Advances in Visible Light Communication Technologies and Applications
Abstract
:1. Introduction
2. Architecture of VLC Systems
3. Key Technologies for VLC Systems
3.1. Channel Characterization
3.2. Light Modulation
3.3. Physical Layer Security
3.4. NOMA
3.5. Machine Learning
4. VLC Applications
4.1. Indoor Communication
4.2. Positioning
4.3. Vehicular Communication
4.4. Underwater Communication
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
VLC | Visible light communication |
RF | Radio frequency |
ML | Machine learning |
LED | Light emitting diode |
OWC | Optical wireless communication |
MAC | Media access control |
PLS | Physical layer security |
MA | multiple access |
NOMA | Non-orthogonal multiple access |
IM/DD | Intensity modulation with direct detection |
LOS | Line of sight |
NLOS | Non-line of sight |
CSI | Channel state information |
MR | Movement-rotation |
GBSM | Geometry-based stochastic model |
MIMO | Multiple input multiple output |
STFCF | Space-time-frequency correlation function |
RMS | Root mean square |
OOK | On-off keying |
PWM | Pulse width modulation |
PPM | Pulse position modulation |
OFDM | Orthogonal frequency division multiplexing |
PAM4 | 4-level pulse amplitude modulation |
MPI | Multipath interference |
DSP | Digital signal processing |
SNR | Signal-to-noise ratio |
IM | Index modulation |
DHT | Discrete Hartley transform |
DFT | Discrete Fourier transform |
LCI | Lightweight channel-independent |
SIC | Successive interference cancellation |
OMA | Orthogonal multiple access |
DNN | Deep neural network |
CNN | Convolutional neural network |
ANN | Artificial neural network |
UAV | Unmanned aerial vehicle |
GRU | Gated recurrent unit |
CC | Collaborative constellation |
MSE | Mean square error |
RNN | Recurrent neural network |
LSTM | Long-short-term-memory |
GPS | Global positioning system |
RSS | Received signal strength |
TOA | Time-of-arrival |
TDOA | Time difference of arrival |
AOA | Angle of arrival |
PD | Photodiode |
UE | User equipment |
VLP | Visible light-based positioning |
CIR | Channel impulse response |
ITS | Intelligent transportation systems |
V-VLC | Vehicular VLC |
D2D | Device-to-device |
V2V | Vehicle-to-vehicle |
PCF | Polynomial curve fitting |
References
- Li, X.; Huo, Y.; Zhang, R.; Hanzo, L. User-Centric Visible Light Communications for Energy-Efficient Scalable Video Streaming. IEEE Trans. Green Commun. Netw. 2017, 1, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Haas, H. Opportunities and Challenges of Future LiFi. In Proceedings of the 2019 IEEE Photonics Conference (IPC), San Antonio, TX, USA, 29 September–3 October 2019; pp. 1–12. [Google Scholar]
- Matheus, L.E.M.; Vieira, A.B.; Vieira, L.F.M.; Vieira, M.A.M.; Gnawali, O. Visible Light Communication: Concepts, Applications and Challenges. IEEE Commun. Surv. Tutor. 2019, 21, 3204–3237. [Google Scholar] [CrossRef]
- Obeed, M.; Salhab, A.M.; Alouini, M.-S.; Zummo, S.A. On Optimizing VLC Networks for Downlink Multi-User Transmission: A Survey. IEEE Commun. Surv. Tutor. 2019, 21, 2947–2976. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Soltani, M.D.; Zhou, L.; Safari, M.; Haas, H. Hybrid LiFi and WiFi Networks: A Survey. IEEE Commun. Surv. Tutor. 2021, 23, 1398–1420. [Google Scholar] [CrossRef]
- Al-Kinani, A.; Wang, C.-X.; Zhou, L.; Zhang, W. Optical Wireless Communication Channel Measurements and Models. IEEE Commun. Surv. Tutor. 2018, 20, 1939–1962. [Google Scholar] [CrossRef]
- Luo, J.; Fan, L.; Li, H. Indoor Positioning Systems Based on Visible Light Communication: State of the Art. IEEE Commun. Surv. Tutor. 2017, 19, 2871–2893. [Google Scholar] [CrossRef]
- Căilean, A.-M.; Dimian, M. Current Challenges for Visible Light Communications Usage in Vehicle Applications: A Survey. IEEE Commun. Surv. Tutor. 2017, 19, 2681–2703. [Google Scholar] [CrossRef]
- Memedi, A.; Dressler, F. Vehicular Visible Light Communications: A Survey. IEEE Commun. Surv. Tutor. 2021, 23, 161–181. [Google Scholar] [CrossRef]
- Arfaoui, M.A.; Soltani, M.D.; Tavakkolnia, I.; Ghrayeb, A.; Safari, M.; Assi, C.M.; Haas, H. Physical layer security for visible light communication systems: A survey. IEEE Commun. Surv. Tutor. 2020, 22, 1887–1908. [Google Scholar] [CrossRef] [Green Version]
- Gancarz, J.; Elgala, H.; Little, T.D.C. Impact of lighting requirements on VLC systems. IEEE Commun. Mag. 2013, 12, 34–41. [Google Scholar] [CrossRef]
- Zeng, Z.; Fu, S.; Zhang, H.; Dong, Y.; Cheng, J. A Survey of Underwater Optical Wireless Communications. IEEE Commun. Surv. Tutor. 2017, 1, 204–238. [Google Scholar] [CrossRef]
- Khalighi, M.A.; Uysal, M. Survey on Free Space Optical Communication: A Communication Theory Perspective. IEEE Commun. Surv. Tutor. 2014, 4, 2231–2258. [Google Scholar] [CrossRef]
- Kazemi, H.; Safari, M.; Haas, H. A Wireless Optical Backhaul Solution for Optical Attocell Networks. IEEE Trans. Wireless Commun. 2019, 2, 807–823. [Google Scholar] [CrossRef] [Green Version]
- Eldeeb, H.B.; Yanmaz, E.; Uysal, M. MAC Layer Performance of Multi-Hop Vehicular VLC Networks with CSMA/CA. In Proceedings of the 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Online, 20–22 July 2020. [Google Scholar]
- Shakil Sejan, M.A.; Habibur Rahman, M.; Chung, W.-Y. Optical OFDM Modulation in Multi-hop VLC for Long Distance Data Transmission Over 30 meters. In Proceedings of the IEEE Photonics Conference (IPC), Vancouver, BC, Canada, 28 September–1 October 2020. [Google Scholar]
- Bian, R.; Tavakkolnia, I.; Haas, H. 15.73 Gb/s Visible Light Communication with Off-the-Shelf LEDs. J. Light. Technol. 2019, 10, 2418–2424. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Islim, M.S.; Das, S.; Spark, A.; Videv, S.; Rudy, P.; Raring, J. 26 Gbit/s LiFi System with Laser-Based White Light Transmitter. J. Light. Technol. 2022, 5, 1432–1439. [Google Scholar] [CrossRef]
- Fahs, B.; Chowdhury, A.J.; Hella, M.M. A 12-m 2.5-Gb/s Lighting Compatible Integrated Receiver for OOK Visible Light Communication Links. J. Light. Technol. 2016, 16, 3768–3775. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Kang, J.; Yue, C.P. A 75-Mb/s RGB PAM-4 Visible Light Communication Transceiver System with Pre- and Post-Equalization. J. Light. Technol. 2021, 5, 1381–1390. [Google Scholar] [CrossRef]
- Yang, X.; Tong, Z.; Zhang, H.; Zhang, Y.; Dai, Y.; Zhang, C.; Xu, J. 7-M/130-Mbps LED-to-LED Underwater Wireless Optical Communication Based on Arrays of Series-Connected LEDs and a Coaxial Lens Group. J. Light. Technol. 2022, 17, 5901–5909. [Google Scholar] [CrossRef]
- Chen, X.; Yang, X.; Tong, Z.; Dai, Y.; Li, X.; Zhao, M.; Xu, J. 150 m/500 Mbps Underwater Wireless Optical Communication Enabled by Sensitive Detection and the Combination of Receiver-Side Partial Response Shaping and TCM Technology. J. Light. Technol. 2021, 14, 4614–4621. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, M.; Wang, X.; Ren, X. Design and Implementation of More Than 50m Real-Time Underwater Wireless Optical Communication System. J. Light. Technol. 2022, 12, 3654–3668. [Google Scholar] [CrossRef]
- Al-Kinani, A.; Sun, J.; Wang, C.-X.; Zhang, W.; Ge, X.; Haas, H. A 2-D Non-Stationary GBSM for Vehicular Visible Light Communication Channels. Trans. Wirel. Commun. 2018, 12, 7981–7992. [Google Scholar] [CrossRef]
- Jani, M.; Garg, P.; Gupta, A. Performance Analysis of a Mixed Cooperative PLC–VLC System for Indoor Communication Systems. IEEE Syst. J. 2020, 1, 469–476. [Google Scholar] [CrossRef]
- Dehghani Soltani, M.; Wu, X.; Safari, M.; Haas, H. Bidirectional User Throughput Maximization Based on Feedback Reduction in LiFi Networks. IEEE Trans. Commun. 2018, 7, 3172–3186. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Zhang, R.; Li, X.; Wang, Q.; Hanzo, L. Dynamic Throughput Maximization for the User-Centric Visible Light Downlink in the Face of Practical Considerations. Trans. Wirel. Commun. 2018, 8, 5001–5015. [Google Scholar] [CrossRef]
- Chen, J.; Tavakkolnia, I.; Chen, C.; Wang, Z.; Haas, H. The Movement-Rotation (MR) Correlation Function and Coherence Distance of VLC Channels. J. Light. Technol. 2020, 24, 6759–6770. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, C.-X.; Huang, J.; Chen, M.; Haas, H. A Novel 3D Non-Stationary Channel Model for 6G Indoor Visible Light Communication Systems. Trans. Wirel. Commun. 2022. [Google Scholar] [CrossRef]
- Roberts, R.D.; Rajagopal, S.; Lim, S.-K. IEEE 802.15.7 physical layer summary. In Proceedings of the 2011 IEEE GLOBECOM Workshops (GC Wkshps), Houston, TX, USA, 5–9 December 2011; pp. 772–776. [Google Scholar]
- Sejan, M.A.S.; Naik, R.P.; Lee, B.-G.; Chung, W.-Y. A Bandwidth Efficient Hybrid Multilevel Pulse Width Modulation for Visible Light Communication System: Experimental and Theoretical Evaluation. IEEE Open J. Commun. Soc. 2022, 1991–2004. [Google Scholar] [CrossRef]
- Chitturi, M.V.; Benekohal, R.F.; Girianna, M. Turn-on and turn-off characteristics of incandescent and light-emitting diode signal modules. ITE J. 2005, 69, 69–73. [Google Scholar]
- Yan, K.; Li, Z.; Cheng, M.; Wu, H.-C. QoS Analysis and Signal Characteristics for Short-Range Visible-Light Communications. IEEE Trans. Veh. Technol. 2021, 7, 6726–6734. [Google Scholar] [CrossRef]
- Zhong, K.; Zhou, X.; Gui, T.; Tao, L.; Gao, Y.; Chen, W.; Lu, C. Experimental study of PAM-4 CAP-16 and DMT for 100 Gb/s short reach optical transmission systems. Opt. Exp. 2015, 2, 1176–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okuda, S.; Yamatoya, T.; Yamaguchi, T.; Azuma, Y.; Tanaka, Y. High-power low-modulating-voltage 1.5 μm-band CWDM uncooled EMLs for 800 Gb/s (53.125 Gbaud-PAM4) transceivers. In Proceedings of the 2021 Optical Fiber Communications Conference and Exhibition (OFC), San Francisco, CA, USA, 6–10 June 2021. [Google Scholar]
- Rahman, T.; Calabrò, S.; Stojanovic, N.; Hossein, M.S.B.; Wei, J.; Kuschnerov, M.; Xie, C. Blind adaptation of partial response equalizers for 200 Gb/s per lane IM/DD systems. In Proceedings of the 2021 European Conference on Optical Communication (ECOC), Bordeaux, France, 13–16 September 2021; pp. 1–3. [Google Scholar]
- Yamamoto, S.; Taniguchi, H.; Nakamura, M.; Kisaka, Y. O-Band 10-km PAM transmission using nonlinear-spectrum-shaping encoder and transition-likelihood-based decoder with symbol- and likelihood-domain feedbacks. In Proceedings of the 2021 European Conference on Optical Communication (ECOC), Bordeaux, France, 13–16 September 2021; pp. 1–4. [Google Scholar]
- Huang, C.; Song, H.; Dai, L.; Cheng, M.; Yang, Q.; Tang, M.; Deng, L. Optical Multipath Interference Mitigation for High-Speed PAM4 IMDD Transmission System. J. Light. Technol. 2022, 16, 5490–5501. [Google Scholar] [CrossRef]
- Elgala, H.; Mesleh, R.; Haas, H.; Pricope, B. OFDM visible light wireless communication based on white LEDs. In Proceedings of the 2007 IEEE 65th Vehicular Technology Conference—VTC2007-Spring, Dublin, Ireland, 22–25 April 2007; pp. 2185–2189. [Google Scholar]
- Armstrong, J. OFDM for optical communications. J. Light. Technol. 2009, 3, 189–204. [Google Scholar] [CrossRef]
- Carruthers, J.B.; Kahn, J.M. Multiple-subcarrier modulation for nondirected wireless infrared communication. IEEE J. Sel. Areas Commun. 1996, 3, 538–546. [Google Scholar] [CrossRef]
- Lee, S.C.J.; Randel, S.; Breyer, F.; Koonen, A.M.J. PAM-DMT for intensity-modulated and direct-detection optical communication systems. IEEE Photon. Technol. Lett. 2009, 23, 1749–1751. [Google Scholar] [CrossRef]
- Ranjha, B.; Kavehrad, M. Hybrid asymmetrically clipped OFDM-based IM/DD optical wireless system. J. Opt. Commun. Netw. 2014, 4, 387–396. [Google Scholar] [CrossRef]
- Wang, Q.; Qian, C.; Guo, X.; Wang, Z.; Cunningham, D.G.; White, I.H. Layered ACO-OFDM for intensity-modulated direct-detection optical wireless transmission. Opt. Express 2015, 9, 12382–12393. [Google Scholar] [CrossRef] [Green Version]
- Bai, R.; Wang, Q.; Wang, Z. Asymmetrically clipped absolute value optical OFDM for intensity-modulated direct-detection systems. J. Lightw. Technol. 2017, 17, 3680–3691. [Google Scholar] [CrossRef] [Green Version]
- Bai, R.; Hranilovic, S. Absolute Value Layered ACO-OFDM for Intensity-Modulated Optical Wireless Channels. IEEE Trans. Commun. 2020, 11, 7098–7110. [Google Scholar] [CrossRef]
- Basar, E.; Wen, M.; Mesleh, R.; Di Renzo, M.; Xiao, Y.; Haas, H. Index Modulation Techniques for Next-Generation Wireless Networks. IEEE Access 2017, 5, 16693–16746. [Google Scholar] [CrossRef]
- Xu, X.-Y.; Zhang, Q.; Yue, D.-W. Orthogonal Frequency Division Multiplexing with Index Modulation Based on Discrete Hartley Transform in Visible Light Communications. IEEE Photonics J. 2022, 3, 1–10. [Google Scholar] [CrossRef]
- Classen, J.; Chen, J.; Steinmetzer, D.; Hollick, M.; Knightly, E. The spy next door: Eavesdropping on high throughput visible light communications. In Proceedings of the 2nd International Workshop on Visible Light Communications Systems, Paris, France, 11 September 2015; pp. 9–14. [Google Scholar]
- Yang, N.; Wang, L.; Geraci, G.; Elkashlan, M.; Yuan, J.; Di Renzo, M. Safeguarding 5G wireless communication networks using physical layer security. IEEE Commun. Mag. 2015, 4, 20–27. [Google Scholar] [CrossRef]
- Su, N.; Panayirci, E.; Koca, M.; Yesilkaya, A.; Poor, H.V.; Haas, H. Physical Layer Security for Multi-User MIMO Visible Light Communication Systems with Generalized Space Shift Keying. IEEE Trans. Commun. 2021, 4, 2585–2598. [Google Scholar] [CrossRef]
- Al-Moliki, Y.M.; Alresheedi, M.T.; Al-Harthi, Y. Chaos-based physical-layer encryption for OFDM-based VLC schemes with robustness against Known/chosen plaintext attacks. IET Optoelectron. 2019, 13, 124–133. [Google Scholar] [CrossRef]
- Al-Moliki, Y.M.; Alresheedi, M.T.; Al-Harthi, Y.; Alqahtani, A.H. Robust Lightweight-Channel-Independent OFDM-Based Encryption Method for VLC-IoT Networks. IEEE Internet Things J. 2022, 6, 4661–4676. [Google Scholar] [CrossRef]
- Melki, R.; Noura, H.N.; Chehab, A. Efficient & Secure Physical Layer Cipher Scheme for VLC Systems. In Proceedings of the 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 22–25 September 2019; pp. 1–6. [Google Scholar]
- Shiu, Y.-S.; Chang, S.Y.; Wu, H.-C.; Huang, S.C.-H.; Chen, H.-H. Physical layer security in wireless networks: A tutorial. IEEE Trans. Wirel. Commun. 2011, 2, 66–74. [Google Scholar] [CrossRef]
- Yin, L.; Popoola, W.O.; Wu, X.; Haas, H. Performance Evaluation of Non-Orthogonal Multiple Access in Visible Light Communication. IEEE Trans. Commun. 2016, 12, 5162–5175. [Google Scholar] [CrossRef] [Green Version]
- Marshoud, H.; Kapinas, V.M.; Karagiannidis, G.K.; Muhaidat, S. Non-orthogonal multiple access for visible light communications. IEEE Photon. Technol. Lett. 2016, 1, 51–54. [Google Scholar] [CrossRef] [Green Version]
- Marshoud, H.; Sofotasios, P.C.; Muhaidat, S.; Karagiannidis, G.K.; Sharif, B.S. Error performance of NOMA VLC systems. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–16. [Google Scholar]
- Hammadi, A.A.; Sofotasios, P.C.; Muhaidat, S.; Al-Qutayri, M.; Elgala, H. Non-orthogonal multiple access for hybrid VLC-RF networks with imperfect channel state information. IEEE Trans. Veh. Technol. 2020, 5, 4238–4253. [Google Scholar] [CrossRef]
- Le-Tran, M.; Vu, T.-H.; Kim, S. Performance Analysis of Optical Backhauled Cooperative NOMA Visible Light Communication. IEEE Trans. Veh. Technol. 2021, 12, 12932–12945. [Google Scholar] [CrossRef]
- Uday, T.; Kumar, A.; Natarajan, L. NOMA for Multiple Access Channel and Broadcast Channel in Indoor VLC. IEEE Wirel. Commun. Lett. 2021, 3, 609–613. [Google Scholar] [CrossRef]
- Naser, S.; Bariah, L.; Muhaidat, S.; Sofotasios, P.C.; Al-Qutayri, M.; Damiani, E.; Debbah, M. Toward Federated-Learning-Enabled Visible Light Communication in 6G Systems. IEEE Wirel. Commun. 2022, 29, 48–56. [Google Scholar] [CrossRef]
- Najla, M.; Mach, P.; Becvar, Z. Deep Learning for Selection Between RF and VLC Bands in Device-to-Device Communication. IEEE Wirel. Commun. Lett. 2020, 10, 1763–1767. [Google Scholar] [CrossRef]
- He, J.; Zhou, B. A Deep Learning-Assisted Visible Light Positioning Scheme for Vehicles with Image Sensor. IEEE Photonics J. 2022, 4, 1–7. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, M.; Yang, Z.; Luo, T.; Saad, W. Deep Learning for Optimal Deployment of UAVs with Visible Light Communications. IEEE Trans. Wirel. Commun. 2020, 11, 7049–7063. [Google Scholar] [CrossRef]
- Le-Tran, M.; Kim, S. Deep Learning-Based Collaborative Constellation Design for Visible Light Communication. IEEE Commun. Lett. 2020, 11, 2522–2526. [Google Scholar] [CrossRef]
- Wu, Z.-Y.; Ismail, M.; Serpedin, E.; Wang, J. Efficient Prediction of Link Outage in Mobile Optical Wireless Communications. IEEE Trans. Wirel. Commun. 2021, 2, 882–896. [Google Scholar] [CrossRef]
- Arfaoui, M.A.; Soltani, M.D.; Tavakkolnia, I.; Ghrayeb, A.; Assi, C.M.; Safari, M.; Haas, H. Measurements-Based Channel Models for Indoor LiFi Systems. IEEE Trans. Wirel. Commun. 2021, 2, 827–842. [Google Scholar] [CrossRef]
- Purwita, A.A.; Soltani, M.D.; Safari, M.; Haas, H. Terminal Orientation in OFDM-Based LiFi Systems. IEEE Trans. Wireless Commun. 2019, 8, 4003–4016. [Google Scholar] [CrossRef]
- Yeh, C.H.; Weng, J.H.; Chow, C.W.; Luo, C.M.; Xie, Y.R.; Chen, C.J.; Wu, M.C. 1.7 to 2.3 Gbps OOK LED VLC Transmission Based on 4 × 4 Color-Polarization-Multiplexing at Extremely Low Illumination. IEEE Photonics J. 2019, 4, 1–6. [Google Scholar] [CrossRef]
- Lan, H.; Yu, C.; Zhuang, Y.; Li, Y.; El-Sheimy, N. A novel Kalman filter with state constraint approach for the integration of multiple pedestrian navigation systems. Micromachines 2015, 6, 926–952. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, Y.; El-Sheimy, N. Tightly-coupled integration of WiFi and MEMS sensors on handheld devices for indoor pedestrian navigation. IEEE Sens. J. 2016, 1, 224–234. [Google Scholar] [CrossRef]
- Zhuang, Y.; Syed, Z.; Li, Y.; El-Sheimy, N. Evaluation of two WiFi positioning systems based on autonomous crowdsourcing of handheld devices for indoor navigation. IEEE Trans. Mobile Comput. 2016, 8, 1982–1995. [Google Scholar] [CrossRef]
- Zhuang, Y.; Yang, J.; Li, Y.; Qi, L.; El-Sheimy, N. Smartphone-based indoor localization with Bluetooth low energy beacons. Sensors 2016, 16, 596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, Y.; Hua, L.; Qi, L.; Yang, J.; Cao, P.; Cao, Y.; Haas, H. A Survey of Positioning Systems Using Visible LED Lights. IEEE Commun. Surv. Tutor. 2018, 3, 1963–1988. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Liu, A.; Lau, V. Joint user location and orientation estimation for visible light communication systems with unknown power emission. IEEE Trans. Wirel. Commun. 2019, 11, 5181–5195. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, H.; Liu, H.; Han, Z.; Ren, Z. Indoor High Precision Three-Dimensional Positioning System Based on Visible Light Communication Using Improved Hybrid Bat Algorithm. IEEE Photonics J. 2020, 5, 1–13. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, L. Intelligent and Practical Deep Learning Aided Positioning Design for Visible Light Communication Receivers. IEEE Commun. Lett. 2020, 3, 577–580. [Google Scholar] [CrossRef]
- Siegel, J.E.; Erb, D.C.; Sarma, S.E. A survey of the connected vehicle landscape—Architectures enabling technologies applications and development areas. IEEE Trans. Tell. Transp. Syst. 2018, 8, 2391–2406. [Google Scholar] [CrossRef] [Green Version]
- Béchadergue, B.; Chassagne, L.; Guan, H. Simultaneous Visible Light Communication and Distance Measurement Based on the Automotive Lighting. IEEE Trans. Intell. Veh. 2019, 4, 532–547. [Google Scholar] [CrossRef]
- Amjad, M.S.; Tebruegge, C.; Memedi, A.; Kruse, S.; Kress, C.; Scheytt, J.C.; Dressler, F. Towards an IEEE 802.11 Compliant System for Outdoor Vehicular Visible Light Communications. IEEE Trans. Veh. Technol. 2021, 6, 5749–5761. [Google Scholar] [CrossRef]
- Li, G.; Niu, W.; Ha, Y.; Hu, F.; Wang, J.; Yu, X.; Chi, N. Position-Dependent MIMO Demultiplexing Strategy for High-Speed Visible Light Communication in Internet of Vehicles. IEEE Internet Things J. 2022, 13, 10833–10850. [Google Scholar] [CrossRef]
- Rapson, C.J.; Seet, B.-C.; Chong, P.H.J.; Klette, R. Safety Assessment of Radio Frequency and Visible Light Communication for Vehicular Networks. IEEE Wirel. Commun. 2020, 1, 186–192. [Google Scholar] [CrossRef]
- Ata, Y.; Kiasaleh, K. On the performance of wireless optical communication systems in underwater channels. In Proceedings of the 2022 IEEE International Conference on Communications Workshops (ICC Workshops), Seoul, Republic of Korea, 16–20 May 2022; pp. 634–639. [Google Scholar]
Content Explored | H. Haas [2] | L. E. M. Matheus [3] | M. Obeed [4] | X. Wu [5] | A. Al-Kinani [6] | J. Luo [7] | A. -M. Căilean [8] | A. Memedi [9] | M. A. Arfaoui [10] | This Survey | |
---|---|---|---|---|---|---|---|---|---|---|---|
Superiorities of VLC | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
Architecture | Transmitter | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Receiver | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
Transmission distance | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||
Channel modeling | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||
Light modulation | OOK, PWM, PPM | ✓ | ✓ | ✓ | ✓ | ✓ | |||||
OFDM | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
Physical layer security | Keyless security techniques | ✓ | ✓ | ✓ | ✓ | ||||||
Key-based security techniques | ✓ | ✓ | ✓ | ✓ | |||||||
NOMA | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
Machine learning | ✓ | ||||||||||
VLC applications | Indoor communication | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
Positioning | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
Vehicular communication | ✓ | ✓ | ✓ | ✓ | |||||||
Underwater communication | ✓ | ✓ | ✓ |
Work | O-OFDM Scheme | Utilized Spectral Resource | Signal Processing | Features |
---|---|---|---|---|
J. Armstrong et al. [40] | ACO-OFDM | Odd subcarriers | Clipping operation | Low complexity, low spectral efficiency and high power efficiency |
J. B. Carruthers et al. [41] | DCO-OFDM | All subcarriers | Adding a DC bias | Low complexity, high spectral efficiency and low power efficiency |
S. C. J. Lee, et al. [42] | PAM-DMT | The imaginary part of subcarriers | Clipping operation | Low complexity, low spectral efficiency and high power efficiency |
B. Ranjha et al. [43] | HACO-OFDM | Odd subcarriers and the imaginary part of even subcarriers | Clipping operation | Higher spectral efficiency than ACO-OFDM |
Q. Wang et al. [44] | LACO-OFDM | Layers of the half of the remained subcarriers | Clipping operation | Higher spectral efficiency than HACO-OFDM and an iterative receiver with higher complexity |
R. Bai et al. [45] | AAO-OFDM | All subcarriers | Clipping operation and absolute operation | Higher spectral efficiency than ACO-OFDM |
R. Bai et al. [46] | ALACO-OFDM | All subcarriers | Clipping operation and absolute operation | Higher spectral efficiency than AAO-OFDM and an iterative receiver with higher complexity |
Work | Application Scenarios | Neural Network | Advantages |
---|---|---|---|
Mehyar Najla et al. [63] | The selection between RF and VLC bands for D2D communication | DNN | Close-to-optimal performance |
Jing He et al. [64] | Long-distance transmission in V-VLC | CNN and ANN | Long-distance communication, high-accuracy positioning and LED dimming |
Yining Wang et al. [65] | Dynamically deploying UAVs in VLC | CNN | Future light distribution forecast and low power consumption |
Manh Le-Tran et al. [66] | Collaborative constellation design | DNN | Low complexity and near-optimal performance |
Zi-Yang Wu et al. [67] | Prediction of LOS link outage | deep LSTM-based RNNs | High hit rate for signal outages and recoveries |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, Z.; Khan, F.N.; Guan, X.; Dong, Y. Advances in Visible Light Communication Technologies and Applications. Photonics 2022, 9, 893. https://doi.org/10.3390/photonics9120893
Geng Z, Khan FN, Guan X, Dong Y. Advances in Visible Light Communication Technologies and Applications. Photonics. 2022; 9(12):893. https://doi.org/10.3390/photonics9120893
Chicago/Turabian StyleGeng, Zuhang, Faisal Nadeem Khan, Xun Guan, and Yuhan Dong. 2022. "Advances in Visible Light Communication Technologies and Applications" Photonics 9, no. 12: 893. https://doi.org/10.3390/photonics9120893
APA StyleGeng, Z., Khan, F. N., Guan, X., & Dong, Y. (2022). Advances in Visible Light Communication Technologies and Applications. Photonics, 9(12), 893. https://doi.org/10.3390/photonics9120893