Polymer Coated Semiconducting Nanoparticles for Hybrid Materials
Abstract
1. Introduction
2. Concepts for the Functionalization of Inorganic Nanoparticles to Improve Their Solubility and Processability
3. Controlling Orientation, Dispersion, and Percolation of Inorganic Nanoparticles in a Polymer Matrix
4. QD-LEDs
5. Summary
Funding
Acknowledgments
Conflicts of Interest
References
- Vaia, R.A.; Wagner, H.D. Framework for nanocomposites. Mater. Today 2004, 7, 32–37. [Google Scholar] [CrossRef]
- Bolhuis, P.G.; Kofke, D.A. Monte carlo study of freezing of polydisperse hard spheres. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 1996, 54, 634–643. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, P.; Warren, P.B. Reentrant melting in polydispersed hard spheres. Phys. Rev. Lett. 1999, 82, 1979–1982. [Google Scholar] [CrossRef]
- Fleischhaker, F.; Zentel, R. Photonic crystals from core-shell colloids with incorporated highly fluorescent quantum dots. Chem. Mater. 2005, 17, 1346–1351. [Google Scholar] [CrossRef]
- Stegemeyer, H.; Behret, H. (Eds.) Liquid Crystals; Steinkopff: Heidelberg, Germany, 1994. [Google Scholar] [CrossRef]
- Demus, D.; Goodby, J.; Gray, G.W.; Spiess, H.-W.; Vill, V. Handbook of Liquid Crystals; Wiley: Hoboken, NJ, USA, 1998. [Google Scholar] [CrossRef]
- Fischer, S.; Salcher, A.; Kornowski, A.; Weller, H.; Förster, S. Completely miscible nanocomposites. Angew. Chem. Int. Ed. 2011, 50, 7811–7814. [Google Scholar] [CrossRef] [PubMed]
- Israelachvili, J. Intermolecular and Surface Forces, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Ehlert, S.; Taheri, S.M.; Pirner, D.; Drechsler, M.; Schmidt, H.-W.; Förster, S. Polymer ligand exchange to control stabilization and compatibilization of nanocrystals. ACS Nano 2014, 8, 6114–6122. [Google Scholar] [CrossRef]
- Butt, H.-J.; Kappl, M. Surface and Interfacial Forces 2e; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2018. [Google Scholar] [CrossRef]
- Bredol, M.; Matras, K.; Szatkowski, A.; Sanetra, J.; Prodi-Schwab, A. P3HT/ZnS: A New hybrid bulk heterojunction photovoltaic system with very high open circuit voltage. Sol. Energy Mater. Sol. Cells 2009, 93, 662–666. [Google Scholar] [CrossRef]
- Guchhait, A.; Rath, A.K.; Pal, A.J. To make polymer: Quantum dot hybrid solar cells NIR-active by increasing diameter of PbSnanoparticles. Sol. Energy Mater. Sol. Cells 2011, 95, 651–656. [Google Scholar] [CrossRef]
- Ren, S.; Chang, L.Y.; Lim, S.K.; Zhao, J.; Smith, M.; Zhao, N.; Bulović, V.; Bawendi, M.; Gradečak, S. Inorganic-organic hybrid solar cell: Bridging quantum dots to conjugated polymer nanowires. Nano Lett. 2011, 11, 3998–4002. [Google Scholar] [CrossRef]
- Ballauff, M. Stiff-Chain Polymers-Structure, Phase Behaviour, and Properties. Angew. Chem. Int. Ed. 1989, 59, 253–267. [Google Scholar] [CrossRef]
- Li, L.S.; Walda, J.; Manna, L.; Alivisatos, A.P. Semiconductor nanorod liquid crystals. Nano Lett. 2002, 2. [Google Scholar] [CrossRef]
- Jana, N.R. Nanorod shape separation using surfactant assisted self-assembly. Chem. Commun. 2003, 9, 1950–1951. [Google Scholar] [CrossRef] [PubMed]
- Lemaire, B.J.; Davidson, P.; Ferré, J.; Jamet, J.P.; Petermann, D.; Panine, P.; Dozov, I.; Stoenescu, D.; Jolivet, J.P. The complex phase behaviour of suspensions of goethite (α-FeOOH) nanorods in a magnetic field. Faraday Discuss. 2005, 128, 271–283. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Alonso, M.; McCarthy, T.J. Chemical surface modification of Poly(p-Xylylene) thin films. Langmuir 2004, 20, 9184–9189. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.X.; Van Duijneveldt, J.S. Isotropic-nematic phase transition of nonaqueous suspensions of natural clay rods. J. Chem. Phys. 2006, 124. [Google Scholar] [CrossRef]
- Meuer, S.; Oberle, P.; Theato, P.; Tremel, W.; Zentel, R. Liquid crystalline phases from polymer-functionalized TiO2 nanorods. Adv. Mater. 2007, 19, 2073–2078. [Google Scholar] [CrossRef]
- Zorn, M.; Meuer, S.; Tahir, M.N.; Khalavka, Y.; Sönnichsen, C.; Tremel, W.; Zentel, R. Liquid crystalline phases from polymer functionalised semiconducting nanorods. J. Mater. Chem. 2008, 18, 3050–3058. [Google Scholar] [CrossRef]
- Van Bruggen, M.P.B.; Van Der Kooij, F.M.; Lekkerkerker, H.N.W. Liquid crystal phase transitions in dispersions of rod-like colloidal particles. J. Phys. Condens. Matter 1996, 8, 9451–9456. [Google Scholar] [CrossRef]
- Van Der Beek, D.; Reich, H.; Van Der Schoot, P.; Dijkstra, M.; Schilling, T.; Vink, R.; Schmidt, M.; Van Roij, R.; Lekkerkerker, H. Isotropic-nematic interface and wetting in suspensions of colloidal platelets. Phys. Rev. Lett. 2006, 97, 3–6. [Google Scholar] [CrossRef]
- Mathias, F.; Fokina, A.; Landfester, K.; Tremel, W.; Schmid, F.; Char, K.; Zentel, R. Morphology control in biphasic hybrid systems of semiconducting materials. Macromol. Rapid Commun. 2015, 36, 959–983. [Google Scholar] [CrossRef]
- Fokina, A.; Lee, Y.; Chang, J.H.; Park, M.; Sung, Y.; Bae, W.K.; Char, K.; Lee, C.; Zentel, R. The role of emission layer morphology on the enhanced performance of light-emitting diodes based on quantum dot-semiconducting polymer hybrids. Adv. Mater. Interfaces 2016, 3, 1–9. [Google Scholar] [CrossRef]
- Skaff, H.; Ilker, M.F.; Coughlin, E.B.; Emrick, T. Preparation of cadmium selenide-polyolefin composites from functional phosphine oxides and ruthenium-based metathesis. J. Am. Chem. Soc. 2002, 124, 5729–5733. [Google Scholar] [CrossRef] [PubMed]
- Javier, A.; Yun, C.S.; Sorena, J.; Strouse, G.F. Energy transport in CdSe nanocrystals assembled with molecular wires. J. Phys. Chem. B 2003, 107, 435–442. [Google Scholar] [CrossRef]
- Sill, K.; Emrick, T. Nitroxide-mediated radical polymerization from CdSe nanoparticles. Chem. Mater. 2004, 16, 1240–1243. [Google Scholar] [CrossRef]
- Skaff, H.; Emrick, T. Reversible addition fragmentation chain transfer (RAFT) polymerization from unprotected cadmium selenide nanoparticles. Angew. Chem. Int. Ed. 2004, 43, 5383–5386. [Google Scholar] [CrossRef] [PubMed]
- Esteves, A.C.C.; Bombalski, L.; Trindade, T.; Matyjaszewski, K.; Barros-Timmons, A. Polymer grafting from CdS quantum dots via AGET ATRP in miniemulsion. Small 2007, 3, 1230–1236. [Google Scholar] [CrossRef]
- Zhang, Q.; Russell, T.P.; Emrick, T. Synthesis and characterization of CdSe nanorods functionalized with regioregular Poly(3-Hexylthiophene). Chem. Mater. 2007, 19, 3712–3716. [Google Scholar] [CrossRef]
- Sih, B.C.; Wolf, M.O. CdSe nanorods functionalized with thiol-anchored oligothiophenes. J. Phys. Chem. C 2007, 111, 17184–17192. [Google Scholar] [CrossRef]
- Sudeep, P.K.; Early, K.T.; McCarthy, K.D.; Odoi, M.Y.; Barnes, M.D.; Emrick, T. Monodisperse oligo (Phenylene vinylene) ligands on CdSe quantum dots: Synthesis and polarization anisotropy measurements. J. Am. Chem. Soc. 2008, 130, 2384–2385. [Google Scholar] [CrossRef]
- Huang, Y.-C.; Hsu, J.-H.; Liao, Y.-C.; Yen, W.-C.; Li, S.-S.; Lin, S.-T.; Chen, C.-W.; Su, W.-F. Employing an amphiphilic interfacial modifier to enhance the performance of a Poly(3-Hexyl Thiophene)/TiO2 hybrid solar cell. J. Mater. Chem. 2011, 21, 4450. [Google Scholar] [CrossRef]
- Stalder, R.; Xie, D.; Zhou, R.; Xue, J.; Reynolds, J.R.; Schanze, K.S. Variable-gap conjugated oligomers grafted to CdSe nanocrystals. Chem. Mater. 2012, 24, 3143–3152. [Google Scholar] [CrossRef]
- Eberhardt, M.; Théato, P. Raft polymerization of pentafluorophenyl methacrylate: Preparation of reactive linear Diblock copolymers. Macromol. Rapid Commun. 2005, 26, 1488–1493. [Google Scholar] [CrossRef]
- Eberhardt, M.; Mruk, R.; Zentel, R.; Théato, P. Synthesis of pentafluorophenyl(Meth)Acrylate polymers: New precursor polymers for the synthesis of multifunctional materials. Eur. Polym. J. 2005, 41, 1569–1575. [Google Scholar] [CrossRef]
- Lim, J.; Zur Borg, L.; Dolezel, S.; Schmid, F.; Char, K.; Zentel, R. Strategy for good dispersion of well-defined tetrapods in semiconducting polymer matrices. Macromol. Rapid Commun. 2014, 35, 1685–1691. [Google Scholar] [CrossRef] [PubMed]
- Meuer, S.; Fischer, K.; Mey, I.; Janshoff, A.; Schmidt, M.; Zentel, R. Liquid Crystals from Polymer-Functionalized TiO 2 nanorod mesogens. Macromolecules 2008, 41, 7946–7952. [Google Scholar] [CrossRef]
- Akcora, P.; Liu, H.; Kumar, S.K.; Moll, J.; Li, Y.; Benicewicz, B.C.; Schadler, L.S.; Acehan, D.; Panagiotopoulos, A.Z.; Pryamitsyn, V.; et al. Anisotropic self-assembly of spherical polymer-grafted nanoparticles. Nat. Mater. 2009, 8, 354–359. [Google Scholar] [CrossRef]
- Nikolic, M.S.; Olsson, C.; Saldier, A.; Kornowski, A.; Rank, A.; Schubert, R.; Frömsdorf, A.; Weller, H.; Förster, S. Micelle and vesicle formation of amphiphilic nanopartieles. Angew. Chem. Int. Ed. 2009, 48, 2752–2754. [Google Scholar] [CrossRef]
- Manna, L.; Scher, E.C.; Paul Alivisatos, A. Shape control of colloidal semiconductor nanocrystals. J. Clust. Sci. 2002, 13, 521–532. [Google Scholar] [CrossRef]
- Peng, X. Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv. Mater. 2003, 15, 459–463. [Google Scholar] [CrossRef]
- Pellegrino, T.; Manna, L.; Kudera, S.; Liedl, T.; Koktysh, D.; Rogach, A.L.; Keller, S.; Rädler, J.; Natile, G.; Parak, W.J. Hydrophobic nanocrystals coated with an amphiphilic polymer shell: A general route to water soluble nanocrystals. Nano Lett. 2004, 4, 703–707. [Google Scholar] [CrossRef]
- Yin, Y.; Alivisatos, A.P. Colloidal nanocrystal synthesis and the organic–Inorganic interface. Nature 2005, 437, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Wang, J.; Lin, Z. Semiconducting nanocrystals, conjugated polymers, and conjugated polymer/nanocrystal nanohybrids and their usage in solar cells. Front. Chem. China 2010, 5, 33–44. [Google Scholar] [CrossRef]
- Li, L.S.; Alivisatos, A.P. Semiconductor nanorod liquid crystals and their assembly on a substrate. Adv. Mater. 2003, 15, 408–411. [Google Scholar] [CrossRef]
- Ghezelbash, A.; Koo, B.; Korgel, B.A. Self-assembled stripe patterns of CdS nanorods. Nano Lett. 2006, 6, 1832–1836. [Google Scholar] [CrossRef] [PubMed]
- Ryan, K.M.; Mastroianni, A.; Stancil, K.A.; Liu, H.; Alivisatos, A.P. Electric-field-assisted assembly of perpendicularly oriented nanorod superlattices. Nano Lett. 2006, 6, 1479–1482. [Google Scholar] [CrossRef]
- Querner, C.; Fischbein, M.D.; Heiney, P.A.; Drndić, M. Millimeter-scale assembly of CdSe nanorods into smectic superstructures by solvent drying kinetics. Adv. Mater. 2008, 20, 2308–2314. [Google Scholar] [CrossRef]
- Kang, C.C.; Lai, C.W.; Peng, H.C.; Shyue, J.J.; Chou, P.T. 2D self-bundled CdS nanorods with micrometer dimension in the absence of an external directing process. ACS Nano 2008, 2, 750–756. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Regulacio, M.D.; Han, M.Y. Self-assembly of colloidal one-dimensional nanocrystals. Chem. Soc. Rev. 2014, 43, 2301–2323. [Google Scholar] [CrossRef]
- Brus, L.E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409. [Google Scholar] [CrossRef]
- Alivisatos, A.P. Semiconductor clusters, nanocrystals, and quantum dots. Science (80-.) 1996, 271, 933–937. [Google Scholar] [CrossRef]
- Dabbousi, B.O.; Rodriguez-Viejo, J.; Mikulec, F.V.; Heine, J.R.; Mattoussi, H.; Ober, R.; Jensen, K.F.; Bawendi, M.G. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 1997, 101, 9463–9475. [Google Scholar] [CrossRef]
- Schwartz, D.A.; Norberg, N.S.; Nguyen, Q.P.; Parker, J.M.; Gamelin, D.R. Magnetic quantum dots: Synthesis, spectroscopy, and magnetism of Co2+- and Ni2+-doped ZnO nanocrystals. J. Am. Chem. Soc. 2003, 125, 13205–13218. [Google Scholar] [CrossRef] [PubMed]
- Kamat, P.V. Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 2008, 112, 18737–18753. [Google Scholar] [CrossRef]
- Yang, P.; Lieber, C.M. Nanorod-superconductor composites: A pathway to materials with high critical current densities. Science (80-.) 1996, 273, 1836–1840. [Google Scholar] [CrossRef]
- Jun, Y.W.; Lee, S.M.; Kang, N.J.; Cheon, J. Controlled synthesis of multi-armed CdS nanorod architectures using monosurfactant system. J. Am. Chem. Soc. 2001, 123, 5150–5151. [Google Scholar] [CrossRef]
- Greene, L.E.; Law, M.; Tan, D.H.; Montano, M.; Goldberger, J.; Somorjai, G.; Yang, P. General route to vertical Zno nanowire arrays using textured ZnO seeds. Nano Lett. 2005, 5, 1231–1236. [Google Scholar] [CrossRef]
- Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L.M.; Mulvaney, P. Gold nanorods: Synthesis, characterization and applications. Coord. Chem. Rev. 2005, 249, 1870–1901. [Google Scholar] [CrossRef]
- Manna, L.; Scher, E.C.; Alivisatos, A.P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 2000, 122, 12700–12706. [Google Scholar] [CrossRef]
- Manna, L.; Milliron, D.J.; Meisel, A.; Scher, E.C.; Alivisatos, A.P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2003, 2, 382–385. [Google Scholar] [CrossRef]
- Fiore, A.; Mastria, R.; Lupo, M.G.; Lanzani, G.; Giannini, C.; Carlino, E.; Morello, G.; De Giorgi, M.; Li, Y.; Cingolani, R.; et al. Tetrapod-shaped colloidal nanocrystals of II−VI semiconductors prepared by seeded growth. J. Am. Chem. Soc. 2009, 131, 2274–2282. [Google Scholar] [CrossRef]
- Lim, J.; Bae, W.K.; Park, K.U.; Zur Borg, L.; Zentel, R.; Lee, S.; Char, K. Controlled synthesis of CdSe tetrapods with high morphological uniformity by the persistent kinetic growth and the halide-mediated phase transformation. Chem. Mater. 2013, 25, 1443–1449. [Google Scholar] [CrossRef]
- Avis, C.; Jang, J. High-performance solution processed oxide TFT with aluminum oxide gate dielectric fabricated by a sol-gel method. J. Mater. Chem. 2011, 21, 10649–10652. [Google Scholar] [CrossRef]
- Yang, T.; Gordon, Z.D.; Chan, C.K. Synthesis of hyperbranched perovskite nanostructures. Cryst. Growth Des. 2013, 13, 3901–3907. [Google Scholar] [CrossRef]
- Li, H.; Kanaras, A.G.; Manna, L. Colloidal branched semiconductor nanocrystals: State of the art and perspectives. Acc. Chem. Res. 2013, 46, 1387–1396. [Google Scholar] [CrossRef]
- Lauhon, L.J.; Gudiksen, M.S.; Wang, D.; Lieber, C.M. Epitaxial core–shell and core–multishell nanowire heterostructures. Nature 2002, 420, 57–61. [Google Scholar] [CrossRef]
- Milliron, D.; Hughes, S.M.; Cui, Y.; Manna, L.; Li, J.; Wang, L.W.; Alivisatos, A.P. Colloidal nanocrystal heterostructures with linear and branched topology. Nature 2004, 430, 190–195. [Google Scholar] [CrossRef]
- Cho, K.S.; Talapin, D.V.; Gaschler, W.; Murray, C.B. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 2005, 127, 7140–7147. [Google Scholar] [CrossRef]
- Dayal, S.; Kopidakis, N.; Olson, D.C.; Ginley, D.S.; Rumbles, G. Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency. Nano Lett. 2010, 10, 239–242. [Google Scholar] [CrossRef]
- Lee, J.S.; Kovalenko, M.V.; Huang, J.; Chung, D.S.; Talapin, D.V. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat. Nanotechnol. 2011, 6, 348–352. [Google Scholar] [CrossRef]
- Jeltsch, K.F.; Schädel, M.; Bonekamp, J.B.; Niyamakom, P.; Rauscher, F.; Lademann, H.W.A.; Dumsch, I.; Allard, S.; Scherf, U.; Meerholz, K. Efficiency enhanced hybrid solar cells using a blend of quantum dots and nanorods. Adv. Funct. Mater. 2012, 22, 397–404. [Google Scholar] [CrossRef]
- Kang, Y.; Park, N.G.; Kim, D. Hybrid solar cells with vertically aligned CdTe nanorods and a conjugated polymer. Appl. Phys. Lett. 2005, 86, 1–3. [Google Scholar] [CrossRef]
- Chen, H.C.; Lai, C.W.; Wu, I.C.; Pan, H.R.; Chen, I.W.P.; Peng, Y.K.; Liu, C.L.; Chen, C.H.; Chou, P.T. Enhanced performance and air stability of 3.2% hybrid solar cells: How the functional polymer and CdTe nanostructure boost the solar cell efficiency. Adv. Mater. 2011, 23, 5451–5455. [Google Scholar] [CrossRef] [PubMed]
- Beek, W.J.E.; Wienk, M.M.; Kemerink, M.; Yang, X.; Janssen, R.A.J. Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells. J. Phys. Chem. B 2005, 109, 9505–9516. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124. [Google Scholar] [CrossRef]
- Lin, Y.Y.; Chu, T.H.; Li, S.S.; Chuang, C.H.; Chang, C.H.; Su, W.F.; Chang, C.P.; Chu, M.W.; Chen, C.W. Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells. J. Am. Chem. Soc. 2009, 131, 3644–3649. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, Y.; Kershaw, S.V.; Li, T.; Wang, C.; Zhang, X.; Wang, W.; Li, D.; Wang, Y.; Lu, M.; et al. Zn-alloyed CsPbI3 nanocrystals for highly efficient perovskite light-emitting devices. Nano Lett. 2019, 19, 1552–1559. [Google Scholar] [CrossRef]
- Mathias, F.; Tahir, M.N.; Tremel, W.; Zentel, R. Functionalization of TiO2 nanoparticles with semiconducting polymers containing a photocleavable anchor group and separation via irradiation afterward. Macromol. Chem. Phys. 2014, 215, 604–613. [Google Scholar] [CrossRef]
- Colvin, V.L.; Schlamp, M.C.; Alivisatos, A.P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994, 370, 354–357. [Google Scholar] [CrossRef]
- Reiss, P.; Couderc, E.; De Girolamo, J.; Pron, A. Conjugated polymers/semiconductor nanocrystals hybrid materials—Preparation, electrical transport properties and applications. Nanoscale 2011, 3, 446–489. [Google Scholar] [CrossRef]
- Chandrasekaran, J.; Nithyaprakash, D.; Ajjan, K.B.; Maruthamuthu, S.; Manoharan, D.; Kumar, S. Hybrid solar cell based on blending of organic and inorganic materials—An overview. Renew. Sustain. Energy Rev. 2011, 15, 1228–1238. [Google Scholar] [CrossRef]
- Zhao, L.; Lin, Z. Crafting semiconductor organic-inorganic nanocomposites via placing conjugated polymers in intimate contact with nanocrystals for hybrid solar cells. Adv. Mater. 2012, 24, 4353–4368. [Google Scholar] [CrossRef] [PubMed]
- Wright, M.; Uddin, A. Organic-inorganic hybrid solar cells: A comparative review. Sol. Energy Mater. Sol. Cells 2012, 107, 87–111. [Google Scholar] [CrossRef]
- Liu, R. Hybrid organic/inorganic nanocomposites for photovoltaic cells. Materials 2014, 7, 2747–2771. [Google Scholar] [CrossRef] [PubMed]
- Arici, E.; Sariciftci, N.S.; Meissner, D. Hybrid solar cells based on nanoparticles of CuInS2 in organic matrices. Adv. Funct. Mater. 2003, 13, 165–170. [Google Scholar] [CrossRef]
- Olson, D.C.; Piris, J.; Collins, R.T.; Shaheen, S.E.; Ginley, D.S. Hybrid photovoltaic devices of polymer and Zno nanofiber composites. Thin Solid Film. 2006, 496, 26–29. [Google Scholar] [CrossRef]
- Tekin, E.; Smith, P.J.; Hoeppener, S.; Van Den Berg, A.M.J.; Susha, A.S.; Rogach, A.L.; Feldmann, J.; Schubert, U.S. InkJet printing of luminescent cdte nanocrystal-polymer composites. Adv. Funct. Mater. 2007, 17, 23–28. [Google Scholar] [CrossRef]
- Krebs, F.C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 2009, 93, 394–412. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, J.W. Foldable transparent substrates with embedded electrodes for flexible electronics. ACS Appl. Mater. Interfaces 2015, 7, 18574–18580. [Google Scholar] [CrossRef]
- Liff, S.M.; Kumar, N.; McKinley, G.H. High-performance elastomeric nanocomposites via solvent-exchange processing. Nat. Mater. 2007, 6, 76–83. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, Y.; Sellinger, A.; Lu, M.; Huang, J.; Fan, H.; Haddad, R.; Lopez, G.; Burns, A.R.; Sasaki, D.Y.; et al. Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica nanocomposites. Nature 2001, 410, 913–917. [Google Scholar] [CrossRef]
- Das, P.; Malho, J.-M.; Rahimi, K.; Schacher, F.H.; Wang, B.; Demco, D.E.; Walther, A. Nacre-mimetics with synthetic nanoclays up to ultrahigh aspect ratios. Nat. Commun. 2015, 6, 5967. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Bhowmik, P.K. Wholly aromatic liquid-crystalline polyesters. Prog. Polym. Sci. 1997, 22, 1431–1502. [Google Scholar] [CrossRef]
- Davidson, P.; Gabriel, J.C.P. Mineral liquid crystals. Curr. Opin. Colloid Interface Sci. 2005, 9, 377–383. [Google Scholar] [CrossRef]
- Flory, P.J.; Ronca, G. Theory of systems of rodlike particles—1. Athermal systems. Mol. Cryst. Liq. Cryst. 1979, 54, 289–309. [Google Scholar] [CrossRef]
- Vlassopoulos, D. Determination of chain conformation of stiff polymers by depolarized rayleigh scattering in solution. Macromolecules 1996, 29, 8948–8953. [Google Scholar] [CrossRef]
- Zocher, H. Über freiwillige Struktur Bildung in Solen. (Eine neue Art anisotrop flüssiger Medien.). Z. für Anorg. Allg. Chem. 1925, 147, 91–110. [Google Scholar] [CrossRef]
- Wang, Y.; Takahashi, K.; Lee, K.; Cao, G. Nanostructured vanadium oxide electrodes for enhanced lithium-ion intercalation. Adv. Funct. Mater. 2006, 16, 1133–1144. [Google Scholar] [CrossRef]
- Wegner, S.; Börzsönyi, T.; Bien, T.; Rose, G.; Stannarius, R. Alignment and dynamics of elongated cylinders under shear. Soft Matter 2012, 8, 10950–10958. [Google Scholar] [CrossRef]
- Dessombz, A.; Chiche, D.; Davidson, P.; Panine, P.; Chanéac, C.; Jolivet, J.P. Design of liquid-crystalline aqueous suspensions of rutile nanorods: Evidence of anisotropic photocatalytic properties. J. Am. Chem. Soc. 2007, 129, 5904–5909. [Google Scholar] [CrossRef]
- Michot, L.J.; Bihannic, I.; Maddi, S.; Baravian, C.; Levitz, P.; Davidson, P. Sol/Gel and isotropic/nematic transitions in aqueous suspensions of natural nontronite clay. Influence of particle anisotropy. 1. Features of the I/N transition. Langmuir 2008, 24, 3127–3139. [Google Scholar] [CrossRef]
- Lou, X.; Daussin, R.; Cuenot, S.; Duwez, A.S.; Pagnoulle, C.; Detrembleur, C.; Bailly, C.; Jérôme, R. Synthesis of pyrene-containing polymers and noncovalent sidewall functionalization of multiwalled carbon nanotubes. Chem. Mater. 2004, 16, 4005–4011. [Google Scholar] [CrossRef]
- Bahun, G.J.; Wang, C.; Adronov, A. Solubilizing single-walled carbon nanotubes with pyrene-functionalized block copolymers. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 1941–1951. [Google Scholar] [CrossRef]
- Meuer, S.; Braun, L.; Zentel, R. Solubilisation of multi walled carbon nanotubes by α-pyrene functionalised PMMA and their liquid crystalline self-organisation. Chem. Commun. 2008, 27, 3166. [Google Scholar] [CrossRef] [PubMed]
- Beek, W.J.E.; Wienk, M.M.; Janssen, R.A.J. Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer. Adv. Mater. 2004, 16, 1009–1013. [Google Scholar] [CrossRef]
- Grätzel, M. Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 2005, 44, 6841–6851. [Google Scholar] [CrossRef]
- Suri, P.; Mehra, R.M. Effect of electrolytes on the photovoltaic performance of a hybrid dye sensitized ZnO solar cell. Sol. Energy Mater. Sol. Cells 2007, 91, 518–524. [Google Scholar] [CrossRef]
- Sites, J.; Pan, J. Strategies to increase CdTe solar-cell voltage. Thin Solid Film. 2007, 515, 6099–6102. [Google Scholar] [CrossRef]
- Huynh, W.U.; Dittmer, J.J.; Alivisatos, A.P. Hybrid nanorod-polymer solar cells. Science 2002, 295, 2425–2428. [Google Scholar] [CrossRef]
- Zorn, M.; Zentel, R. Liquid crystalline orientation of semiconducting nanorods in a semiconducting matrix. Macromol. Rapid Commun. 2008, 29, 922–927. [Google Scholar] [CrossRef]
- Zorn, M.; Tahir, M.N.; Bergmann, B.; Tremel, W.; Grigoriadis, C.; Floudas, G.; Zentel, R. Orientation and dynamics of ZnO nanorod liquid crystals in electric fields. Macromol. Rapid Commun. 2010, 31, 1101–1107. [Google Scholar] [CrossRef]
- Zorn, M.; Weber, S.A.L.; Tahir, M.N.; Tremel, W.; Butt, H.J.; Berger, R.; Zentel, R. Light induced charging of polymer functionalized nanorods. Nano Lett. 2010, 10, 2812–2816. [Google Scholar] [CrossRef] [PubMed]
- Zur Borg, L.; Domanski, A.L.; Berger, R.; Zentel, R. Photoinduced Charge separation of self-organized semiconducting superstructures composed of a functional polymer-TiO2 hybrid. Macromol. Chem. Phys. 2013, 214, 975–984. [Google Scholar] [CrossRef]
- Zur, B.L.; Domanski, A.L.; Breivogel, A.; Bürger, M.; Berger, R.; Heinze, K.; Zentel, R. Light-induced charge separation in a donor–chromophore–acceptor nanocomposite Poly[TPA-Ru(Tpy)2]@ZnO. J. Mater. Chem. C 2013, 1, 1223–1230. [Google Scholar] [CrossRef]
- Oschmann, B.; Bresser, D.; Tahir, M.N.; Fischer, K.; Tremel, W.; Passerini, S.; Zentel, R. Polyacrylonitrile block copolymers for the preparation of a thin carbon coating around TiO2 nanorods for advanced lithium-ion batteries. Macromol. Rapid Commun. 2013, 34, 1693–1700. [Google Scholar] [CrossRef] [PubMed]
- Oschmann, B.; Tahir, M.N.; Mueller, F.; Bresser, D.; Lieberwirth, I.; Tremel, W.; Passerini, S.; Zentel, R. Precursor polymers for the carbon coating of Au@ZnO multipods for application as active material in lithium-ion batteries. Macromol. Rapid Commun. 2015, 36, 1075–1082. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.N.; Oschmann, B.; Buchholz, D.; Dou, X.; Lieberwirth, I.; Panthöfer, M.; Tremel, W.; Zentel, R.; Passerini, S. Extraordinary performance of carbon-coated anatase TiO2 as sodium-ion anode. Adv. Energy Mater. 2016, 6, 1–9. [Google Scholar] [CrossRef]
- Xu, W.; Ji, W.; Jing, P.; Yuan, X.; Wang, Y.A.; Xiang, W.; Zhao, J. Efficient inverted quantum-dot light-emitting devices with TiO2/ZnO bilayer as the electron contact layer. Opt. Lett. 2014, 39, 426. [Google Scholar] [CrossRef]
- Dai, X.; Zhang, Z.; Jin, Y.; Niu, Y.; Cao, H.; Liang, X.; Chen, L.; Wang, J.; Peng, X. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99. [Google Scholar] [CrossRef]
- Liu, Y.-Q.; Zhang, D.-D.; Wei, H.-X.; Ou, Q.-D.; Li, Y.-Q.; Tang, J.-X. Highly efficient quantum-dot light emitting diodes with sol-gel ZnO electron contact. Opt. Mater. Express 2017, 7, 2161. [Google Scholar] [CrossRef]
- Talapin, D.V.; Mekis, I.; Götzinger, S.; Kornowski, A.; Benson, O.; Weller, H. CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core-shell-shell nanocrystals. J. Phys. Chem. B 2004, 108, 18826–18831. [Google Scholar] [CrossRef]
- Kwak, J.; Bae, W.K.; Lee, D.; Park, I.; Lim, J.; Park, M.; Cho, H.; Woo, H.; Yoon, D.Y.; Char, K.; et al. Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure. Nano Lett. 2012, 12, 2362–2366. [Google Scholar] [CrossRef] [PubMed]
- Shirasaki, Y.; Supran, G.J.; Tisdale, W.A.; Bulović, V. Origin of efficiency roll-off in colloidal quantum-dot light-emitting diodes. Phys. Rev. Lett. 2013, 110, 1–5. [Google Scholar] [CrossRef]
- Lim, J.; Jeong, B.G.; Park, M.; Kim, J.K.; Pietryga, J.M.; Park, Y.S.; Klimov, V.I.; Lee, C.; Lee, D.C.; Bae, W.K. Influence of shell thickness on the performance of light-emitting devices based on CdSe/Zn1−xCdxS core/shell heterostructured quantum dots. Adv. Mater. 2014, 26, 8034–8040. [Google Scholar] [CrossRef]
- Kim, H.H.; Park, S.; Yi, Y.; Son, D.I.; Park, C.; Hwang, D.K.; Choi, W.K. Inverted quantum dot light emitting diodes using polyethylenimine ethoxylated modified ZnO. Sci. Rep. 2015, 5, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Cao, W.; Shewmon, N.T.; Yang, C.; Li, L.S.; Xue, J. High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes. Nano Lett. 2015, 15, 1211–1216. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Chen, J.; Zhao, D.; Huang, Q.; Khan, Q.; Liu, X.; Tao, Z.; Zhang, Z.; Lei, W. Surface plasmon-enhanced quantum dot light-emitting diodes by incorporating gold nanoparticles. Opt. Express 2016, 24, A33. [Google Scholar] [CrossRef]
- Jung, H.; Chung, W.; Lee, C.H.; Kim, S.H. Fabrication of white light-emitting diodes based on UV light-emitting diodes with conjugated polymers-(CdSe/ZnS) quantum dots as hybrid phosphors. J. Nanosci. Nanotechnol. 2012, 12, 5407–5411. [Google Scholar] [CrossRef]
- Park, J.S.; Han, J.; Ha, J.S.; Seong, T.Y. Polarity dependence of the electrical characteristics of Ag reflectors for high-power GaN-based light emitting diodes. Appl. Phys. Lett. 2014, 104, 1–5. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, W.C.; Wang, C.F.; Chen, S. In situ access to fluorescent dual-component polymers towards optoelectronic devices via inhomogeneous biphase frontal polymerization. RSC Adv. 2015, 5, 102294–102299. [Google Scholar] [CrossRef]
- Zorn, M.; Ki Bae, W.; Kwak, J.; Lee, H.; Lee, C.; Zentel, R.; Char, K. Quantum dot-block copolymer hybrids with improved properties and their application to quantum dot light-emitting devices. ACS Nano 2009, 3, 1063–1068. [Google Scholar] [CrossRef]
- Kwak, J.; Bae, W.K.; Zorn, M.; Woo, H.; Yoon, H.; Lim, J.; Kang, S.W.; Weber, S.; Butt, H.-J.; Zentel, R.; et al. Characterization of quantum dot/conducting polymer hybrid films and their application to light-emitting diodes. Adv. Mater. 2009, 21, 5022–5026. [Google Scholar] [CrossRef] [PubMed]
- Menk, F.; Fokina, A.; Oschmann, B.; Bauer, T.; Nyquist, Y.; Braun, L.; Kiehl, J.; Zentel, R. Functionalization of P3HT with various mono- and multidentate anchor groups. J. Braz. Chem. Soc. 2017. [Google Scholar] [CrossRef]
- zur Borg, L.; Lee, D.; Lim, J.; Bae, W.K.; Park, M.; Lee, S.; Lee, C.; Char, K.; Zentel, R. The effect of band gap alignment on the hole transport from semiconducting block copolymers to quantum dots. J. Mater. Chem. C 2013, 1, 1722. [Google Scholar] [CrossRef]
- Fokina, A.; Lee, Y.; Chang, J.H.; Braun, L.; Bae, W.K.; Char, K.; Lee, C.; Zentel, R. Side-chain conjugated polymers for use in the active layers of hybrid semiconducting polymer/quantum dot light emitting diodes. Polym. Chem. 2016, 7, 101–112. [Google Scholar] [CrossRef]
- Kim, W.D.; Kim, D.; Yoon, D.-E.; Lee, H.; Lim, J.; Bae, W.K.; Lee, D.C. Pushing the efficiency envelope for semiconductor nanocrystal-based electroluminescence devices using anisotropic nanocrystals. Chem. Mater. 2019, 31, 3066–3082. [Google Scholar] [CrossRef]
- Cheng, T.; Wang, Z.; Jin, S.; Wang, F.; Bai, Y.; Feng, H.; You, B.; Li, Y.; Hayat, T.; Tan, Z. Blue LEDs: Pure blue and highly luminescent quantum-dot light-emitting diodes with enhanced electron injection and exciton confinement via partially oxidized aluminum cathode (advanced optical materials 11/2017). Adv. Opt. Mater. 2017, 5. [Google Scholar] [CrossRef]
- Fu, Y.; Jiang, W.; Kim, D.; Lee, W.; Chae, H. Highly efficient and fully solution-processed inverted light-emitting diodes with charge control interlayers. ACS Appl. Mater. Interfaces 2018, 10, 17295–17300. [Google Scholar] [CrossRef]
- Khodabakhshi, E.; Klöckner, B.; Zentel, R.; Michels, J.J.; Blom, P.W.M. Suppression of electron trapping by quantum dot emitters using a grafted polystyrene shell. Mater. Horizons 2019, 6, 2024–2031. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zentel, R. Polymer Coated Semiconducting Nanoparticles for Hybrid Materials. Inorganics 2020, 8, 20. https://doi.org/10.3390/inorganics8030020
Zentel R. Polymer Coated Semiconducting Nanoparticles for Hybrid Materials. Inorganics. 2020; 8(3):20. https://doi.org/10.3390/inorganics8030020
Chicago/Turabian StyleZentel, Rudolf. 2020. "Polymer Coated Semiconducting Nanoparticles for Hybrid Materials" Inorganics 8, no. 3: 20. https://doi.org/10.3390/inorganics8030020
APA StyleZentel, R. (2020). Polymer Coated Semiconducting Nanoparticles for Hybrid Materials. Inorganics, 8(3), 20. https://doi.org/10.3390/inorganics8030020