Tribocatalysis of Cefuroxime Axetil: Effect of Stirring Speed, Magnetic Rods, and Beaker Material Type
Abstract
1. Introduction
2. Results and Discussion
2.1. The Morphology, Specific Area and Structure of Zinc Oxide
2.2. Optical Properties of Hydrothermal and Sol–Gel Zinc Oxide
2.3. Tribocatalysis of Cefuroxime Axetil—Effect of Stirring Speed (100, 300 and 500 rpm)
2.4. Tribocatalysis of Cefuroxime Axetil—Effect of Length of Magnetic Rods
2.5. Tribocatalysis of Cefuroxime Axetil—Effect of Type Beaker Material
2.6. Tribocatalysis of Cefuroxime Axetil—Effect of Stabillity
3. Materials and Methods
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maximillian, J.; Brusseau, M.; Glenn, E.; Matthias, A. Pollution and Environmental Perturbations in the Global System. In Environmental and Pollution Science, 3rd ed.; Academic Press: Boston, MA, USA, 2019; pp. 457–476. [Google Scholar] [CrossRef]
- Gao, X.; Sun, H.; Wang, Y.; Wang, H. Degradation of phenylarsonic acid in phenylarsenic chemical warfare agents by Fe-modified CNT electroactive filter activating peroxymonosulfate: Performance and mechanism. Surf. Interfaces 2024, 44, 103723. [Google Scholar] [CrossRef]
- Gaggero, E.; Cai, W.; Calza, P.; Ohno, T. Enhanced hydrogen peroxide production and organic substrates degradation using atomically dispersed antimony P-doped carbon nitride photocatalysts. Surf. Interfaces 2024, 48, 104143. [Google Scholar] [CrossRef]
- Liu, J.; Qi, W.; Xu, M.; Thomas, T.; Liu, S. Piezocatalytic techniques in environmental remediation Angew. Chem. Int. Edit. 2023, 62, e202213927. [Google Scholar] [CrossRef]
- Xiao, L.; Xu, X.; Jia, Y.; Hu, G.; Hu, J. Pyroelectric nanoplates for reduction of CO2 to methanol driven by temperature-variation. Nat. Commun. 2021, 12, 318. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Xie, S.; Wang, G.; Tian, Z. Tribocatalysis: Challenges and perspectives. Sci. China Chem. 2021, 64, 1609–1613. [Google Scholar] [CrossRef]
- He, T.; Cao, Z.; Li, G.; Jia, Y.; Peng, B. High efficiently harvesting visible light and vibration energy in (1−x)AgNbO3–xLiTaO3 solid solution around antiferroelectric–ferroelectric phase boundary for dye degradation. J. Adv. Ceram. 2022, 11, 1641–1653. [Google Scholar] [CrossRef]
- Zhang, Y.; Aljibori, H.; Algarni, Z.; Amari, A.; Mahariq, I.; Zhang, K.; El-Sabban, H. Enhanced photocatalytic organic pollutant degradation, H2 production and N2 fixation via a versatile zinc oxide-based nanocomposite: Synthesis, characterization and mechanism Insight. Chem. Eng. J. 2024, 500, 156725. [Google Scholar] [CrossRef]
- Patsoura, A.; Kondarides, D.; Verykios, E. Photocatalytic degradation of organic pollutants with simultaneous production of hydrogen. Catal. Today 2007, 124, 94–102. [Google Scholar] [CrossRef]
- Pavel, M.; Anastasescu, C.; State, R.; Vasile, A.; Papa, F.; Balint, I. Photocatalytic Degradation of Organic and Inorganic Pollutants to Harmless End Products: Assessment of Practical Application Potential for Water and Air Cleaning. Catalysts 2023, 13, 380. [Google Scholar] [CrossRef]
- Ma, J.; Wu, Z.; Luo, W.; Zheng, Y.; Jia, Y.; Wang, L.; Huang, H. High pyrocatalytic properties of pyroelectric BaTiO3 nanofibers loaded by noble metal under room-temperature thermal cycling. Ceram. Int. 2018, 44, 21835–21841. [Google Scholar] [CrossRef]
- Wang, C.; Tian, N.; Ma, T.; Zhang, Y.; Huang, H. Pyroelectric catalysis. Nano Energy 2020, 78, 105371. [Google Scholar] [CrossRef]
- Pei, C.; Liu, Z.; Liu, H.; Gao, X.; Liu, J. Highly tribocatalys driven by mechanical friction using micron-sized BaSb2O6 catalyst. Surf. Interfaces 2024, 52, 104920. [Google Scholar] [CrossRef]
- Li, A.; Li, Z.; Liang, Y.; He, Y.; Jiang, X. Optimized piezoelectric bone regeneration through inhibiting sympathetic nerve-bone interaction. Surf. Interfaces 2024, 48, 104380. [Google Scholar] [CrossRef]
- Ma, J.; Xiong, X.; Wu, D.; Wang, Y.; Ban, C.; Feng, Y.; Meng, J.; Gao, X.; Dai, J.-Y.; Han, G.; et al. Band Position-independent piezo-electrocatalysis for ultrahigh CO2 Conversion. Adv. Mater. 2023, 35, 2300027. [Google Scholar] [CrossRef]
- Long, Y.; Xu, H.; He, J.; Li, C.; Zhu, M. Piezoelectric polarization of BiOCl via capturing mechanical energy for catalytic H2 evolution. Surf. Interfaces 2022, 31, 102056. [Google Scholar] [CrossRef]
- Bao, Y.; Xiao, K.; Yue, S.; Zhang, M.; Du, X.; Wang, J.; Oh, W.-D.; Zhou, Y.; Zhan, S. Wastewater decontamination via piezoelectric based technologies: Materials design, applications and prospects. Surf. Interfaces 2023, 40, 103107. [Google Scholar] [CrossRef]
- Li, X.; Tong, W.; Shi, J.; Chen, Y.; Zhang, Y.; An, Q. Tribocatalysis mechanisms: Electron transfer and transition. J. Mater. Chem. A 2023, 11, 4458–4472. [Google Scholar] [CrossRef]
- Lei, H.; Cui, X.; Jia, X.; Qi, J.; Wang, Z.; Chen, W. Enhanced Tribocatalytic degradation of organic pollutants by ZnO nanoparticles of high crystallinity. Nanomaterials 2022, 13, 46. [Google Scholar] [CrossRef]
- Ikeda, S.; Takata, T.; Komoda, M.; Hara, M.; Kondo, J.N.; Domen, K.; Tanaka, A.; Hosono, H.; Kawazoe, H. Mechano-catalysis-a novel method for overall water splitting. Phys. Chem. Chem. Phys. 1999, 1, 4485–4491. [Google Scholar] [CrossRef]
- Zou, H.; Guo, L.; Xue, H.; Zhang, Y.; Shen, X.; Liu, X.; Wang, P.; He, X.; Dai, G.; Jiang, P.; et al. Quantifying and understanding the triboelectric series of inorganic non-metallic materials. Nat. Commun. 2020, 11, 2093. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Zhang, Y.; Yi, Y.; Zhou, B.; Sun, P.; Dong, X. Regulation of friction pair to promote conversion of mechanical energy to chemical energy on Bi2WO6 and realization of enhanced tribocatalytic activity to degrade different pollutants. J. Hazard. Mater. 2023, 459, 132147. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Wang, H.; Lei, H.; Jia, X.; Jiang, Y.; Fei, L.; Jia, Y.; Chen, W. Surprising Tribo-catalytic Conversion of H2O and CO2 into flammable gases utilizing frictions of copper in water. Chem. Sel. 2023, 8, e202204146. [Google Scholar] [CrossRef]
- Hara, M.; Komoda, M.; Hasei, H.; Yashima, M.; Ikeda, S.; Takata, T.; Kondo, J.N.; Domen, K. A study of mechano-catalysts for overall water splitting. J. Phys. Chem. B 2000, 104, 780–785. [Google Scholar] [CrossRef]
- Che, J.; Gao, Y.; Wu, Z.; Ma, J.; Wang, Z.; Liu, C.; Jia, Y.; Wang, X. Review on tribocatalysis through harvesting friction energy for mechanically-driven dye decomposition. J. Alloys Compd. 2024, 1002, 175413. [Google Scholar] [CrossRef]
- Zhao, B.; Chen, N.; Xue, Y.; Shi, H.; Xu, H.; Li, M.; Sun, C.; Xing, Y.; Gao, B.; Ma, B. Challenges and perspectives of tribocatalysis in the treatment for dye wastewater. J. Water Process. Eng. 2024, 63, 105455. [Google Scholar] [CrossRef]
- Chong, J.; Tai, B.; Zhang, Y. Tribocatalysis effect based on ZnO with various specific surface areas for dye degradation. Chem. Phys. Lett. 2024, 835, 140998. [Google Scholar] [CrossRef]
- Ada, K.; Gökgöz, M.; Önal, M.; Sarıkaya, Y. Preparation and characterization of a ZnO powder with the hexagonal plate particles. Powder Technol. 2008, 181, 285–291. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, L.; Luo, W.; Li, H.; Wu, Z.; Xu, Z.; Zhang, Y.; Zhang, H.; Yuan, G.; Gao, J. Strong Tribo-Catalysis of Zinc Oxide Nanorods Via Triboelectrically-Harvesting Friction Energy. Ceram. Int. 2020, 46, 25293–25298. [Google Scholar] [CrossRef]
- Wu, M.; Lei, H.; Chen, J.; Dong, X. Friction energy harvesting on bismuth tungstate catalyst for tribocatalytic degradation of organic pollutants. J. Colloid Interface Sci. 2021, 587, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Xu, Y.; He, Q.; Sun, P.; Weng, X.; Dong, X. Tribocatalysis of homogeneous material with multi-size granular distribution for degradation of organic pollutants. J. Colloid Interface Sci. 2022, 622, 602–611. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, S.; Liu, M.; He, G.; Li, X. Enhanced tribocatalytic degradation performance of organic pollutants by Cu1.8S/CuCo2S4 p-n junction. J. Colloid Interface Sci. 2024, 655, 187–198. [Google Scholar] [CrossRef]
- Zhang, Q.; Jia, Y.; Wang, X.; Zhang, L.; Yuan, G.; Wu, Z. Efficient tribocatalysis of magnetically recyclable cobalt ferrite nanoparticles through harvesting friction energy. Sep. Purif. Technol. 2023, 307, 122846. [Google Scholar] [CrossRef]
- Jia, X.; Wanga, H.; Lei, H.; Mao, C.; Cui, X.; Liu, Y.; Jia, Y.; Yao, W.; Chen, W. Boosting tribocatalytic conversion of H2O and CO2 by CO3O4 nanoparticles through metallic coatings in reactors. J. Adv. Ceram. 2023, 12, 1833–1843. [Google Scholar] [CrossRef]
- Liu, S.; Yang, Y.; Hu, Y.; Rao, W. Effect of strontium substitution on the tribocatalytic performance of barium titanate. Materials 2023, 16, 3160. [Google Scholar] [CrossRef]
- Lee, J.; Kim, K.; Choi, M.; Jeon, J.; Yoon, H. Rational molecular design of polymeric materials toward efficient triboelectric energy harvesting. Nano Energy 2019, 66, 104158. [Google Scholar] [CrossRef]
- Xu, Y.; Yin, R.; Zhang, Y.; Zhou, B.; Sun, P.; Dong, X. Unveiling the Mechanism of Frictional Catalysis in Water by Bi(12)TiO(20): A Charge Transfer and Contaminant Decomposition Path Study. Langmuir 2022, 38, 14153–14161. [Google Scholar] [CrossRef] [PubMed]
- Xiang, R.; Zhou, C.; Liu, Y.; Qin, T.; Li, D.; Dong, X.; Muddassir, M.; Zhong, A. A new type Co(II)-based photocatalyst for the nitrofurantoin antibiotic degradation. J. Mol. Struct. 2024, 1312, 138501. [Google Scholar] [CrossRef]
- Zhao, J.; Dang, Z.; Muddassir, M.; Raza, S.; Zhong, A.; Wang, X.; Jin, J. A New Cd(II)-Based Coordination Polymer for Efficient Photocatalytic Removal of Organic Dyes. Molecules 2023, 28, 6848. [Google Scholar] [CrossRef]
- Phuruangrat, A.; Thongtem, S.; Thongtem, T. Synthesis, characterization, and UV light-driven photocatalytic properties of CeVO4 nanoparticles synthesized by sol-gel method. J. Aust. Ceram. Soc. 2021, 57, 597–604. [Google Scholar] [CrossRef]
- Tang, Q.; Zhu, M.; Zhang, H.; Gao, J.; Kwok, K.; Kong, L.; Jia, Y.; Liu, L.; Peng, B. Enhanced tribocatalytic degradation of dye pollutants through governing the charge accumulations on the surface of ferroelectric barium zirconium titanate particles. Nano Energy 2022, 100, 107519. [Google Scholar] [CrossRef]
- Li, X.; Tong, W.; Song, W.; Shi, J.; Zhang, Y. Performance of tribocatalysis and tribo-photocatalysis of pyrite under agitation. J. Cleaner Prod. 2023, 414, 137566. [Google Scholar] [CrossRef]
- Hernández-Coronado, E.; Ruiz-Ruiz, E.; Hinojosa-Reyes, L.; Beltrán, F.; López-Gallego, J.; Gracia-Pinilla, M.; Villanueva-Rodríguez, M. Effective degradation of cefuroxime by heterogeneous photo-Fenton under simulated solar radiation using α-Fe2O3-TiO2. J. Environ. Chem. Eng. 2021, 9, 106822. [Google Scholar] [CrossRef]
- Michelow, I.; McCracken, G. CHAPTER 24—Antibacterial therapeutic agents. In Feigin and Cherry’s Textbook of Pediatric Infectious Diseases, 6th ed.; Feigin, R.D., Cherry, J.D., Demmler-Harrison, G.J., Kaplan, S.L., Eds.; Saunders: Philadelphia, PA, USA, 2009; pp. 3178–3227. [Google Scholar] [CrossRef]
- Brook, I. Use of oral cephalosporins in the treatment of acute otitis media in children. Int. J. Antimicrob. Agents 2004, 24, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Shirley, D. High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold. Phys. Rev. B 1972, 5, 4709–4714. [Google Scholar] [CrossRef]
- Scofield, J. Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron. Spectrosc. Relat. Phenom. 1976, 8, 129. [Google Scholar] [CrossRef]
ZnO Tribocatalysts | Crystallite Size, nm | Parameters, Å |
---|---|---|
Hydrothermal | 42.4 | a, b = 3.250 |
c: 5.207 | ||
Sol–gel | 36.9 | a, b: 3.2407 |
c: 5.2017 |
Zinc Oxide Powders | 100 rpm | 300 rpm | 500 rpm | |||
---|---|---|---|---|---|---|
k, h−1 | D, % | k, h−1 | D, % | k, h−1 | D, % | |
hydrothermal | 0.0265 | 46.90 | 0.0425 | 61.38 | 0.0592 | 74.65 |
sol–gel | 0.0402 | 60.68 | 0.0637 | 78.94 | 0.0807 | 88.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaneva, N. Tribocatalysis of Cefuroxime Axetil: Effect of Stirring Speed, Magnetic Rods, and Beaker Material Type. Inorganics 2025, 13, 301. https://doi.org/10.3390/inorganics13090301
Kaneva N. Tribocatalysis of Cefuroxime Axetil: Effect of Stirring Speed, Magnetic Rods, and Beaker Material Type. Inorganics. 2025; 13(9):301. https://doi.org/10.3390/inorganics13090301
Chicago/Turabian StyleKaneva, Nina. 2025. "Tribocatalysis of Cefuroxime Axetil: Effect of Stirring Speed, Magnetic Rods, and Beaker Material Type" Inorganics 13, no. 9: 301. https://doi.org/10.3390/inorganics13090301
APA StyleKaneva, N. (2025). Tribocatalysis of Cefuroxime Axetil: Effect of Stirring Speed, Magnetic Rods, and Beaker Material Type. Inorganics, 13(9), 301. https://doi.org/10.3390/inorganics13090301