- Scattergood, P.A.; Khushnood, U.; Tariq, A.; Cooke, D.J.; Rice, C.R.; Elliott, P.I.P. Photochemistry of [Ru(pytz)(btz)2]2+ and Characterization of a κ1-btz Ligand-Loss Intermediate. Inorg. Chem. 2016, 55, 7787–7796. [Google Scholar] [CrossRef]
- Welby, C.E.; Armitage, G.K.; Bartley, H.; Sinopoli, A.; Uppal, B.S.; Elliott, P.I.P. Photochemical ligand ejection from non-sterically promoted Ru(II)bis(diimine) 4,4′-bi-1,2,3-triazolyl complexes. Photochem. Photobiol. Sci. 2014, 13, 735–738. [Google Scholar] [CrossRef] [Green Version]
- Welby, C.E.; Armitage, G.K.; Bartley, H.; Wilkinson, A.; Sinopoli, A.; Uppal, B.S.; Rice, C.R.; Elliott, P.I.P. Photochemistry of Ru(II) 4,4′-Bi-1,2,3-triazolyl (btz) complexes: Crystallographic characterization of the photoreactive ligand-loss intermediate trans-[Ru(bpy)(κ2-btz)(κ1-btz) (NCMe)]2+. Chem. Eur. J. 2014, 20, 8467–8476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welby, C.E.; Rice, C.R.; Elliott, P.I.P. Unambiguous characterization of a photoreactive ligand-loss intermediate. Angew. Chem. Int. Ed. 2013, 52, 10826–10829. [Google Scholar] [CrossRef] [PubMed]
- Ross, D.A.W.; Scattergood, P.A.; Babaei, A.; Pertegás, A.; Bolink, H.J.; Elliott, P.I.P. Luminescent osmium(II) bi-1,2,3-triazol-4-yl complexes: Photophysical characterisation and application in light-emitting electrochemical cells. Dalton Trans. 2016, 45, 7748–7757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scattergood, P.A.; Ross, D.A.W.; Rice, C.R.; Elliott, P.I.P. Labilizing the Photoinert: Extraordinarily Facile Photochemical Ligand Ejection in an [Os(N^N)3]2+Complex. Angew. Chem. Int. Ed. 2016, 55, 10697–10701. [Google Scholar] [CrossRef] [Green Version]
- Monkowius, U.; Ritter, S.; König, B.; Zabel, M.; Yersin, H. Synthesis, Characterisation and Ligand Properties of Novel Bi-1,2,3-triazole Ligands. Eur. J. Inorg. Chem. 2007, 2007, 4597–4606. [Google Scholar] [CrossRef]
- Donato, L.; Abel, P.; Zysman-Colman, E. Cationic iridium(III) complexes bearing a bis(triazole) ancillary ligand. Dalton Trans. 2013, 42, 8402–8412. [Google Scholar] [CrossRef]
- Chrzanowska, M.; Katafias, A.; Impert, O.; Kozakiewicz, A.; Surdykowski, A.; Brzozowska, P.; Franke, A.; Zahl, A.; Puchta, R.; van Eldik, R. Structure and reactivity of [Ru(II)(terpy)(N^N)Cl]Cl complexes: Consequences for biological applications. Dalton Trans. 2017, 46, 10264–10280. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.F.; La Porte, N.T.; Chaudhuri, S.; Sinopoli, A.; Bae, Y.J.; Sohail, M.; Batista, V.S.; Wasielewski, M.R. Effect of Electronic Coupling on Electron Transfer Rates from Photoexcited Naphthalenediimide Radical Anion to Re(bpy)(CO)3X. J. Phys. Chem. C 2019, 123, 10178–10190. [Google Scholar] [CrossRef]
- Machan, C.W.; Chabolla, S.A.; Kubiak, C.P. Reductive Disproportionation of Carbon Dioxide by an Alkyl-Functionalized Pyridine Monoimine Re(I) fac-Tricarbonyl Electrocatalyst. Organometallics 2015, 34, 4678–4683. [Google Scholar] [CrossRef]
- Lee, H.M.; Youn, I.S.; Saleh, M.; Lee, J.W.; Kim, K.S. Interactions of CO2 with various functional molecules. Phys. Chem. Chem. Phys. 2015, 17, 10925–10933. [Google Scholar] [CrossRef] [Green Version]
- Lim, C.-H.; Holder, A.M.; Musgrave, C.B. Mechanism of Homogeneous Reduction of CO2 by Pyridine: Proton Relay in Aqueous Solvent and Aromatic Stabilization. J. Am. Chem. Soc. 2013, 135, 142–154. [Google Scholar] [CrossRef] [PubMed]
- Smieja, J.M.; Sampson, M.D.; Grice, K.A.; Benson, E.E.; Froehlich, J.D.; Kubiak, C.P. Manganese as a Substitute for Rhenium in CO2 Reduction Catalysts: The Importance of Acids. Inorg. Chem. 2013, 52, 2484–2491. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef] [PubMed]
- Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef] [Green Version]
Complex | Eox/V | Ered/V | (ic/ip)2 |
---|---|---|---|
1 | +0.99 | −2.12 | 13 |
2 | +1.05 | −1.89 | 8 |
3 | +1.06 | −1.56, −2.02 | 5 |
Complex | λabs/nm (ε/mol−1 dm3 cm−1) | λmaxem | τ/ns a | Φ/% a,c | |
---|---|---|---|---|---|
R.T. a | 77 K b | ||||
1 | 335 (3865), 296 (7690), 271 (11,530), 243 (18,150) | 540 d | 485 | 43 | 0.24 |
2 | 340 (3640), 268 (12,500), 247 (21,520) | 572 e | 505 | 55 | 0.25 |
3 | 371 (3640), 312 (8370), 285 (10,340), 231 (24,870) | 638 f | 545 | 92 | 0.38 |
Complex | HOMO E/eV | LUMO E/eV | ∆E/eV |
---|---|---|---|
1 | −6.35 | −2.32 | 4.02 |
2 | −6.46 | −2.57 | 3.89 |
3 | −6.42 | −2.85 | 3.57 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Comia, A.; Charalambou, L.; Omar, S.A.E.; Scattergood, P.A.; Elliott, P.I.P.; Sinopoli, A. Photophysical and Electrocatalytic Properties of Rhenium(I) Triazole-Based Complexes. Inorganics 2020, 8, 22. https://doi.org/10.3390/inorganics8030022
Comia A, Charalambou L, Omar SAE, Scattergood PA, Elliott PIP, Sinopoli A. Photophysical and Electrocatalytic Properties of Rhenium(I) Triazole-Based Complexes. Inorganics. 2020; 8(3):22. https://doi.org/10.3390/inorganics8030022
Chicago/Turabian StyleComia, Adrian, Luke Charalambou, Salem A. E. Omar, Paul A. Scattergood, Paul I. P. Elliott, and Alessandro Sinopoli. 2020. "Photophysical and Electrocatalytic Properties of Rhenium(I) Triazole-Based Complexes" Inorganics 8, no. 3: 22. https://doi.org/10.3390/inorganics8030022
APA StyleComia, A., Charalambou, L., Omar, S. A. E., Scattergood, P. A., Elliott, P. I. P., & Sinopoli, A. (2020). Photophysical and Electrocatalytic Properties of Rhenium(I) Triazole-Based Complexes. Inorganics, 8(3), 22. https://doi.org/10.3390/inorganics8030022