Effect of Si Doping on the Performance of GaN Schottky Barrier Ultraviolet Photodetector Grown on Si Substrate
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Munoz, E.; Monroy, E.; Pau, J.L.; Calle, F.; Omnès, F.; Gibart, P.J. III nitrides and UV detection. Phys. Condens. Matter 2001, 13, 7115–7137. [Google Scholar] [CrossRef]
- Monroy, E.; Omnès, F.; Calle, F. Wide-bandgap semiconductor ultraviolet photodetectors. Semicond. Sci. Technol. 2003, 18, R33–R51. [Google Scholar] [CrossRef]
- Krost, A.; Dadgar, A. GaN-based devices on Si. Phys. Stat. Sol. 2002, 194, 361–375. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, K.; Sun, Q.; Liu, J.P.; Feng, M.X.; Li, Z.C.; Zhou, Y.; Zhang, L.Q.; Li, D.Y.; Zhang, S.M.; et al. Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si. Nat. Photonics 2016, 10, 595–599. [Google Scholar] [CrossRef]
- Zhao, D.G.; Jiang, D.S.; Zhu, J.J.; Liu, Z.S.; Zhang, S.M.; Liang, J.W.; Yang, H.; Li, X.; Li, X.Y.; Gong, H.M. Influence of defects in n−-GaN layer on the responsivity of Schottky barrier ultraviolet photodetectors. Appl. Phys. Lett. 2007, 90, 062106. [Google Scholar] [CrossRef]
- Feng, M.X.; Li, Z.C.; Wang, J.; Zhou, R.; Sun, Q.; Sun, X.J.; Li, D.B.; Gao, H.W.; Zhou, Y.; Zhang, S.M. Room-temperature electrically injected AlGaN-based near-ultraviolet laser grown on Si. ACS Photonics 2018, 5, 699. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, K.; Feng, M.X.; Li, Z.C.; Zhou, Y.; Sun, Q.; Liu, J.P.; Zhang, L.Q.; Li, D.Y.; Sun, X.J. Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si. Light Sci. Appl. 2018, 7, 13. [Google Scholar] [CrossRef]
- Guo, X.L.; Zhong, Y.Z.; He, J.L.; Zhou, Y.; Su, S.; Chen, X.; Liu, J.X.; Gao, H.W.; Sun, X.J.; Zhou, Q.; et al. High-Voltage and High-Ion/Ioff Quasi-Vertical GaN-on-Si Schottky Barrier Diode with Argon-Implanted Termination. (Submitted).
- Sugahara, T.; Sato, H.; Hao, M.S.; Naoi, Y.; Kurai, S.; Tottori, S.; Yamashita, K.; Nishino, K.; Romano, L.T.; Sakai, S. Direct evidence that dislocations are non-radiative recombination centers in GaN. Jpn. J. Appl. Phys. 1998, 37, L398–L400. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.D.; Yang, Z.J.; Wu, J.J.; Yu, T.J. Stress control and dislocation reduction in the initial growth of GaN on Si (111) substrates by using a thin GaN transition layer. CrystEngComm 2019, 21, 4792. [Google Scholar] [CrossRef]
- Li, Y.; Lan, J.Y.; Wang, W.L.; Zheng, Y.L.; Xie, W.T.; Tang, X.; Kong, D.Q.; Xia, Y.; Lan, Z.B.; Li, R.Z.; et al. 395 nm GaN-based near-ultraviolet light-emitting diodes on Si substrates with a high wall-plug efficiency of 52.0%@350 mA. Opt. Express 2019, 27, 7447. [Google Scholar] [CrossRef]
- Yi, L.K.; Qi, H.R.; Huang, J.L.; Zhou, M.; Zhao, D.G.; Jiang, D.S.; Yang, J.; Liu, W.; Liang, F. Influence of dislocation density and carbon impurities in i-GaN layer on the performance of Schottky barrier ultraviolet photodetectors. Mater. Res. Express 2018, 5, 046207. [Google Scholar]
- Reshchikov, M.A.; Morkoc, H. Luminescence properties of defects in GaN. J. Appl. Phys. 2005, 97, 061301. [Google Scholar] [CrossRef]
- Yang, H.C.; Lin, T.Y.; Chen, Y.F. Nature of the 2.8-eV photoluminescence band in Si-doped GaN. Phys. Rev. 2000, 62, 12593. [Google Scholar] [CrossRef]
- Kaufmann, U.; Kunzer, M.; Maier, M.; Manz, C.; Ramakrishnan, A.; Santic, B. Origin of defect-related photoluminescence bands in doped and nominally undoped GaN. Phys. Rev. B 1999, 59, 5561. [Google Scholar] [CrossRef]
- Ogino, T.; Aoki, M. Mechanism of yellow luminescence in GaN. Jpn. J. Appl. Phys. 1980, 19, 2395. [Google Scholar] [CrossRef]
- Kwok, S.M.; Ng, K. Physics Semiconductor Devices; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; p. 149. [Google Scholar]
- Fu, H.Q.; Huang, X.Q.; Chen, H.; Lu, Z.J.; Baranowski, I.; Zhao, Y.J. Ultra-low turn-on voltage and on-resistance vertical GaN-on-GaN Schottky power diodes with high mobility double drift layers. Appl. Phys. Lett. 2017, 111, 152102. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.D.; Pan, F.M.; Feng, M.S.; Guo, R.J.; Chou, P.F.; Chang, C.Y. Schottky contact and the thermal stability of Ni on n-type GaN. J. Appl. Phys. 1996, 80, 1623–1627. [Google Scholar] [CrossRef]
- Katz, O.; Bahir, G.; Salzman, J. Persistent photocurrent and surface trapping in GaN Schottky ultraviolet detectors. Appl. Phys. Lett. 2004, 84, 4092–4094. [Google Scholar] [CrossRef]
- Katz, O.; Garber, V.; Meyler, B.; Bahir, G.; Salzman, J. Gain mechanism in GaN Schottky ultraviolet detectors. Appl. Phys. Lett. 2001, 79, 1417–1419. [Google Scholar] [CrossRef]
- Xu, W.Z.; Shi, Y.T.; Ren, F.F.; Zhou, D.; Su, L.L.; Liu, Q.; Cheng, L.; Ye, J.D.; Chen, D.J.; Zhang, R. Magnesium ion-implantation-based gallium nitride p-i-n photodiode for visible-blind ultraviolet detection. Photonics Res. 2019, 7, B48–B54. [Google Scholar] [CrossRef]
- Ren, B.; Liao, M.Y.; Sumiya, M.; Huang, J.; Wang, L.J.; Koide, Y.; Sang, L.W. Vertical-type Ni/GaN UV photodetectors fabricated on free-standing GaN substrates. Appl. Sci. 2019, 9, 2895. [Google Scholar] [CrossRef] [Green Version]
- Polyakov, A.Y.; Smirnov, N.B.; Usikov, A.S.; Govorkov, A.V.; Pushniy, B.V. Studies of the origin of the yellow luminescence band, the nature of nonradiative recombination and the origin of persistent photoconductivity in n-GaN films. Solid-State Electron. 1998, 42, 1959–1967. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, F.; Chen, W.; Feng, M.; Huang, Y.; Liu, J.; Sun, X.; Zhan, X.; Sun, Q.; Wu, Q.; Yang, H. Effect of Si Doping on the Performance of GaN Schottky Barrier Ultraviolet Photodetector Grown on Si Substrate. Photonics 2021, 8, 28. https://doi.org/10.3390/photonics8020028
Liang F, Chen W, Feng M, Huang Y, Liu J, Sun X, Zhan X, Sun Q, Wu Q, Yang H. Effect of Si Doping on the Performance of GaN Schottky Barrier Ultraviolet Photodetector Grown on Si Substrate. Photonics. 2021; 8(2):28. https://doi.org/10.3390/photonics8020028
Chicago/Turabian StyleLiang, Fangzhou, Wen Chen, Meixin Feng, Yingnan Huang, Jianxun Liu, Xiujian Sun, Xiaoning Zhan, Qian Sun, Qibao Wu, and Hui Yang. 2021. "Effect of Si Doping on the Performance of GaN Schottky Barrier Ultraviolet Photodetector Grown on Si Substrate" Photonics 8, no. 2: 28. https://doi.org/10.3390/photonics8020028
APA StyleLiang, F., Chen, W., Feng, M., Huang, Y., Liu, J., Sun, X., Zhan, X., Sun, Q., Wu, Q., & Yang, H. (2021). Effect of Si Doping on the Performance of GaN Schottky Barrier Ultraviolet Photodetector Grown on Si Substrate. Photonics, 8(2), 28. https://doi.org/10.3390/photonics8020028