Electrical Resistivity Control for Non-Volatile-Memory Electrodes Induced by Femtosecond Laser Irradiation of LaNiO3 Thin Films Produced by Pulsed Laser Deposition
Abstract
1. Introduction
2. Results and Discussions
3. Materials and Methods
3.1. Manufacturing LaNiO3 Thin Films by PLD
3.2. Femtosecond Laser Irradiation of LaNiO3 Thin Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, J.S.; Goodenough, J.B.; Dabrowski, B. Transition from Curie-Weiss to enhanced Pauli paramagnetism in RNiO3 (R = La, Pr, ... Gd). Phys. Rev. B 2003, 67, 020404. [Google Scholar] [CrossRef]
- Eguchi, R.; Chainani, A.; Taguchi, M.; Matsunami, M.; Ishida, Y.; Horiba, K.; Senba, Y.; Ohashi, H.; Shin, S. Fermi surfaces, electron-hole asymmetry, and correlation kink in a three-dimensional Fermi liquid LaNiO3. Phys. Rev. B 2009, 79, 115122. [Google Scholar] [CrossRef]
- Golalikhani, M.; Lei, Q.; Chandrasena, R.U.; Kasaei, L.; Park, H.; Bai, J.; Orgiani, P.; Ciston, J.; Sterbinsky, G.E.; Arena, D.A.; et al. Nature of the metal-insulator transition in few-unit-cell-thick LaNiO3 films. Nat. Commun. 2018, 9, 2206. [Google Scholar] [CrossRef] [PubMed]
- Chaloupka, J.; Khaliullin, G. Orbital Order and Possible Superconductivity in LaNiO3/LaMO3 Superlattices. Phys. Rev. Lett. 2008, 100, 016404. [Google Scholar] [CrossRef]
- Baeumer, C.; Li, J.; Lu, Q.; Liang, A.Y.L.; Jin, L.; Martins, H.P.; Duchoň, T.; Glöß, M.; Gericke, S.M.; Wohlgemuth, M.A.; et al. Tuning electrochemically driven surface transformation in atomically flat LaNiO3 thin films for enhanced water electrolysis. Nat. Mater. 2021, 20, 674–682. [Google Scholar] [CrossRef]
- Chen, Y. ReRAM: History, Status, Future. IEEE Trans. Electron. Devices 2020, 67, 1420–1433. [Google Scholar] [CrossRef]
- Chae, B.G.; Yang, Y.S.; Lee, S.H.; Jang, M.S.; Lee, S.J.; Kim, S.H.; Baek, W.S.; Kwon, S.C. Comparative analysis for the crystalline and ferroelectric properties of Pb(Zr,Ti)O3 thin films deposited on metallic LaNiO3 and Pt electrodes. Thin Solid Films 2002, 410, 107–113. [Google Scholar] [CrossRef]
- Petrie, J.R.; Cooper, V.R.; Freeland, J.W.; Meyer, T.L.; Zhang, Z.; Lutterman, D.A.; Lee, H.N. Enhanced Bifunctional Oxygen Catalysis in Strained LaNiO3 Perovskites. J. Am. Chem. Soc. 2016, 138, 2488–2491. [Google Scholar] [CrossRef] [PubMed]
- McBean, C.L.; Liu, H.; Scofield, M.E.; Li, L.; Wang, L.; Bernstein, A.; Wong, S.S. Generalizable, Electroless, Template-Assisted Synthesis and Electrocatalytic Mechanistic Understanding of Perovskite LaNiO3 Nanorods as Viable, Supportless Oxygen Evolution Reaction Catalysts in Alkaline Media. ACS Appl. Mater. Interfaces 2017, 9, 24634–24648. [Google Scholar] [CrossRef]
- Pandya, N.C.; Debnath, A.K.; Joshi, U.S. Resistance switching and memory effects in solution-processed BiFeO3/LaNiO3 junctions. J. Phys. D Appl. Phys. 2016, 49, 055301. [Google Scholar] [CrossRef]
- Hao, Y.; Li, T.; Hong, X. Interface phenomena and emerging functionalities in ferroelectric oxide based heterostructures. Chem. Commun. 2025, 61, 4924–4950. [Google Scholar] [CrossRef]
- Wu, L.; Gao, W.; Li, J.; Wang, R.; Wang, X.; Li, M.; Li, J. Electric field controlled resistive switching behavior and optical modulation in Al/BaTiO3/LaNiO3 devices. J. Am. Ceram. Soc. 2025, 108, e20374. [Google Scholar] [CrossRef]
- Cichetto, L., Jr.; Sergeenkov, S.; Diaz, J.C.C.A.; Longo, E.; Araújo-Moreira, F.M. Influence of substrate on structural and transport properties of LaNiO3 thin films prepared by pulsed laser deposition. AIP Adv. 2017, 7, 025005. [Google Scholar] [CrossRef]
- Sergeenkov, S.; Cichetto, L.; Longo, E.; Araujo-Moreira, F.M. Evidence for resonant scattering of electrons by spin fluctuations in LaNiO3/LaAlO3 heterostructures grown by pulsed laser deposition. JETP Lett. 2015, 102, 383–386. [Google Scholar] [CrossRef]
- Liu, H.; Xie, R.; Wang, Q.; Han, J.; Han, Y.; Wang, J.; Fang, H.; Qi, J.; Ding, M.; Ji, W.; et al. Enhanced OER Performance and Dynamic Transition of Surface Reconstruction in LaNiO3 Thin Films with Nanoparticles Decoration. Adv. Sci. 2023, 10, 2207128. [Google Scholar] [CrossRef]
- Choi, M.J.; Kim, T.L.; Kim, J.K.; Lee, T.H.; Lee, S.A.; Kim, C.; Hong, K.; Bark, C.W.; Ko, K.T.; Jang, H.W. Enhanced oxygen evolution electrocatalysis in strained A-site cation deficient LaNiO3 perovskite thin films. Nano Lett. 2020, 20, 8040–8045. [Google Scholar] [CrossRef]
- Sergeenkov, S.; Cichetto, L.; Diaz, J.C.C.A.; Bastos, W.B.; Longo, E.; Araújo-Moreira, F.M. Manifestation of unusual size effects in granular thin films prepared by pulsed laser deposition. J. Phys. Chem. Solids 2016, 98, 38–42. [Google Scholar] [CrossRef]
- Wong, J.C.; Cheng, X.; Musavigharavi, P.; Xiang, F.; Hamilton, A.R.; Valanoor, N.; Sando, D. Understanding the Role of Defective Phases on the Conductivity Behavior of Strained Epitaxial LaNiO3Thin Films. ACS Appl. Electron. Mater. 2022, 4, 1196–1205. [Google Scholar] [CrossRef]
- Xiao, J.; Tomczyk, M.; Reaney, I.M.; Vilarinho, P.M. Tailoring Ferroelectric Properties of 0.37BiScO3–0.63PbTiO3 Thin Films Using a Multifunctional LaNiO3 Interlayer. Cryst. Growth Des. 2018, 18, 4037–4044. [Google Scholar] [CrossRef]
- Liao, X.; Park, H. Effects of the surface termination and the oxygen vacancy position on LaNiO3 ultra-thin films: First-principles study. Phys. Rev. Mater. 2023, 7, 015002. [Google Scholar] [CrossRef]
- López-Conesa, L.; Rebled, J.M.; Pesquera, D.; Dix, N.; Sánchez, F.; Herranz, G.; Fontcuberta, J.; Magén, C.; Casanove, M.J.; Estradé, S.; et al. Evidence of a minority monoclinic LaNiO2.5 phase in lanthanum nickelate thin films. Phys. Chem. Chem. Phys. 2017, 19, 9137–9142. [Google Scholar] [CrossRef] [PubMed]
- Misra, D.; Kundu, T.K. Transport properties and metal–insulator transition in oxygen deficient LaNiO3: A density functional theory study. Mater. Res. Express 2016, 3, 095701. [Google Scholar] [CrossRef]
- Sánchez, R.D.; Causa, M.T.; Caneiro, A.; Butera, A.; Vallet-Regí, M.; Sayagués, M.J.; González-Calbet, J.; García-Sanz, F.; Rivas, J. Metal-insulator transition in oxygen-deficient LaNiO3−x perovskites. Phys. Rev. B 1996, 54, 16574–16578. [Google Scholar] [CrossRef]
- Walke, P.; Gupta, S.; Li, Q.R.; Major, M.; Donner, W.; Mercey, B.; Lüders, U. The role of oxygen vacancies on the weak localization in LaNiO3-δ epitaxial thin films. J. Phys. Chem. Solids 2018, 123, 1–5. [Google Scholar] [CrossRef]
- Zhu, M.; Komissinskiy, P.; Radetinac, A.; Vafaee, M.; Wang, Z.; Alff, L. Effect of composition and strain on the electrical properties of LaNiO3 thin films. Appl. Phys. Lett. 2013, 103, 141902. [Google Scholar] [CrossRef]
- Smith, C.R.; Lang, A.C.; Shutthanandan, V.; Taheri, M.L.; May, S.J. Effects of cation stoichiometry on electronic and structural properties of LaNiO3. J. Vac. Sci. Technol. A 2015, 33, 041510. [Google Scholar] [CrossRef]
- Xiao, M.; Zhang, Z.; Zhang, W.; Zhang, P.; Lan, K. Fabrication of low-resistance LaNixO3+δ thin films for ferroelectric device electrodes. J. Rare Earths 2018, 36, 838–843. [Google Scholar] [CrossRef]
- Gou, G.; Grinberg, I.; Rappe, A.M.; Rondinelli, J.M. Lattice normal modes and electronic properties of the correlated metal LaNiO3. Phys. Rev. B 2011, 84, 144101. [Google Scholar] [CrossRef]
- Cappelli, E.; Tromp, W.O.; Walker, S.M.; Tamai, A.; Gibert, M.; Baumberger, F.; Bruno, F.Y. A laser-ARPES study of LaNiO3 thin films grown by sputter deposition. APL Mater. 2020, 8, 051102. [Google Scholar] [CrossRef]
- Wang, L.; Adiga, P.; Zhao, J.; Samarakoon, W.S.; Stoerzinger, K.A.; Spurgeon, S.R.; Matthews, B.E.; Bowden, M.E.; Sushko, P.V.; Kaspar, T.C.; et al. Understanding the Electronic Structure Evolution of Epitaxial LaNi1−xFexO3Thin Films for Water Oxidation. Nano Lett. 2021, 21, 8324–8331. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Liu, H.; Lin, J.; Wang, S. Volatile and Nonvolatile Memory Operations Implemented in a Pt/HfO2/Ti Memristor. IEEE Trans. Electron. Devices 2021, 68, 1622–1626. [Google Scholar] [CrossRef]
- Lane, D.; Hodgson, P.D.; Potter, R.J.; Beanland, R.; Hayne, M. ULTRARAM: Toward the Development of a III–V Semiconductor, Nonvolatile, Random Access Memory. IEEE Trans. Electron. Devices 2021, 68, 2271–2274. [Google Scholar] [CrossRef]
- Draper, B.; Dockerty, R.; Shaneyfelt, M.; Habermehl, S.; Murray, J. Total Dose Radiation Response of NROM-Style SOI Non-Volatile Memory Elements. IEEE Trans. Nucl. Sci. 2008, 55, 3202–3205. [Google Scholar] [CrossRef]
- Lee, J.Y.; Shan, F.; Kim, H.S.; Kim, S.J. Effect of Femtosecond Laser Postannealing on a-IGZO Thin-Film Transistors. IEEE Trans. Electron. Devices 2021, 68, 3371–3378. [Google Scholar] [CrossRef]
- Assis, M.; Cordoncillo, E.; Torres-Mendieta, R.; Beltrán-Mir, H.; Mínguez-Vega, G.; Oliveira, R.; Leite, E.R.; Foggi, C.C.; Vergani, C.E.; Longo, E.; et al. Towards the scale-up of the formation of nanoparticles on α-Ag2WO4 with bactericidal properties by femtosecond laser irradiation. Sci. Rep. 2018, 8, 1884. [Google Scholar] [CrossRef]
- Assis, M.; Cordoncillo, E.; Torres-Mendieta, R.; Beltrán-Mir, H.; Mínguez-Vega, G.; Gouveia, A.F.; Leite, E.; Andrés, J.; Longo, E. Laser-induced formation of bismuth nanoparticles. Phys. Chem. Chem. Phys. 2018, 20, 13693–13696. [Google Scholar] [CrossRef]
- Macedo, N.G.; Machado, T.R.; Roca, R.A.; Assis, M.; Foggi, C.C.; Puerto-Belda, V.; Mínguez-Vega, G.; Rodrigues, A.; San-Miguel, M.A.; Cordoncillo, E.; et al. Tailoring the Bactericidal Activity of Ag Nanoparticles/α-Ag2WO4 Composite Induced by Electron Beam and Femtosecond Laser Irradiation: Integration of Experiment and Computational Modeling. ACS Appl. Bio Mater. 2019, 2, 824–837. [Google Scholar] [CrossRef]
- Li, J.; Nagaraj, B.; Liang, H.; Cao, W.; Lee, C.H.; Ramesh, R. Ultrafast polarization switching in thin-film ferroelectrics. Appl. Phys. Lett. 2004, 84, 1174–1176. [Google Scholar] [CrossRef]
- Galinetto, P.; Ballarini, D.; Grando, D.; Samoggia, G. Microstructural modification of LiNbO3 crystals induced by femtosecond laser irradiation. Appl. Surf. Sci. 2005, 248, 291–294. [Google Scholar] [CrossRef]
- Shugaev, M.V.; Shih, C.-Y.; Karim, E.T.; Wu, C.; Zhigilei, L.V. Generation of nanocrystalline surface layer in short pulse laser processing of metal targets under conditions of spatial confinement by solid or liquid overlayer. Appl. Surf. Sci. 2017, 417, 54–63. [Google Scholar] [CrossRef]
- Garcia-Lechuga, M.; Puerto, D.; Fuentes-Edfuf, Y.; Solis, J.; Siegel, J. Ultrafast Moving-Spot Microscopy: Birth and Growth of Laser-Induced Periodic Surface Structures. ACS Photonics 2016, 3, 1961–1967. [Google Scholar] [CrossRef]
- Malinauskas, M.; Žukauskas, A.; Hasegawa, S.; Hayasaki, Y.; Mizeikis, V.; Buividas, R.; Juodkazis, S. Ultrafast laser processing of materials: From science to industry. Light Sci. Appl. 2016, 5, e16133. [Google Scholar] [CrossRef]
- Bonse, J.; Höhm, S.; Kirner, S.V.; Rosenfeld, A.; Krüger, J. Laser-Induced Periodic Surface Structures—A Scientific Evergreen. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 9000615. [Google Scholar] [CrossRef]
- Sugioka, K.; Cheng, Y. Ultrafast lasers—Reliable tools for advanced materials processing. Light Sci. Appl. 2014, 3, e149. [Google Scholar] [CrossRef]
- Tahir, S.; Landers, J.; Salamon, S.; Koch, D.; Doñate-Buendía, C.; Ziefuß, A.R.; Wende, H.; Gökce, B. Development of Magnetocaloric Microstructures from Equiatomic Iron–Rhodium Nanoparticles through Laser Sintering. Adv. Eng. Mater. 2023, 25, 2300245. [Google Scholar] [CrossRef]
- Momma, C.; Nolte, S.; Chichkov, B.N.; Alvensleben, F.V.; Tünnermann, A. Precise laser ablation with ultrashort pulses. Appl. Surf. Sci. 1997, 109–110, 15–19. [Google Scholar] [CrossRef]
- Chichkov, B.N.; Momma, C.; Nolte, S.; von Alvensleben, F.; Tünnermann, A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 1996, 63, 109–115. [Google Scholar] [CrossRef]
- Phillips, K.C.; Gandhi, H.H.; Mazur, E.; Sundaram, S.K. Ultrafast laser processing of materials: A review. Adv. Opt. Photonics 2015, 7, 684–712. [Google Scholar] [CrossRef]
- Pontes, D.S.L.; Pontes, F.M.; Pereira-da-Silva, M.A.; Berengue, O.M.; Chiquito, A.J.; Longo, E. Structural and electrical properties of LaNiO3 thin films grown on (100) and (001) oriented SrLaAlO4 substrates by chemical solution deposition method. Ceram. Int. 2013, 39, 8025–8034. [Google Scholar] [CrossRef]
- Chen, A.; Su, Q.; Han, H.; Enriquez, E.; Jia, Q. Metal Oxide Nanocomposites: A Perspective from Strain, Defect, and Interface. Adv. Mater. 2019, 31, 1803241. [Google Scholar] [CrossRef]
- Gunnæs, A.E.; Gorantla, S.; Løvvik, O.M.; Gan, J.; Carvalho, P.A.; Svensson, B.G.; Monakhov, E.V.; Bergum, K.; Jensen, I.T.; Diplas, S. Epitaxial Strain-Induced Growth of CuO at Cu2O/ZnO Interfaces. J. Phys. Chem. C 2016, 120, 23552–23558. [Google Scholar] [CrossRef]
- Retuerto, M.; Pereira, A.G.; Pérez-Alonso, F.J.; Peña, M.A.; Fierro, J.L.G.; Alonso, J.A.; Fernández-Díaz, M.T.; Pascual, L.; Rojas, S. Structural effects of LaNiO3 as electrocatalyst for the oxygen reduction reaction. Appl. Catal. B 2017, 203, 363–371. [Google Scholar] [CrossRef]
- Chakhalian, J.; Rondinelli, J.M.; Liu, J.; Gray, B.A.; Kareev, M.; Moon, E.J.; Prasai, N.; Cohn, J.L.; Varela, M.; Tung, I.C.; et al. Asymmetric Orbital-Lattice Interactions in Ultrathin Correlated Oxide Films. Phys. Rev. Lett. 2011, 107, 116805. [Google Scholar] [CrossRef]
- Jahn, H.A.; Teller, E.; Donnan, F.G. Stability of polyatomic molecules in degenerate electronic states–I—Orbital degeneracy. Proc. R. Soc. Lond. A Math. Phys. Sci. 1937, 161, 220–235. [Google Scholar] [CrossRef]
- Pechini, M.P. Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor. U.S. Patent No. 3330697, 11 July 1967. [Google Scholar]
- Stari, C.; Cichetto, L., Jr.; Peres, C.H.M.A.; Rivera, V.A.G.; Sergeenkov, S.; Cardoso, C.A.; Marega, E.; Araújo-Moreira, F.M. Comparative study on structure and magnetic properties of polycrystalline PrxY1−xBa2Cu3O7-δ prepared in oxygen and argon atmosphere. J. Alloys Compd. 2012, 528, 135–140. [Google Scholar] [CrossRef]
- Sergeenkov, S.; Sanchez, E.S.; Salla, R.V.F.; Rivera, V.A.G.; Cichetto, L.; Araújo-Moreira, F.M. Analog of the susceptibility spectrum for levitation forces between a superconductor and a permanent magnet. J. Appl. Phys. 2012, 112, 033908. [Google Scholar] [CrossRef]
Substrate | (i) ρ (T = 10 K) (μΩ·cm) | (ii) ρ (T = 300 K) (μΩ·cm) | ||||
---|---|---|---|---|---|---|
Normal | Irrad. | Decrement (%) | Normal | Irrad. | Decrement (%) | |
LAO | 57.03 | 31.10 | 45.5 | 150.11 | 91.03 | 39.4 |
MgO | 248.08 | 152.51 | 38.5 | 535.51 | 330.66 | 38.3 |
SLAO | 4039.32 | 1940.80 | 52.0 | 4451.10 | 2376.79 | 46.6 |
Crystal Substrate | Tdep (°C) | Pdep (mbar) | Laser Fluence (J/cm2) | Dt−s (cm) |
---|---|---|---|---|
LAO | 610 | 1.2 × 10−1 | 1.68 | 4.5 |
MgO | 670 | 1.8 × 10−1 | 1.84 | 5 |
SLAO | 645 | 1.8 × 10−1 | 1.65 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cichetto Junior, L.; Doñate-Buendía, C.; Flores-Arias, M.T.; Aymerich, M.; Costa, J.P.d.C.d.; Cordoncillo-Cordoncillo, E.; Carmo, J.P.P.d.; Ando Junior, O.H.; Beltrán Mir, H.; Bort, J.M.A.; et al. Electrical Resistivity Control for Non-Volatile-Memory Electrodes Induced by Femtosecond Laser Irradiation of LaNiO3 Thin Films Produced by Pulsed Laser Deposition. Inorganics 2025, 13, 297. https://doi.org/10.3390/inorganics13090297
Cichetto Junior L, Doñate-Buendía C, Flores-Arias MT, Aymerich M, Costa JPdCd, Cordoncillo-Cordoncillo E, Carmo JPPd, Ando Junior OH, Beltrán Mir H, Bort JMA, et al. Electrical Resistivity Control for Non-Volatile-Memory Electrodes Induced by Femtosecond Laser Irradiation of LaNiO3 Thin Films Produced by Pulsed Laser Deposition. Inorganics. 2025; 13(9):297. https://doi.org/10.3390/inorganics13090297
Chicago/Turabian StyleCichetto Junior, Leonélio, Carlos Doñate-Buendía, María Teresa Flores-Arias, Maria Aymerich, João Paulo de Campos da Costa, Eloísa Cordoncillo-Cordoncillo, João Paulo Pereira do Carmo, Oswaldo Hideo Ando Junior, Héctor Beltrán Mir, Juan Manuel Andrés Bort, and et al. 2025. "Electrical Resistivity Control for Non-Volatile-Memory Electrodes Induced by Femtosecond Laser Irradiation of LaNiO3 Thin Films Produced by Pulsed Laser Deposition" Inorganics 13, no. 9: 297. https://doi.org/10.3390/inorganics13090297
APA StyleCichetto Junior, L., Doñate-Buendía, C., Flores-Arias, M. T., Aymerich, M., Costa, J. P. d. C. d., Cordoncillo-Cordoncillo, E., Carmo, J. P. P. d., Ando Junior, O. H., Beltrán Mir, H., Bort, J. M. A., da Silva, E. L., & Chiquito, A. J. (2025). Electrical Resistivity Control for Non-Volatile-Memory Electrodes Induced by Femtosecond Laser Irradiation of LaNiO3 Thin Films Produced by Pulsed Laser Deposition. Inorganics, 13(9), 297. https://doi.org/10.3390/inorganics13090297