Extended Synthetic Pathways Towards Dialkyl-Substituted Phosphanylboranes
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. Synthesis and Characterization of Compounds 2–10
3.2.1. Synthesis and Characterization of 2
3.2.2. Synthesis and Characterization of 3
3.2.3. Synthesis and Characterization of 4
3.2.4. Synthesis and Characterization of 5
3.2.5. Synthesis and Characterization of 6
3.2.6. Synthesis and Characterization of 7
3.2.7. Synthesis and Characterization of 8
3.2.8. Synthesis and Characterization of 9
3.2.9. Synthesis and Characterization of 10
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wiebe, M.A.; Staubitz, A.; Manners, I. Dehydrocoupling of Phosphine-Borane Adducts Under Ambient Conditions Using Aminoboranes as Hydrogen Acceptors. Chem. Eur. J. 2025, 31, e202403849. [Google Scholar] [CrossRef] [PubMed]
- Gayen, S.; Ghosh, S. Recent Advances of B−P Coupling Reactions: Conventional and Efficient Alternative Routes. Eur. J. Inorg. Chem. 2025, 28, e202400732. [Google Scholar] [CrossRef]
- Race, J.J.; Heyam, A.; Wiebe, M.A.; Hernandez, J.D.-G.; Ellis, C.E.; Lei, S.; Manners, I.; Weller, A.S. Polyphosphinoborane Block Copolymer Synthesis Using Catalytic Reversible Chain-Transfer Dehydropolymerization. Angew. Chem. Int. Ed. 2023, 62, e202216106. [Google Scholar] [CrossRef] [PubMed]
- Oldroyd, N.L.; Chitnis, S.S.; Annibale, V.T.; Arz, M.I.; Sparkes, H.A.; Manners, I. Metal-free dehydropolymerisation of phosphine-boranes using cyclic (alkyl)(amino)carbenes as hydrogen acceptors. Nat. Commun. 2019, 10, 1370. [Google Scholar] [CrossRef]
- Turner, J.R.; Resendiz-Lara, D.A.; Jurca, T.; Schäfer, A.; Vance, J.R.; Beckett, L.; Whittell, G.R.; Musgrave, R.A.; Sparkes, H.A.; Manners, I. Synthesis, Characterization, and Properties of Poly(aryl)phosphinoboranes Formed via Iron-Catalyzed Dehydropolymerization. Macromol. Chem. Phys. 2017, 218, 1700120. [Google Scholar] [CrossRef]
- Schäfer, A.; Jurca, T.; Turner, J.; Vance, J.R.; Lee, K.; Du, V.A.; Haddow, M.F.; Whittell, G.R.; Manners, I. Iron-Catalyzed Dehydropolymerization: A Convenient Route to Poly(phosphinoboranes) with Molecular-Weight Control. Angew. Chem. Int. Ed. 2015, 54, 4836–4841. [Google Scholar] [CrossRef]
- Pandey, S.; Lönnecke, P.; Hawkins, E.H. Phosphorus–Boron-Based Polymers Obtained by Dehydrocoupling of Ferrocenylphosphine–Borane Adducts. Eur. J. Inorg. Chem. 2014, 2014, 2456–2465. [Google Scholar] [CrossRef]
- Clark, T.L.; Rodezno, J.M.; Clendenning, S.B.; Aouba, S.; Brodersen, P.M.; Lough, A.J.; Ruda, H.E.; Manners, I. Rhodium-Catalyzed Dehydrocoupling of Fluorinated Phosphine–Borane Adducts: Synthesis, Characterization, and Properties of Cyclic and Polymeric Phosphinoboranes with Electron-Withdrawing Substituents at Phosphorus. Chem. Eur. J. 2005, 11, 4526–4534. [Google Scholar] [CrossRef]
- Dorn, H.; Rodenzo, J.M.; Brunnhöfer, B.; Rivard, E.; Massey, J.A.; Manners, I. Synthesis, Characterization, and Properties of the Polyphosphinoboranes [RPH−BH2]n (R = Ph, iBu, p-nBuC6H4, p-dodecylC6H4): Inorganic Polymers with a Phosphorus−Boron Backbone. Macromolecules 2003, 36, 291–297. [Google Scholar] [CrossRef]
- Burg, A.B.; Wagner, R.I. Chemistry of P-B Bonding: The Phosphinoborines and Their Polymers. J. Am. Chem. Soc. 1953, 75, 3872–3877. [Google Scholar] [CrossRef]
- Onodera, G.; Kumagae, H.; Nakamura, D.; Hayasaki, T.; Fukuda, T.; Kimura, M. Direct benzylation of amines with benzylic alcohols catalyzed by palladium/phosphine-borane catalyst system. Tetrahedron Lett. 2020, 61, 152537. [Google Scholar] [CrossRef]
- Morris, L.J.; Hill, M.S.; Mahon, M.F.; Manners, I.; Patrick, B.O. Alkaline-Earth Derivatives of Diphenylphosphine–Borane. Organometallics 2020, 39, 4195–4207. [Google Scholar] [CrossRef]
- Bas de Jong, G.; Ortega, N.; Lutz, M.; Lammertsma, K.; Slootweg, J.C. Easy Access to Phosphine-Borane Building Blocks. Chem. Eur. J. 2020, 26, 15944. [Google Scholar] [CrossRef] [PubMed]
- Lemouzy, S.; Membrat, R.; Oliviere, E.; Jean, M.; Albalat, M.; Nuel, D.; Giordano, L.; Hérault, D.; Buono, G. Umpolung Reactivity of in Situ Generated Phosphido-Boranes: An Entry to P-Stereogenic Aminophosphine-Boranes. J. Org. Chem. 2019, 84, 4551–4557. [Google Scholar] [CrossRef]
- Konishi, S.; Iwai, T.; Sawamura, M. Synthesis, Properties, and Catalytic Application of a Triptycene-Type Borate-Phosphine Ligand. Organometallics 2018, 37, 1876–1883. [Google Scholar] [CrossRef]
- Dutartre, M.; Bayardon, J.; Jugé, S. Applications and stereoselective syntheses of P-chirogenic phosphorus compounds. Chem. Soc. Rev. 2016, 45, 5771–5794. [Google Scholar] [CrossRef]
- Alayrac, C.; Lakhdar, S.; Abdellah, I.; Gaumont, A.-C. Recent Advances in Synthesis of P-BH3 Compounds. Top. Curr. Chem. 2014, 361, 1. [Google Scholar] [CrossRef]
- Amgoune, A.; Bouhadir, G.; Bourissou, D. Reactions of Phosphine-Boranes and Related Frustrated Lewis Pairs with Transition Metal Complexes. Top. Curr. Chem. 2013, 334, 281. [Google Scholar] [CrossRef]
- Imamoto, T.; Tamura, K.; Zhang, Z.; Horiuchi, Y.; Sugiya, M.; Yoshida, K.; Yanagisawa, A.; Grindnev, I.D. Rigid P-Chiral Phosphine Ligands with tert-Butylmethylphosphino Groups for Rhodium-Catalyzed Asymmetric Hydrogenation of Functionalized Alkenes. J. Am. Chem. Soc. 2012, 134, 1754–1769. [Google Scholar] [CrossRef]
- Consiglio, G.B.; Queval, P.; Harrison-Marchand, A.; Mordini, A.; Lohier, J.-F.; Delacroix, O.; Gaumont, A.-C.; Gérard, H.; Maddaluno, J.; Oulyadi, H. Ph2P(BH3)Li: From Ditopicity to Dual Reactivity. J. Am. Chem. Soc. 2011, 133, 6472–6480. [Google Scholar] [CrossRef]
- Geier, S.J.; Gilbert, T.M.; Stephan, D.W. Synthesis and Reactivity of the Phosphinoboranes R2PB(C6F5)2. Inorg. Chem. 2011, 50, 336–344. [Google Scholar] [CrossRef]
- Staubitz, A.; Robertson, A.P.M.; Sloan, M.E.; Manners, I. Amine− and Phosphine−Borane Adducts: New Interest in Old Molecules. Chem. Rev. 2010, 110, 4023–4078. [Google Scholar] [CrossRef] [PubMed]
- Janus, D.A.; Lieven, C.J.; Crowe, M.E.; Levin, L.A. Polyester-based microdisc systems for sustained release of neuroprotective phosphine-borane complexes. Pharm. Dev. Technol. 2018, 23, 882–889. [Google Scholar] [CrossRef]
- Niemuth, N.J.; Thompson, A.F.; Crowe, M.E.; Lieven, C.J.; Levin, L.A. Intracellular disulfide reduction by phosphine-borane complexes: Mechanism of action for neuroprotection. Neurochem. Int. 2016, 99, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Crowe, M.E.; Lieven, C.J.; Thompson, A.F.; Sheibani, N.; Levin, L.A. Borane-protected phosphines are redox-active radioprotective agents for endothelial cells. Redox Biol. 2015, 6, 73–79. [Google Scholar] [CrossRef] [PubMed]
- LaFortune, J.H.W.; Qu, Z.-W.; Bamford, K.L.; Trofimova, A.; Westcott, S.A.; Stephan, D.W. Double Phosphinoboration of CO2: A Facile Route to Diphospha-Ureas. Chem. Eur. J. 2019, 25, 12063–12067. [Google Scholar] [CrossRef]
- Szynkiewicz, N.; Ordyszewska, A.; Chojnacki, J.; Grubba, R. Diaminophosphinoboranes: Effective reagents for phosphinoboration of CO2. RSC Adv. 2019, 9, 27749–27753. [Google Scholar] [CrossRef]
- Courtemanche, M.-A.; Légaré, M.-A.; Maron, L.; Fontaine, F.-G. A Highly Active Phosphine–Borane Organocatalyst for the Reduction of CO2 to Methanol Using Hydroboranes. J. Am. Chem. Soc. 2013, 135, 9326–9329. [Google Scholar] [CrossRef]
- Geier, S.J.; Gilbert, T.M.; Stephan, D.W. Activation of H2 by Phosphinoboranes R2PB(C6F5)2. J. Am. Chem. Soc. 2008, 130, 12632–12633. [Google Scholar] [CrossRef]
- Welch, G.C.; Juan, R.R.S.; Masuda, J.D.; Stephan, D.W. Reversible, Metal-Free Hydrogen Activation. Science 2006, 314, 1124–1126. [Google Scholar] [CrossRef]
- Brunel, J.M.; Faure, B.; Maffei, M. Phosphane–boranes: Synthesis, characterization and synthetic applications. Coord. Chem. Rev. 1998, 178–180, 665–698. [Google Scholar] [CrossRef]
- Yamada, M.; Goto, M.; Yamano, M. Direct conversion of sec-phosphine oxides to sec-phosphine-boranes using BH3. Tetrahedron Lett. 2021, 67, 152837. [Google Scholar] [CrossRef]
- Xiao, Y.; Yang, X.; Li, H.; Yin, Y.; Du, J.; Liang, J.; Duan, W.; Yu, L. Palladium-Catalyzed Coupling of Aryl Chlorides with Secondary Phosphines to Construct Unsymmetrical Tertiary Phosphines. Tetrahedron 2021, 86, 10564–10569. [Google Scholar] [CrossRef]
- Marquardt, C.; Adolf, A.; Stauber, A.; Bodensteiner, M.; Virovets, A.V.; Timoshkin, A.; Scheer, M. The Lewis Base Stabilized Parent Arsanylborane H2AsBH2⋅NMe3. Angew. Chem. Int. Ed. 2013, 19, 11887–11891. [Google Scholar] [CrossRef]
- Schwan, K.-C.; Timoshkin, A.; Zabel, M.; Scheer, M. Lewis Base Stabilized Phosphanylborane. Chem. Eur. J. 2006, 12, 4900–4908. [Google Scholar] [CrossRef]
- Braese, J.; Schinabeck, A.; Bodensteiner, M.; Yersin, H.; Timoshkin, A.Y.; Scheer, M. Gold(I) Complexes Containing Phosphanyl- and Arsanylborane Ligands. Chem. Eur. J. 2018, 24, 10073–10077. [Google Scholar] [CrossRef] [PubMed]
- Marquardt, C.; Hegen, O.; Kahoun, T.; Scheer, M. Oxidation of Substituted Phosphanylboranes with Chalcogens. Chem. Eur. J. 2017, 23, 4397–4404. [Google Scholar] [CrossRef]
- Thoms, C.; Marquardt, C.; Timoshkin, A.Y.; Bodensteiner, M.; Scheer, M. The Oligomerization of Phosphinoborane by Titanium Complexes. Angew. Chem. Int. Ed. 2013, 52, 5150–5154. [Google Scholar] [CrossRef]
- Marquardt, C.; Jurca, T.; Schwan, K.-C.; Stuaber, A.; Virovets, A.V.; Whittell, G.R.; Manners, I.; Scheer, M. Metal-Free Addition/Head-to-Tail Polymerization of Transient Phosphinoboranes, RPH-BH2: A Route to Poly(alkylphosphinoboranes). Angew. Chem. Int. Ed. 2015, 54, 13782–13786. [Google Scholar] [CrossRef]
- Marquardt, C.; Kahoun, T.; Stauber, A.; Balázs, G.; Bodensteiner, M.; Timoshkin, A.Y.; Scheer, M. Anionic Chains of Parent Pnictogenylboranes. Angew. Chem. Int. Ed. 2016, 55, 14828–14832. [Google Scholar] [CrossRef] [PubMed]
- Marquardt, C.; Thoms, C.; Stauber, A.; Balázs, G.; Bodensteiner, M.; Scheer, M. Cationic Chains of Phosphanyl- and Arsanylboranes. Angew. Chem. Int. Ed. 2014, 53, 3727–3730. [Google Scholar] [CrossRef] [PubMed]
- Hills, I.D.; Netherton, M.R.; Fu, G.C. Toward an Improved Understanding of the Unusual Reactivity of Pd0/Trialkylphosphane Catalysts in Cross-Couplings of Alkyl Electrophiles: Quantifying the Factors That Determine the Rate of Oxidative Addition. Angew. Chem. Int. Ed. 2003, 42, 5749–5752. [Google Scholar] [CrossRef]
- Power, P.P. Boron-Phosphorus Compounds and Multiple Bonding. Angew. Chem. Int. Ed. 1990, 29, 449–460. [Google Scholar] [CrossRef]
- Stauber, A.; Jurca, T.; Marquardt, C.; Fleischmann, M.; Seidl, M.; Whittell, G.R.; Manners, I.; Scheer, M. A Convenient Route to Monoalkyl-Substituted Phosphanylboranes (HRP–BH2–NMe3): Prospective Precursors to Poly[(alkylphosphino)boranes]. Eur. J. Inorg. Chem. 2016, 2016, 2684–2687. [Google Scholar] [CrossRef]
- Lehnfeld, F.; Oswald, T.; Beckhaus, R.; Scheer, M. Mono-Alkyl-Substituted Phosphinoboranes (HRP–BH2–NMe3) as Precursors for Poly(alkylphosphinoborane)s: Improved Synthesis and Comparative Study. Inorganics 2023, 11, 377. [Google Scholar] [CrossRef]
- Kuzu, M.Y.; Schmidt, A.; Strohmann, C. Enantioselective Synthesis of Phosphine Boranes via Crystallization-Induced Dynamic Resolution of Lithiated Intermediate by Understanding the Underlying Epimerization Process. Angew. Chem. Int. Ed. 2024, 63, e202319665. [Google Scholar] [CrossRef]
- Headley, C.E.; Marsden, S.P. Synthesis and Application of P-Stereogenic Phosphines as Superior Reagents in the Asymmetric Aza-Wittig Reaction. J. Org. Chem. 2007, 72, 7185. [Google Scholar] [CrossRef]
- Vedejs, E.; Jure, M. Efficiency in Nonenzymatic Kinetic Resolution. Angew. Chem. Int. Ed. 2005, 44, 3974–4001. [Google Scholar] [CrossRef]
- Williams, B.S.; Dani, P.; Lutz, M.; Spek, A.L.; van Koten, G. Development of the First P-Stereogenic PCP Pincer Ligands, Their Metallation by Palladium and Platinum, and Preliminary Catalysis. Helv. Chim. Acta 2001, 84, 3519–3530. [Google Scholar] [CrossRef]
- Vedej, E.; Donde, Y. Stereogenic P-Trisubstituted Phosphorus by Crystallization-Induced Asymmetric Transformation: A Practical Synthesis of Phenyl(o-anisyl)methylphosphine Borane. J. Am. Chem. Soc. 1997, 119, 9293–9294. [Google Scholar] [CrossRef]
- Tam, E.C.Y.; Maynard, N.A.; Apperley, D.C.; Smith, J.D.; Coles, M.P.; Fulton, J.R. Group 14 Metal Terminal Phosphides: Correlating Structure with |JMP|. Inorg. Chem. 2012, 51, 9403–9415. [Google Scholar] [CrossRef] [PubMed]
- Marquardt, C.; Hegen, O.; Hautmann, M.; Balázs, G.; Bodensteiner, M.; Virovets, A.V.; Timoshkin, A.Y.; Scheer, M. Isolation and Characterization of Lewis Base Stabilized Monomeric Parent Stibanylboranes. Angew. Chem. Int. Ed. 2015, 127, 13122–13125. [Google Scholar] [CrossRef] [PubMed]
- Bondi, A. van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441. [Google Scholar] [CrossRef]
- Agilent. CrysAlisPro 2014; Agilent Technologies Ltd.: Yarnton, UK, 2014. [Google Scholar]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT-Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. A 2015, A71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C 2015, C71, 3–8. [Google Scholar] [CrossRef]
δ [ppm] (J [Hz]) | |||||
---|---|---|---|---|---|
1H | 31P | 11B | |||
PH (1JPH) | BH2 (1JBH) | N(CH3)3 | PtBuR (1JPB) | BH2 | |
1 | 2.60 (197) | 2.67 (104) | 1.94 | −67.6 (48) | −6.0 |
2 | 5.47 (396) | 2.15 (113) | 2.83 | −15.7 (78) | −10.3 |
3 | 5.29 (380) | 2.40 (110) | 2.81 | −7.4 (73) | −11.1 |
4 | 6.41 (390) | 2.27–2.61 | 2.89 | −10.4 (70) | −10.9 |
Compound | 1 | 2 | 3 | 4 |
---|---|---|---|---|
P−B | 1.985(2) | 1.968(5) | 1.956(6)–1.966(5) | 1.90(2)–2.01(2) |
B−N | 1.621(2) | 1.594(5) | 1.599(7)–1.602(8) | 1.55(3)–1.69(4) |
P−C | 1.890(2) | 1.804(5)–1.832(4) | 1.818(5)–1.863(5) | 1.72(2)–1.86(2) |
P−B−N | 108.9(1) | 112.4(3) | 114.0(3)–115.4(3) | 116.9(2)–118.2(2) |
C−P−C | - | 109.7(2) | 108.7(2)–109.2(2) | 102.8(1)–106.5(9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moussa, M.E.; Hegen, O.; Riesinger, C.; Scheer, M. Extended Synthetic Pathways Towards Dialkyl-Substituted Phosphanylboranes. Inorganics 2025, 13, 239. https://doi.org/10.3390/inorganics13070239
Moussa ME, Hegen O, Riesinger C, Scheer M. Extended Synthetic Pathways Towards Dialkyl-Substituted Phosphanylboranes. Inorganics. 2025; 13(7):239. https://doi.org/10.3390/inorganics13070239
Chicago/Turabian StyleMoussa, Mehdi Elsayed, Oliver Hegen, Christoph Riesinger, and Manfred Scheer. 2025. "Extended Synthetic Pathways Towards Dialkyl-Substituted Phosphanylboranes" Inorganics 13, no. 7: 239. https://doi.org/10.3390/inorganics13070239
APA StyleMoussa, M. E., Hegen, O., Riesinger, C., & Scheer, M. (2025). Extended Synthetic Pathways Towards Dialkyl-Substituted Phosphanylboranes. Inorganics, 13(7), 239. https://doi.org/10.3390/inorganics13070239