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Abstract: Numerous solutions/methods to solve the existing problems of pedestrian 
navigation/localization have been proposed in the last decade by both industrial and 
academic researchers. However, to date there are still major challenges for a single 
pedestrian navigation system (PNS) to operate continuously, robustly, and seamlessly in all 
indoor and outdoor environments. In this paper, a novel method for pedestrian navigation 
approach to fuse the information from two separate PNSs is proposed. When both systems 
are used at the same time by a specific user, a nonlinear inequality constraint between the 
two systems’ navigation estimates always exists. Through exploring this constraint 
information, a novel filtering technique named Kalman filter with state constraint is used to 
diminish the positioning errors of both systems. The proposed method was tested by fusing 
the navigation information from two different PNSs, one is the foot-mounted inertial 
navigation system (INS) mechanization-based system, the other PNS is a navigation device 
that is mounted on the user’s upper body, and adopting the pedestrian dead reckoning (PDR) 
mechanization for navigation update. Monte Carlo simulations and real field experiments 
show that the proposed method for the integration of multiple PNSs could improve each 
PNS’ navigation performance. 
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1. Introduction 

The last few years have witnessed major progress in the development of pedestrian navigation 
systems (PNS). Common users of PNS mainly include the following: 

 First responders (e.g., emergency search and rescue personnel, police and military forces). 
 Recreational users (e.g., self-guided tourists, hikers, athletic trainers). 
 Other personnel (e.g., elderly people, visually impaired). 

Micro-Electro-Mechanical System (MEMS) inertial sensors, miniature Global Navigation Satellite 
System (GNSS) receivers and wireless transmitters, Radio Frequency Identification Devices (RFID) 
chips, Bluetooth devices, and so on, are now widely used in PNS. MEMS inertial sensors, including 
accelerometers, gyroscopes, magnetometers, and barometers, are usually called self-contained sensors 
or inertial measurement units (IMU). Currently, most of the sensors mentioned above can be easily  
found in various consumer products, especially in the well-developed market for smart devices such  
as smart phones, smart watches, smart glasses, tablet computers, etc. Based on these sensors and  
devices, numerous researchers have been dedicated to PNS research. However, to date there are still 
major challenges for PNS to continuously, robustly, and seamlessly operate in all indoor and  
outdoor environments. 

2. Literature Review and Problem Description 

Most of the proposed techniques in recently published literature for PNS is concentrated in one of the 
following three groups: 

 Radio-navigation systems (GNSS, Cellular Networks). 
 Indoor infrastructure-based systems (RFID, Wi-Fi, Bluetooth, UWB (Ultra-wideband)). 
 MEMS sensor-based systems (inertial navigation system (INS), pedestrian dead reckoning (PDR)). 

2.1. The Radio-Navigation Systems 

GNSS is the primary source of information to provide the position of a PNS. However, GNSS can 
provide position information only under ideal conditions which require open environments (i.e., open 
space areas). In other words, the system works sporadically in urban and canopy areas due to signal 
blockage and attenuation [1]. Cellular network-based PNS were firstly described in [2], however, 
according to [3], in signal degraded areas such a system could suffer from poor accuracy and very low 
vertical resolution. This is a serious problem as in some extreme applications (e.g., indoor rescue), the 
location of the user on specific floors or in specific rooms is of great importance [4]. 
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2.2. The Indoor Infrastructure-Based Systems 

Numerous solutions to pedestrian navigation in indoor environments have been suggested in related 
literature. One effective way to meet this requirement is to use a RFID-based system [5]. In such an 
operation, the RFID tags should be installed beforehand at known locations; also, a device containing a 
RFID reader and an antenna should be carried by the user. When the user passes by a tag, the reader 
could then retrieve its location. However, such service is not always useful and applicable when a 
seamless location over large areas is required. Similarly, the Wi-Fi-, Bluetooth-, and UWB-based 
navigation methods could also provide efficient indoor navigation services [6]. However, the main 
reason for not always employing these methods for PNS is the obvious requirement of building 
dependent infrastructures. 

2.3. The Micro-Electro-Mechanical System (MEMS) Sensor Based Systems 

For MEMS sensor-based systems, due to the fact that MEMS sensors still have high noise ratio, the 
use of unaided Inertial Navigation System (INS) mechanization for PNS is very limited [7]. Considering 
the unique features of human walking steps, an effective approach to restrict the INS derived navigation 
errors is to mount the MEMS sensors on a foot of a user [8]. In such a mode of operation, when stance 
phases of the foot are periodically detected, the Zero Velocity Update (ZUPT) technique will be triggered 
to estimate and correct the INS navigation solution errors, as well as the inertial sensors’ inherent biases 
using a Kalman Filter (KF). Although the INS/ZUPT method could sometimes produce a relatively good 
navigation solution, however, due to the low observability of the heading error from the ZUPT, as well 
as the relatively large deterministic and random biases of the MEMS inertial sensors [9], and in cases of 
running scenarios, zero velocity intervals cannot be easily detected; thus, the deviations of navigation 
solutions continue to grow with time. 

The other MEMS sensor-based approach is the Pedestrian Dead Reckoning (PDR) mechanization 
which also exploits the kinematics of human walking [10,11]. The main idea of PDR mechanization is 
to use accelerometer measurements to detect the user’s walking steps, estimate step length and propagate 
the user’s position using a measured azimuth between every two consecutive steps [12]. To data, various 
methods of step detection and step length calculation have already reached practical levels of accuracy 
whether the user walks in low-speed or runs in high-speed; thus, only the long-term azimuth accuracy 
remains challenging [13–15]. Moreover, it is noteworthy that the misalignment of the MEMS IMU with 
respect to a user’s body needs to be known [16,17]. Therefore, the PDR-based PNS is better rigidly 
mounted on the user’s upper body (e.g., chest and waist) since the misalignment can be almost 
unchangeable [18]. In addition, the user’s upper body does not block the GNSS signals, and the 
integration of PDR with a GNSS receiver could provide a PNS with superior performance in comparison 
with either stand-alone GNSS receivers or PDRs. GNSS-derived positions are excellent external 
measurements for updating the PDR, thus improving the PDR’s long-term accuracy. Similarly, the PDR 
can provide precise position solutions for GNSS signal reacquisition after outages in a short period of 
time. Moreover, it is noteworthy that why we prefer to choose this PDR/GNSS approach for the upper 
body mounted PNS instead of the INS/GNSS approach is that during GNSS outage periods, the INS 
positional errors will typically drift as a function of the cubical time, due to gyro drift. For instance, 
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during 5 min of GNSS outage, the position error of the INS (e.g., the MEMS IMU embedded in the 
Samsung Note 2) could diverge by hundreds of kilometers [19]. 

2.4. The Multiple Systems Integration 

From the above literature review, we can conclude that there is no navigation technology that, on its 
own, can provide a reliable, robust, and infrastructure-free solution to the problem of positioning a 
pedestrian in all kinds of indoor environments. Only a navigation system that acts in cooperation with a 
multitude of navigation technologies with complementary properties has the potential to fully solve 
pedestrian navigation problems. Because navigation technologies with complementary properties are 
generally based upon different physical phenomena, the most favorable location of the different sub 
navigation systems on the body of the user also differs. For example, GNSS-/Wi-Fi-/Bluetooth-/UWB-based 
systems are all best mounted or held on the upper body of the user because then it is least likely that 
other body parts will block the external signals; for using the INS mechanization-based PNS, the IMU 
is best mounted on a foot of a user, since the foot could then periodically become stationary whenever 
the user walks or runs; meanwhile for PDR-based PNS, it is best mounted on the user’s upper body, so 
that the user’s body does not block the GNSS signals, as well, the misalignment of the IMU with respect 
to the user’s body can be kept almost unchangeable, so if all navigation systems are located on different 
points of the user’s body, they will track the position of different points of the user’s body. Hence, there 
is a question about how to combine and make full use of these navigation solutions at the same time to further 
improve the accuracies of each sub-system. Also, considering the fact that in safety-related applications, it 
is imprudent to depend on a single navigation technique. Consequently, the concept of combining 
complementary navigation systems should be accepted for commercial applications. 

Several forms of architecture have been proposed for the integration of multiple systems based PNS. 
Brand and Phillips [20] introduced the use of two MEMS IMUs for PNS fastened to each foot. The relative 
position updates between them are used to further improve both systems’ navigation results. Their method 
set up a local radio frequency (RF) infrastructure which uses RF phase changes between a reference signal 
located in a waist pack and the one coming from a transmitter located on each boot. Finally, a series of 
foot-to-foot range measurements can be updated. A drawback of this method is the use of RF infrastructure 
which is not available in most consumer devices. Bancroft [21] also placed two IMUs placed on the feet with 
the centralized KF method. The relative time-varying distances between them were regarded as a constant, 
which means the errors between the real distance and the assumed constant were ignored. Skog et al. [22] 
derived an inequality constraint to accurately describe the relative time-varying distances between the 
two foot-mounted IMUs. In addition, different from the centralized KF approach, they first introduced 
the idea of the state constraint KF into this problem, and changed the dual IMUs’ information-fusing 
problem into a weighted least squares problem. Laverne et al. [23] have also experimented with utilizing 
dual foot-mounted IMUs. Extremely high navigation accuracy has been reported by them, where  
ultra-sonic ranging was performed between two high-end IMUs (HG1930, Honeywell, Phoenix, AZ, 
USA) with gyro bias drifts only a few degrees per hour). Also, they announced that foot-to-foot range 
improved the heading estimate dramatically. However, these high-end IMUs are too bulky and expensive 
for regular pedestrian use, but the results indicate that high accuracy could also be achieved in future 
mass-market systems when small MEMS IMUs have improved in accuracy. Zampella et al. [24] 
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proposed a new indoor PNS prototype which fuses the navigation results of a UWB-based system and a 
foot INS/ZUPT system through a probability density function (PDF) truncation approach, which requires 
a lot of calculations to approximate the truncated PDF mean and covariance. Also, this method does not 
consider the UWB non-line-of-sight conditions, namely when there exists the UWB signal outages. 

In this research, we investigate the integration of multiple PNSs with constraints between them and 
propose a novel information fusion architecture that can be used to further improve the navigation 
accuracies of each PNS. In our mode of operation, if multiple PNSs are used at the same time by a user, 
the relative positions between any two PNSs are not fixed. However, there should be an upper bound on 
how far apart the two PNSs can be, so that the navigation solutions of the two systems together can 
compose a combined navigation solution which will explore the maximum spatial separation information 
of the two systems. The fusion of the two systems’ navigation solutions can be regarded as a KF with a 
state constraint problem. This requires the modifications of the two systems’ error state KF to exploit 
this additional information in order to estimate the optimal navigation solutions based on the state 
constrained KF algorithm. This method was first proposed by Simon and Chia [25], which considers a 
linear system and measurements describing movement of a land-based vehicle. 

The remainder of this paper is organized as follows: a brief description of the state constrained KF is 
provided in Section 3. The INS/ZUPT and PDR/GNSS systems are then respectively discussed in 
Sections 4 and 5, followed by the state constrained KF approach on the combined PNSs in Section 6. In 
Section 7, the performance of the new approach is analyzed through both simulation and the operational 
field experiments. 

3. State Constraint Kalman Filter (KF) 

This section first provides a brief summary of the unconstrained KF state estimate. Then the state 
constrained KF is shown as well as the method to solve the constrained KF problem. Finally, the 
solutions to four different constraint scenarios are separately presented. 

3.1. State Unconstrained KF 

Assuming x  is a random vector with the dimension n, and has a nonsingular covariance matrix, P . 
We say that x  is with Gaussian distribution only if its probability density function (PDF), p( )x , satisfies: 

T 1
n/2 1/2

1 1 1p( ) exp[ ( ) ( )]
(2 ) | | 2

−= − − −
π

x x m P x m
P

 (1) 

in which E[ ]=m x , E[( )( ) ]= − − TP x m x m , E[ ]⋅  is the expectation operator. For the standard linear KF 
system model: 

k k-1 k-1

k k k

= +
 = +

x F x w
z H x v

 (2) 

k-1w  and kv  are jointly Gaussian. When measurement kz  is given, through the application of KF, we 
could get the optimal estimate, kx̂ , i.e., the minimum variance estimate. Referring [26], kx̂  is given by: 

xz zz 1
k k k k k k k kˆ E[ | ] ( ) ( )−= = + −x x z m P P z z  (3) 
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where k kE[ ]=m x , xz

kP  is the covariance matrix of kx  and kz , zz
kP  is the covariance matrix of kz . As kx̂  

is conditionally Gaussian given kz , so we say kx̂  and kz  are jointly Gaussian. Similar to  
Equation (1), p( | )x z  is the conditional PDF of x  given z : 

T 1
n/2 1/2

1 1 1 ˆ ˆp( | ) exp[ ( ) ( )]
(2 ) | | 2

−= − − −
π

x z x x P x x
P

 (4) 

where P  is the covariance matrix of the KF estimate, which can be calculated as: 
xx xz zz 1 zx( )−= −P P P P P  (5) 

and the KF estimate x̂  is the calculation of x  that maximizes p( | )x z . 

3.2. State Constrained KF 

Assuming that the state x  of the linear system model given Equation (2) satisfies the equality constraint: 

( )Γ =x d  (6) 

or the inequality constraint, 

( )Γ ≤x d  (7) 

where ( )Γ ⋅  is a known linear or nonlinear operator for x , and d  is a known vector. After normal KF 
process, if the state does not satisfy the above given constraints, we need to find a new state estimate, x . 

3.3. Maximum Probability Algorithm 

Obtaining the new constrained state can be solved through the maximum probability algorithm [25]. 
We know that the KF estimate is the value of x  that maximizes p( | )x z  in Equation (4). Similarly, the 
constrained state can be derived by calculating the new estimate, x , so that p( | )x z  is further maximized 
and x  satisfies the constraints. Maximizing p( | )x z  is the same as maximizing its natural logarithm: 

1

/2 1/2
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T 1 T 1 T 1
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









 



 

 

  

π
 (8) 

in which x̂  is the KF state estimate, thus T 1ˆ ˆ−x P x  is a known component before applying the constraint. 
The constrained estimate x  can therefore be calculated using the following Equations (9) and (10): 

T 1 T 1ˆmin[ 2 ]− −= −
x

x x P x x P x


     (9) 

s. t . ( ) or ( )Γ = Γ ≤x d x d   (10) 
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3.4. The Solutions to the State Constrained KF 

The constraints given in Equations (9) and (10) can be divided into four different scenarios. If the 
operator ( )Γ ⋅  is linear, namely, ( )Γ =x κ x  , we then have the linear equality constraint, =κ x d , or the 
linear inequality constraint, ≤x dκ . Worth noting is that κ  is a known constant r n×  matrix with full 
rank r , and d  is a known r 1×  vector, namely the number of rows in κ  is the number of constraints. If 
κ  is a square matrix, the state is fully constrained, but κ  is not full rank which means we have redundant 
state constraints, at this time we need to remove the linearly dependent rows from κ  until κ  is full rank. 
Similarly, if ( )Γ ⋅  is a non-linear operator, we assume ( ) ( )Γ = ηx x  , in which ( )η x  is the nonlinear 
expression of x . We then have the non-linear equality constraint, ( )η =x d , or the nonlinear inequality 
constraint, ( )η ≤x d . The solutions to the four different state constrained KF scenarios are separately 
given as follows. 

3.4.1. The State Linear Equality Constrained Solution 

According to Equations (9) and (10), the problem we want to solve here can be written as: 
T 1 T 1ˆmin[ 2 ]− −= −

x
x x P x x P x



     (11) 

s. t . =κ x d  (12) 

To get the solution x , we form the Lagrange function [25]: 
T 1 T 1 Tˆ( , ) 2 (2 2 )− −= − + −L x λ x P x x P x κ x d    λ  (13) 

For the convenience of calculation, the constraint of Equation (12) was written as 2 2=κ x d . The 
first order conditions for the minimum of Equation (11) are: 

1 T( , ) ˆ2 ( ) 2 0

( , ) 0

−∂ = − − = ∂
∂ = − =
 ∂

x λ P x x κ λ
x

x λ κ x d
λ











 (14) 

Then the Equation (14) gives the following solutions ( , )λ x : 
T 1

T T 1

ˆ( ) ( )
ˆ ˆ( ) ( )

−

−

 = −


= − −

λ κ P κ κ x d
x x P κ κ P κ κ x d

 (15) 

After we get the new constrained state, x , we also need to update the new state error covariance, *P . 
From Equation (15), we have: 

T T 1

T T 1

ˆ ˆ( ) [ ( )]
ˆ[ ( ) ] ( )

ˆ( ) ( )

−

−

− = − + − − −

= − −
= − −

x x x x P κ κ P κ κ x d κ x d
Ι P κ κ P κ κ x x
Ι μ x x



 (16) 

in which T T 1( )−P κ κ P κ κ  is denoted by μ , and x  is the true state. Then the constrained new state 
error covariance, *P , can be expressed as: 
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* T

T

T

E( ) ( ) ]
ˆ ˆE{[( ) ( )] [( ) ( )] }

( ) ( )

= − −

= − − − −

= − −

P x x x x
Ι μ x x Ι μ x x

Ι μ P Ι μ

 

 (17) 

3.4.2. The State Linear Inequality Constrained Solution 

Assuming that the KF state satisfies the inequality constraint, the constrained state, x , can be derived as: 
T 1 T 1ˆmin( 2 )− −= −

x
x x P x x P x



     (18) 

s. t . ≤κ x d  (19) 

The above problem is known as a Quadratic Programming (QP) of the mathematical optimization [27]. 
QP problems can be solved using the active set algorithm, which reduces the number of constraints to 
those which are active within the solution to the QP problem. The basic strategy of active set algorithm 
is that first we make an explicit estimate of the active set, and then take a step toward the solution using 
a simplified QP problem in which the constraints in this estimated active set are satisfied as equalities, a 
brief explanation to this algorithm can be seen in [27] (pp. 240–245). For instance, we take into 
consideration the Equations (18) and (19) as an example of the problem. Supposing we have s inequality 
constraints, q of the s inequality constraints are active at the solution of Equation (18), denoted by *κ . 
The q rows of κ  that correspond to the active constraints, are denoted by *d , and the q components  
of d  correspond to the active constraints. If the correct set of active constraints is known a priori  
then the solution to the problem given in Equations (18) and (19) is also the solution to the equality 
constraint problem: 

T 1 T 1ˆmin( 2 )− −= −
x

x x P x x P x


     (20) 
* *s. t . =κ x d  (21) 

So it is demonstrated that the inequality constraint problem of Equations (18) and (19) is equivalent 
to the equality constraint problem only and if only we know the correct a priori active sets, at this time 
the solution-solving method given in Section 3.4.1 also applies to the state inequality constraint problem. 

3.4.3. The State Non-Linear Equality Constrained Solution 

The problem we want to solve at this time can be expressed as: 
T 1 T 1ˆmin( 2 )− −= −

x
x x P x x P x



     (22) 

s. t . ( )η =x d  (23) 

in which ( )η x  is the non-linear expression of x . We suppose that the linear model in Equation (2) has 
been estimated by the KF procedure, and yields an unconstrained estimate x̂ . Assuming that x̂  is 
“close” to the constrained estimate x , at this time the non-linear constraint problem can be linearized 
(Taylor’s expansion) around the current unconstrained state estimate, x̂ : 

T T1ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) [ ( )] ( ) ( ) ( ) ( )
2

′ ′′η − = η + η − + − η − + ⋅⋅⋅−x d x x x x x x x x x d     (24) 
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in which ˆ( )′η x  and ˆ( )′′η x  denote the first and second partial derivatives of ( )η x  with respect to x , 
replacing x  with x̂ . Neglecting the second-order and higher terms yields: 

Tˆ ˆ ˆ ˆ( ) ( ) [ ( )]′ ′η ≈ −η + ηx x d x x x  (25) 

The above equation is equivalent to the linear constraint =x d κ , in which: 
Tˆ[ ( )]′= ηκ x  (26) 

Tˆ ˆ ˆ( ) [ ( )]′= −η + ηd d x x x  (27) 

So the method presented in Section 3.4.1 can also be used to solve the nonlinear inequality constraint 
problem after the constraint is linearized. 

3.4.4. The State Non-Linear Inequality Constrained Solution 

The problem we want to solve is shown as: 
T 1 T 1ˆmin( 2 )− −= −

x
x x P x x P x



     (28) 

 ˆs. t . ( )η ≤x d  (29) 

Similar to Section 3.4.3, the non-linear constraint can first be linearized, then the problem will be 
changed into the linear inequality constraint problem. If the set of the active constraints was known  
a priori, then the linear inequality constraint will be equivalent to the equality constraint, and the method 
given in Section 3.4.1 is also applicable. 

4. The Inertial Navigation System/Zero Velocity Update (INS/ZUPT) System 

We fuse different PNSs to evaluate the state constrained KF algorithm. One PNS is a foot-mounted 
INS/ZUPT system, which operates in two parts: INS Mechanization to compute the position, velocity 
and attitude; and an EKF-based ZUPT is triggered to estimate and composite the navigation state errors. 

4.1. INS Mechanization 

The continuous model (differential equation) of INS mechanization can be given as follows [19,28]: 
n 1 n

n n b n n n
b ie en

n n b b
b b ib in

2 ( )
( )

−   
   = − + +   
   −   

r D v
v T f Ω Ω g
T T Ω Ω







 (30) 

where the navigation frame, n, is the local-level frame (local North, East, and Down, i.e., N-E-D), 
n x y z T[ ]=r r r r  is the INS derived position, n x y z T[ ]=v v v v  denotes the velocity, and n

bT  is the 

transition matrix describing the body frame b relative to n frame, the attitude vector, ε  (pitch, roll and 
heading), can be derived from n

bT , bf  denotes the accelerometer output, and bω  the angular velocity 

measured by the gyroscope. To get the navigation solution, we assume the sampling period of INS is t∆ , 
the non-linear function ξ denotes INS mechanization. At time step k, the navigation solution 

ins n n T
k k k k[ ]=x r v ε  can be updated as: 



Micromachines 2015, 6 935 
 

ins b b ins
k k 1 k k 0( , , ), [initial value]−= =x x f ω xξ  (31) 

in which 0x  is the initial value of INS. More details about the discrete representation of INS 

mechanization can be found in [29,30]. 

4.2. INS Error Model 

The INS error model used in this research is given in the following compact form [29]: 
1 n

ins n n n n n n n ins ins
ie en ie en

n n
in in

(2 ) (2 )

− δ
 δ = − − + δ + δ + δ + δ + 
 − − δ 

n

D v
x N Ω Ω v V ω ω g G w

Ω ε ω
 ε  (32) 

where the vector ins n n T
k k k k[ ]δ = δ δ δx r v ε  is the INS error state including error components of position, 

velocity and attitude. insw  is the sensor noise vector, and insG  is the noise distribution matrix.  
Equation (32) can be briefly represented by: 

ins ins ins ins insδ = δ +x F x G w  (33) 

The above equation is the first-order differentiation of the error state insδx . A detailed expression of 
Equation (33) can be found in [29]. insF  is the dynamic coefficient matrix which contains the INS error 
models for the position, velocity, and attitude. The discrete-time form of Equation (33) can be written as: 

ins ins ins ins ins
k+1 k+1, k k k kδ = δ +x Φ x G w  (34) 

where ins
k+1, kΦ  is the discrete-time error state transition matrix from epoch k to k + 1. 

4.3. INS Error Correction Using ZUPT 

The discrete measurement model at time step k is expressed as: 
ins/zupt ins/zupt ins ins/zupt
k k k kδ = δ +z H x ν  (35) 

where ins/zupt
kδz  is the measurement vector, which is the true velocity (zero velocity) of the system minus 

the velocity vector derived from the INS during the system’s static mode. ins/zupt
kν  is the measurement 

noise matrix. The measurement matrix ins/zupt
kH  is: 

ins/zupt
k 3 3 3 3 3 3[ ]× × ×H 0 I 0=  (36) 

Every time the state errors insδx  are updated, these are applied to the INS navigation solution, then 
insδx  is reset, which means the error state prediction procedure is no longer required. 
In this research, we have achieved good zero-velocity detection results using the detection method 

described in [31] and [32]. Their detection methods are checked through the magnitude of the 
acceleration, magnitude of gyroscope, and local acceleration variance. Several papers, including [33] 
and [34], etc., have also discussed zero-velocity detection methods in detail. Readers can refer to this 
literature for more information on the detection procedure. 
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5. The Pedestrian Dead Reckoning/Global Navigation Satellite System (PDR/GNSS) System 

This section will presents the PDR/GNSS system prototype. The information on user’s travelled 
distance and heading given by PDR mechanization are merged with the GNSS-derived observations 
through standard KF. 

5.1. PDR Mechanization 

The PDR algorithm can be implemented in the following mechanization [35]: 

 

 

k 1 k k k

k 1 k k k

sin( )
cos( )

+

+

= +
 = +

E E S ψ
N N S ψ

 (37) 

in which Ek+1 is the PDR navigation estimation along local east at time step k + 1, Nk+1 is the PDR 
navigation estimation along local north at time step k + 1, Sk is the estimated pedestrian step length from 
time step k to k + 1, kψ  is the estimated pedestrian step heading at time step k. Worth noting is that the 

given PDR mechanization only represents a 2-dimension (2D) navigation scheme. 

5.2. PDR Error Model 

The complete discrete PDR error transition model is given as follows [36]: 

k 1 k k k k k k

k 1 k k k k k k

k 1 k k

k 1 k S k

k 1 k b k

cos( ) sin( )
sin( ) cos( )

t
( )

(1 t) ( )

+

+

+

+

+

δ = δ + + δ
δ = δ − δ + δδ = δ + ∆ δ
δ = δ +
δ = −α ∆ δ +

E E S ψ ψ ψ S
N N S ψ ψ ψ S
ψ ψ b
S S w
b b w

 (38) 

where δE  and δN  are respectively the eastern and northern position errors; δψ  is the error on the 
heading induced by the Z (up) gyro bias error δb , which is considered as the random process with zero 
mean, the correlation time -1

cT = α  and the driven noise bw ; the step length error δS  is considered  
as a white noise Sw  with the variance 2

Sσ . Similar to the INS error model, then Equation (38) can be  

written as: 
pdr pdr pdr pdr pdr
k+1 k 1, k k k k+δ = δ +x Φ x G w  (39) 

where the vector pdr T[ ]δ = δ δ δ δ δx E N S bψ  is the PDR error state vector. Then the transition 
matrix, pdr

k 1, k+Φ , from time step k to k + 1 can be written as: 

k k k

k k k
pdr
k 1, k

1 0 cos( ) sin( ) 0
0 1 sin( ) cos( ) 0
0 0 1 0 t
0 0 0 1 0
0 0 0 0 (1 t)

+

 
 − 
 = ∆
 
 
 −α ∆ 

S ψ ψ
S ψ ψ

Φ  (40) 
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5.3. PDR Error State Correction Using GNSS 

The measurement model has the following linear form: 
pdr/gnss pdr/gnss pdr pdr/gnss
k k k kδ = δ +z H x ν  (41) 

where the measurement noise vector, pdr/gnssν , is assumed to be a zero-mean white Gaussian noise 
process. The measurement matrix, pdr/gnss

kH , should have the form: 
pdr/gnss
k 3 3 3 2[ ]× ×=H I 0  (42) 

The measurement vector is: 
pdr/gnss gnss pdr gnss pdr gnss pdr T
k k k k k k k[ ]δ = − − −z E E N N ψ ψ  (43) 

in which gnss
kE  is the GNSS-measured east position at time step k; gnss

kN  is the measured north position 
from the GNSS; gnss

kψ  is the GNSS heading. The common method to determine gnss
kψ  is the use of GNSS 

velocities, and is given by: 
gnss, E

gnss k
k gnss, N

k

arctan
 

=  
 

Vψ
V

 (44) 

where gnss, E
kV  is the east GNSS-derived velocity at time step k, and gnss, N

kV  is the north GNSS velocity. 

6. Information Fusion of Two Navigation Systems Using State Constraint KF 

In this section, we first formulate the constraint between two PNSs’ navigation states, then derive the 
solution to the constraint problem by applying the method given in Section 3. 

6.1. Constraint between Two Navigation Systems 

Assuming that we have two PNSs: one is the INS/ZUPT system, the other one is the PDR/GNSS 
system. We denote the first two elements of INS/ZUPT system’s navigation state, ins n n T[ ]=X r v ε , 
as x y T

1 [ ]=X r r , in which xr  and yr  are respectively the position solutions along the direction of local 
East and North. The first two states of PDR/GNSS system’s navigation state, pdr T[ ]=X E N ψ S b , is 
expressed as T

2 [ ]=X E N . We denote the combined navigation solution of the two PNSs as: 
ins pdr T[ ]=X X X  (45) 

As depicted in Section 1, the INS/ZUPT system is mounted on a user’s foot, the PDR/GNSS system 
is held on the upper body of the user. During the navigation process, there is always a maximum 
horizontal distance between the two PNSs, namely: 

2 2
1 2|| ||− ≤X X d  (46) 

where d  is a constant representing the maximum distance. For the convenience of the further matrix 
calculations, Equation (46) can be simplified by: 

2 T 2|| || ( ) ( )= ≤κ X κ X κ X d  (47) 

in which matrix κ  is expressed as: 
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2 2 2 7 2 2 2 3[ ]× × × ×= −κ I 0 I 0  (48) 

The combined position solution X  should always satisfy Equation (47), if not, when 2 2|| || >κ X d , 
we should employ the state constraint KF to restrict X  onto the space of Equation (47). So the 
constrained new estimate, X , can be calculated as: 

T 1 T 1ˆmin( 2 )− −= −
X

X X P X X P X


     (49) 
T 2s. t . ( ) ( ) ≤κ X κ X d   (50) 

where P  in Equation (49) is the covariance matrix of the combined position solution, X , which is 
obtained from the EKF-based INS. Worth noting is that for each navigation system, the position part of 
the navigation state covariance matrix is updated separately for each EKF. When the combined 
navigation state does not satisfy T 2( ) ( ) ≤κ X κ X d , the state constraint algorithm will be applied. At this 
time, the combined covariance matrix Cov for Equation (49) can then be expressed as: 

ins
9 9 9 5

pdr
5 9 5 5

× ×

× ×

 
=  
 

P 0
P

0 P
 (51) 

in which ins
9 9×P  and pdr

5 5×P  are the covariance matrices respectively representing the navigation error 

standard deviations of the INS/ZUPT system and PDR/GNSS system. 

6.2. The Solution to the Constraint Problem 

From Equation (50) we can see the given constraint is an in-equality problem, and both T( ) ( )κ X κ X  
and 2d  can be regarded as the 1 1×  matrices, so Equation (50) cannot be written in the form of several 
rows, which means there is only one constraint set. So the optimal solution *X  (a feasible point of the 
constraint) to the problem given in Equation (50) should definitely satisfy the equality constraint: 

* T * 2( ) ( ) =κ X κ X d  (52) 

such that the in-equality constraint, T 2( ) ( ) ≤κ X κ X d , is an active constraint of *X . Thus, the problem 
given in Equations (49) and (50) can be changed into: 

T 1 T 1ˆmin( 2 )− −= −
X

X X P X X P X


     (53) 
2s. t . ( ) ( ) =Tκ X κ X d   (54) 

Then the constraint in Equation (54) can be linearized (Taylor’s expansion) about the current 
unconstrained state estimate, X̂ . Neglecting the second-order and higher terms of the Taylor’s 
expansion, we have: 

T T * 2 T T Tˆ ˆ(2 ) ( ) ( ) (2ˆ ˆ ) ˆ= − +κ κ X d κ X κ X κ κX X X  (55) 

The Equation (55) is equivalent to the linear constraint, * =κ X d , in which: 
T Tˆ(2 )=κ κ Xκ  (56) 

2 T T Tˆ ˆ ˆ( ) ( ) ) ˆ(2= − +d d XX κ X κ κ Xκ  (57) 
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So the solution to the problem in Equations (53) and (54) is given as: 
* T T 1ˆ ˆ( ) ( )−= − −X X P κ κ P κ κ X d     (58) 

According to Section 3.4.1, the new covariance of the constrained navigation solution, represented 
by *P , is updated as follows: 

* T( ) ( )= − −P μ P μΙ Ι  (59) 

in which μ  is expressed as: 
T T 1( )−=μ P κ κ P κ κ     (60) 

In terms of the system implementation, as well as theoretically compared to the existing techniques 
given in the literature review those also use spatial constraints, it can be seen from the above  
Equations (58) and (59) that our proposed method only requires slightly more computational effort than 
the unconstrained filter. That is all because our proposed approach is quite similar to the way of 
implementing an Extended Kalman filter (EKF), which relies on the linearization of the system and 
measurement equations. The linearization of the constraint is done beforehand, such that the 
implementation procedure of the constraint filter is as easy as substituting the KF-derived navigation 
state X̂  and state covariance P  into Equations (58) and (59). 

However, the constraint filter given in [21] requires much higher computational complexity because 
of the additional quadratic programming problem that needs to be solved. To get the solution to the 
constraint filter, first, the authors changed the quadratic problem into a Lagrange multiplier λ-based 
quadratic equation root-finding problem. A nonlinear polynomial function was then constructed, and to 
find the roots to the nonlinear polynomial function, one must resort to some numerical root finding 
methods, in [21], Newton’s method is used, then, based on the iteration of the Newton’s method, the 
Lagrange multiplier λ can be found, consequently the solution to the constraint filter can then be further 
resolved. For implementing such a constraint filter, the computational burden is mainly caused by the 
multiple iterative calculations to find a converged Lagrange multiplier λ. 

Similarly, compared to the method given by Zampella et al. [24], their constraint filter adopts a 
probability density function (PDF) truncation approach, which requires a lot of calculations to approximate 
the truncated PDF mean and covariance. To be specific, their constraint filter uses a particle filter way 
to calculate the propagation of the mean and covariance of the propagated states of the constraint filter. 
Moreover, in the conclusion part of [24], the authors also address that it requires many calculation 
burdens to implement their constraint filter. 

7. Results and Discussion Experimental Evaluation 

For evaluating the proposed PNS approach, we conducted both the Monte Carlo simulation as well 
as the real field experiments. For the real experiments, first a basic experiment conducted in a GNSS 
available environments illustrating how the proposed algorithm works was conducted, the basic 
experiment was done in a GNSS available area. Then the multiple paths-based experiments were done 
in a GNSS-denied indoor environment. 
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7.1. Monte Carlo Simulation 

We consider the positioning of two PNSs mounted on two different parts of the user’s body. The 
combined positioning solutions of both systems can be expressed as: 

E N E N
1 1 2 2[ (k) (k) (k) (k)]=x r r r r  (61) 

where i
j (k)r  means the coordinate of the j-th system along the direction of i (local East or North) at time 

step k. We assume i
j (k)r  is updated recursively as: 

E E E E
1 1 1 1
N N N N

1 1 1 1
E E E E
2 2 2 2
N N N N
2 2 2 2

(k) (k 1) (k 1) t (k 1)

(k) (k 1) (k 1) t (k 1)

(k) (k 1) (k 1) t (k 1)

(k) (k 1) (k 1) t (k 1)

 = − + − ⋅∆ + −


= − + − ⋅∆ + −


= − + − ⋅∆ + −
 = − + − ⋅∆ + −

r r v s
r r v s
r r v s
r r v s

 (62) 

in which i
j (k 1)−v  is the speed of the j-th navigation system along the direction of i between time step  

k − 1 and k. Due to the errors of the used sensors, i
jr  is updated in consideration of noise. i

j (k 1)−s  is the 

position increment error of the j-th system along the direction of i. We assume the disturbed position 
increment, i

js , is with Gaussian distribution and can thus be expressed as: 

i i
j j{0, }∈s N q  (63) 

in which i
jq  is the error variance of the disturbed position increment. At this time, the position error 

covariance, kP , of the combined state x  is updated as: 

k k 1 k−= +P P Q  (64) 

where 0P  is the initial position error covariance, and Q  has the form: 

E
1

N
1

E
2

N
2

0 0 0
0 0 0
0 0 0
0 0 0

 
 
 =
 
 
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q
q

Q
q

q

 (65) 

At this time, the maximum relative distance of the two systems should be a priori known, which means: 
E E 2 N N 2

1 2 1 2|| (k) (k) || || (k) (k) ||− + − ≤r r r r d  (66) 

where d  is the maximum distance between the two systems. We assume that the user walks straight 
toward local East from the start coordinate of (0, 0) ; the update rates of both PNSs are 100 Hz; the walking 
speed is set as 1 m/s, namely E E

1 2 1= =v v  m/s, N N
1 2 0= =v v  m/s; i 2

j 0.05=q  m2; 0P  is initialized as a 

4 4×  null matrix; d  is set as 1.5 m. We perform 30 Monte Carlo simulations, each time for 500 s. 
Figure 1a shows both systems’ RMSE (Root-Mean-Square Error) values over time before and after 

applying the constraint approaches. The RMSE values are averaged over 30 Monte Carlo simulations. 
Figure 1b shows the results of one representative simulation. From Figures 1 and 2 we can see that after 
applying the two constraint approaches, the state estimation errors could be effectively constrained. 



Micromachines 2015, 6 941 
 

  
(a) (b) 

Figure 1. (a) RMSE (Root-Mean-Square Error) versus time; (b) Trajectories of one simulation. 

  
(a) (b) 

Figure 2. (a) Reference trajectory and (b) GPS (Global Position System) estimated trajectory 
(from Pedestrian Dead Reckoning/Global Navigation Satellite System (PDR/GNSS) system). 

7.2. Experiments in Outdoor Environments 

Two identical MEMS IMUs (embedded in two Samsung Note 2 smart-phones) including GPS 
(Global Position System) receivers were used to conduct the experiment. One phone was mounted on 
the right shoe, the other was held in the user’s right hand (keep levelled during the walking). The 
sampling rate of the IMU is 100 Hz, and the GPS update rate is 1 Hz. The experiment was conducted 
for 8 min on a standard football field (half size) within the University of Calgary’s campus area. The 
experiment was carried out along a rectangle-shaped line. The side of the rectangle was 61 m in length 
and 50 m in width, resulting in a total walking distance of 222 m. The sides of the rectangle were either 
parallel or vertical to the local true North and East. The ground truth, walking direction, and start and 
end points (which were the same) can be seen in Figure 2a. 

In this research, as we have to integrate different sources of measurements together at the same time, 
precise synchronization or time correction between different sensors/devices is needed. For a single 
smartphone, because sensor sampling rate in an Android-based device is predefined and is not very 
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stable. Programmatically, we cannot change that, at least not from application level. For solving this 
problem, we use the interpolation method to compensate for the uneven sensor sampling rate reflected 
in our smart-phones. Through interpolation, basically, we can get the sensor data with any pre-defined 
sampling rate. 

For the synchronization issue of the sensors between two Android-based devices, there always exist 
an almost constant time difference between any two deceives, we need to do the temporal calibration 
before-hand. The temporal calibration procedure can be done easily in an open sky environment. We 
then use the precise GPS time recorded by two smartphones as a time reference, based on it, we can 
calibrate the almost unchangeable temporal bias of the sensors between the two smartphones. Due to 
some uncertain factors of the hardware layers of the smartphones, every time when we start recording 
the raw sensor data, a quite small/limited change may be added on the calibrated temporal bias. We have 
done tens of tests and experimentally found that such limited changes are always less than 0.1 s. If the 
user walks with a normal walking speed of 1 m/s, the resulting constant error distances between the two 
phones will always be controlled within 0.1 m. Such an error level is totally acceptable, and can be 
regarded as a variance of the distance constraint between the two phones. 

As the GPS receiver embedded in the smart-phone is the low-cost and miniature device, this leads to 
limited positional accuracy. From Figure 2b we can see that the GPS could continuously provide the 
trajectory within ±5 m level positional accuracy during the experiments. Worth noting is that all the 
flowing experiment results are shown in the local geographic frame. 

The following Figure 3a shows the INS-only navigation solution of foot mounted INS/ZUPT system. 
It can be seen that without any aiding information, the position errors diverge to hundreds of kilometers 
after 8 min of the experiment, due to the relative large noise ratio of the smart-phone’s low-cost MEMS 
inertial sensors. Figure 3b shows the PDR-only result when using the gyroscope-derived heading. As 
explained above that azimuth estimation is the most challenging aspect of PDR. Due to the in-run 
gyroscope bias, the ultimate accuracy and quality of the navigation solution degraded gradually with the 
walked distance. The position error at the end of the test is around 20 m. 

Figure 4a shows the INS/ZUPT system’s navigation result. When the INS was frequently aided by 
ZUPTs, the error accumulation is well bounded for a short period of time (within 5 min). However, when 
the user walked for a long time, small error accumulation was noticed, these errors were primarily driven 
by the errors in the heading estimation as well as the large in-run bias instability of the inertial sensor, 
leading to position error on the order of 5 m after about 5 min of walking. The maximum error was seen 
at the end of the walk with almost 10 m. Such error level is reasonable given the quality of the used 
smart-phone’s cheap MEMS inertial sensors. As we don’t have reference trajectory with which to 
evaluate the entire trip’s absolute accuracy, however, the user ended the walking very close to the 
original starting point (0, 0, 0), the INS/ZUPT derived position was displaced about 10 m, indicating a 
probable accuracy of approximately 4 percent of the traveled distance. 

Figure 4b shows the navigation results obtained from the PDR/GNSS sub-system when there is no 
GPS signal outages. As can be seen from the figure that the integrated system performed quite well 
which was actually expected when aided by periodical GPS derived positions. Since the satellite 
visibility is relatively good over the trajectory, to assess the performance of the constraint algorithm’s 
positioning capability during GPS signal outage periods, the GPS outages are manually simulated for 
10, 20, 30 and 40 s, respectively. 

javascript:void(0);
javascript:void(0);
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(a) (b) 

Figure 3. (a) INS Only navigation solution (from Inertial Navigation System/Zero Velocity 
Update (INS/ZUPT) system); (b) PDR only navigation solution (from PDR/GNSS system). 

  
(a) (b) 

Figure 4. (a) INS/ZUPT system’s navigation solution; (b) PDR/GNSS system’s integrated 
navigation solution. 

Figure 5 shows the PDR/GNSS sub-system’s navigation solutions for the four GPS outage scenarios, 
we can see that when there is no GPS update, the position result will diverge up to 20 m during the GPS 
outage period for 40 s. With the same divergence trend, worse results will obtained when simulating 
GPS outage for longer duration. Figure 6 below shows the KF derived positions after applying the state 
constraint algorithm. Figure 6a presents the constrained position estimates when there is no GPS signal 
outage, Figure 6b–d, respectively, give the constrained position estimates when GPS outages are simulated 
by 10, 30 and 60 s. The constraint’s update rate is the same as the user’s step-rate, namely the constraint 
is applied when a step is detected as well as the horizontal distance between the two systems is larger 
than the predefined d  (1.5 m). 

As can be noted from Figure 6, the positioning results from both PDR/GNSS and INS/ZUPT systems 
are similar, both performed quite well and remained closely aligned with the reference solution with 
acceptable deviations visible at different portions of the trajectories. The maximum position errors of 
PDR/GNSS and INS/ZUPT systems are on the order of 5 m. The state constraint algorithm allows the 
correct adjustments in situations when detecting the spatial distances between the two sub-systems are 

-2 0 2 4 6 8 10 12 14 16

x 10
4

-2

0

2

4

6

8

10

12
x 10

4

East [m]

N
or

th
 [m

]

INS-Only (Foot) Navigation Solution 

 

 

INS Only
Start
End

-70 -60 -50 -40 -30 -20 -10 0 10 20
-20

-10

0

10

20

30

40

50

60

70

East [m]

N
or

th
 [m

]

PDR-Only Navigation Solution

 

 

Reference Path
PDR Only
Start
End-PDR Only

-60 -50 -40 -30 -20 -10 0 10
-10

0

10

20

30

40

50

60

70

East [m]

N
or

th
 [m

]

INS/ZUPT Navigation Solution (without Constraint)

 

 

Reference Path
INS/ZUPT
Start
End-INS/ZUPT

-70 -60 -50 -40 -30 -20 -10 0 10 20
-20

-10

0

10

20

30

40

50

60

70

East [m]

N
or

th
 [m

]
PDR/GNSS Navigation Solutions

 

 

Reference Path
GPS Only
PDR Only
PDR/GPS
Start
End-GPS Only
End-PDR Only
End-PDR/GPS



Micromachines 2015, 6 944 
 
larger than 1.5 m, then diminishing the position errors in each system, all of the track closure errors of 
both systems significantly bounded. As visible from Figure 5, when there is GPS outage, through 
applying the state constraint algorithm, the PDR/GNSS sub-system’s horizontal position errors can be 
greatly corrected during the GPS outage period comparing with the results shown in Figure 5 (without 
applying the constraint algorithm). Similarly, the position errors remained under 5 m, which is significant 
given that the GPS outage lasted for about 60 s. 

From the above experimental results, we can conclude that when GPS is available, the GPS position 
will be periodically used to update the hand-held smart-phone’s PDR/GNSS estimate, therefore, the 
PDR/GNSS system’s state error covariance pdrP  could always be restricted in a relatively small value. 
However, for the foot-mounted INS/ZUPT system, due to the reason that the heading of the system is 
not observable during ZUPT as well as the large in-run bias instability of the inertial sensor, both could 
result into the INS/ZUPT system’s position error covariance insP  diverges slowly and gradually. 
According to Equation (3.8), 1−P  can be regarded as the weighting factor, which is the inverse of the 
combined navigation state covariance matrix P . At this time, the inverse of pdrP  is much bigger than the 
inverse of insP , therefore the position of PDR/GNSS system is much accurate than that of the INS/ZUPT 
system, then the final positions of the two systems when using the state constraint algorithm will more 
“trust” the PDR/GNSS system’s result. 

  
(a) (b) 

  
(c) (d) 

Figure 5. PDR/GNSS system’s navigation solutions for simulated different GPS Outages of 
(a) 10 s; (b) 20 s; (c) 30 s; (d) 40 s. 
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(c) (d) 

Figure 6. Two systems’ navigation solutions with state constraint for simulated GPS outage 
of (a) 10 s; (b) 20 s; (c) 30 s; (d) 40 s. 

On the contrary, when GPS is not available, the INS/ GNSS system’s position error covariance 
(standard deviation) pdrP  will increase quickly, and benefiting from the preceding position correction by 
the state constraint algorithm as well as the periodical usage of ZUPT, the INS/ZUPT system’s position 
error covariance insP  will not increase quickly and at this time, during the GPS outage, the inverse of 

insP  is much bigger, therefore the position estimate of INS/ZUPT system is much accurate than that of 
the PDR/GNSS system, then the final positions of the two systems when using the state constraint 
algorithm will more “trust” the INS/ZUPT system’s result. 

7.3. Experiments in Indoor Environments 

The preceding open sky-based field experiment as well as its results have well illustrated the basic 
working principle and the efficacy of the proposed constraint approach. Although the results seem 
promising with/without the simulated GPS outages, however, in general, the one experimental trajectory 
is not enough to support the significant conclusions. Also, some researchers may challenge that why not 
fuse the GNSS and INS/ZUPT directly. In order to adequately back up the conclusions drawn from the 
above experiment, as well as demonstrate that the navigation solution derived through the integration of 
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multiple PNSs is much more accurate and robust than that of using only a standalone PNS when there is 
no external aiding information, such as GNSS, WiFi, etc. 

In this subsection, we performed several indoor experiments when GNSS was totally unavailable. 
Two late model smart-phones (Xiaomi™ Mi 4 (Xiaomi, Beijing, China)) using STMicroelectronics™ 
MEMS IMUs (STMicroelectronics, Geneva, Switzerland) were used to conduct the multiple paths-based 
experiments in an indoor area. The gyroscope embedded in the Mi 4 has much lower noise density as 
well as bias stability compared with the gyroscope embedded in the Samsung Note 2 (Samsung, Suwon, 
South Korea) for the experiment given in Subsection 7.2. The experiments were conducted in the Energy 
Environment Experiential Learning (EEEL) at the University of Calgary. The ground truth for the 
experiment is about 80 m × 16.5 m. Six identical trajectories were used to test the performance of 
proposed constraint approach. The reference trajectory and the first floor plan of the EEEL building can 
be seen in the following Figure 7. 

 

Figure 7. Reference trajectory at the energy environment experiential learning (EEEL). 

Also, in order to quantitatively show the performance of the proposed algorithm, we need to obtain 
reference trajectories/coordinates for further error analysis. In this research, we adopt the indoor  
map-aided PDR method for generating relatively precise reference trajectories. We make full use of the 
fact that most of the indoor corridors are straight as well as the positions of corners and intersections are 
known on specific indoor maps. At any moment, when detecting the user is walking along a straight 
line/corridor, the user’s walking heading for the PDR update will be “locked” in a specific value according 
to the indoor map. In this experiment, any momentary headings derived from the gyroscope are all 
corresponding to one of the four dominate directions (in degree), 0/360, 90, 180 and 270. Meanwhile, at any 
time when detecting the heading change of the user, the specific corners and intersections will also be 
detected, which can be regarded as “landmarks” to further correct the PDR-derived positions. 

The following Figures 8–13 respectively show the six trajectories-derived navigation solutions. Each 
figure gives both the positioning results of both PDR and INS/ZUPT navigation systems before and after 
applying the proposed state constraint algorithm. Correspondingly, the positioning performances using 
different approaches in the six trajectories can be seen in Table 1. 
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(a) (b) 

Figure 8. Trajectory I: Two systems’ navigation solutions. (a) Before constraint; (b) After constraint. 

  
(a) (b) 

Figure 9. Trajectory II: Two systems’ navigation solutions. (a) Before constraint; (b) After constraint. 

  
(a) (b) 

Figure 10. Trajectory III: Two systems’ navigation solutions. (a) Before constraint; (b) After constraint. 
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(a) (b) 

Figure 11. Trajectory IV: Two systems’ navigation solutions. (a) Before constraint; (b) After constraint. 

  
(a) (b) 

Figure 12. Trajectory V: Two systems’ navigation solutions. (a) Before constraint; (b) After constraint. 

  
(a) (b) 

Figure 13. Trajectory VI: Two systems’ navigation solutions. (a) Before constraint; (b) After constraint. 
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Table 1. Positioning performance using different algorithms in the six different trajectories. 

Trajectory System Algorithm 
Error (m) 

Maximum Minimum Mean RMS 

Trajectory I 
Hand-held 

Before Constraint 13.863 0.319 6.852 7.515 
After Constraint 9.639 0.258 4.600 5.036 

Foot-Mounted 
Before Constraint 15.028 0.319 6.029 7.098 
After Constraint 9.882 0.319 4.652 5.077 

Trajectory II 
Hand-held 

Before Constraint 8.149 0.541 3.607 4.149 
After Constraint 6.778 0.872 2.704 2.978 

Foot-Mounted 
Before Constraint 14.838 0.039 5.394 6.641 
After Constraint 7.198 0.039 2.690 2.988 

Trajectory III 
Hand-held 

Before Constraint 12.161 1.261 4.749 5.841 
After Constraint 3.689 0.178 2.042 2.276 

Foot-Mounted 
Before Constraint 7.457 0.981 4.394 4.569 
After Constraint 3.720 0.194 2.098 2.326 

Trajectory IV 
Hand-held 

Before Constraint 13.671 0.115 5.172 6.498 
After Constraint 2.671 0.021 1.177 1.347 

Foot-Mounted 
Before Constraint 10.932 0.027 3.683 4.813 
After Constraint 2.857 0.074 1.171 1.313 

Trajectory V 
Hand-held 

Before Constraint 15.825 0.043 5.730 7.414 
After Constraint 6.606 0.043 2.583 3.210 

Foot-Mounted 
Before Constraint 1.791 0.014 0.716 0.832 
After Constraint 6.923 0.316 2.458 3.235 

Trajectory VI 
Hand-held 

Before Constraint 20.319 0.011 8.409 10.123 
After Constraint 5.390 0.011 2.425 2.689 

Foot-Mounted 
Before Constraint 12.869 0.295 3.686 5.555 
After Constraint 5.192 0.319 2.334 2.611 

The navigation performances using the two different approaches (with/without constraint) in the six 
trajectories are depicted in the above Table 1. As can be seen from Figures 8–13 and Table 1, the 
constraint approach has improved the navigation performances of both PDR and INS/ZUPT systems in 
the trajectories of I, II, III, IV and VI, especially has significantly improved those in the trajectories of 
III, IV and VI. Only the INS/ZUPT navigation system’ performance in trajectory V has degraded, with 
RMS (Root-Mean-Square) values degraded from 0.732 to 3.235 m, mean values degraded from 0.616 to 
2.458 m, however, such error level is still acceptable given the application of pedestrian indoor 
navigation. On the contrary, in the same trajectory V, the PDR performance has been greatly improved, 
with RMS values improved from 7.414 to 3.210 m, mean values improved from 5.730 to 2.583 m. From 
the robustness point of view, the integrated navigation systems are more robust than each individual 
system through applying the proposed constraint KF approach. 

From Figures 8–13 and Table 1, it can be summarized that on average the navigation results using 
the constraint approach offer obvious improvement over the navigation results without using the 
proposed constraint approach, six out of six being improved with the PDR system, and five out of six 
being improved with the INS/ZUPT system. Due to our limited sample size of six experiments, the above 
given numbers should not be regarded as having any significance in the aspect of statistics, however, the 
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six experiments do show the improvement that is possible with the proposed constraint approach for the 
integration of multiple pedestrian navigation systems. 

8. Conclusions 

This paper presents a novel pedestrian navigation prototype through integrating the navigation 
solutions from two individual PNSs, namely the upper body mounted PDR/GNSS system and the  
foot-mounted INS/ZUPT system. A nonlinear inequality distance constraint between the two systems’ 
positioning estimates are explored. The state constraint Kalman filter is used to fuse the two systems’ 
navigation information and to diminish the positioning errors of both systems. The proposed new 
pedestrian navigation prototype was tested through both the Monte Carlo simulations and several real 
field experiments. Through using the constraint algorithm, both navigation systems’ positioning 
accuracy could be well improved. Future work includes the integration of three or more systems to 
compose a more robust PNS prototype. Also, long term indoor/outdoor experiments will be done to 
evaluate the performance of the integrated PNS prototype. 
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