A Novel Data-Aided Frame Synchronization Method Based on Hough Transform for Optical Communications
Abstract
:1. Introduction
2. Fundamental of AC-Based Frame Synchronization Algorithm
3. HT-Based Frame Synchronization Algorithm
3.1. Hough Transform
- A point in image space corresponds to a sinusoid in Hough space;
- A point in Hough space corresponds a straight line in image space;
- The collinear position relationship of points in image space corresponds to the intersecting position relationship of curves in Hough space.
3.2. Algorithm
4. Simulation Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wozencraft, J.M.; Jacobs, I.M. Principles of Communication Engineering; Wiley: New York, NY, USA, 1965. [Google Scholar]
- TM Synchronization and Channel Coding; Blue Book; Issue 1; CCSDS: Washington, DC, USA, 2003.
- Mehdi, T.; Hamidreza, M. Reverse Engineering of Communications Networks: Evolution and Challenges. arXiv, 2017; arXiv:1704.05432. [Google Scholar]
- Guangzu, L.; Jianxin, W.; Tian, B. Frame Detection Based on Cyclic Autocorrelation and Constant False Alarm Rate in Burst Communication Systems. China Commun. 2015, 12, 55–63. [Google Scholar]
- Barker, R.H. Group Synchronization of Binary Digital Systems. Commun. Theory 1953, 20, 273–287. [Google Scholar]
- Choi, Z.Y.; Lee, Y.H. On the Use of Double Correlation for Frame Synchronization in the Presence of Frequency Offset. In Proceedings of the 1999 IEEE International Conference on Communications, Vancouver, BC, Canada, 6–10 June 2019; pp. 958–962. [Google Scholar]
- Choi, Z.Y.; Lee, Y.H. Frame synchronization in the presence of frequency offset. IEEE Trans. Commun. 2002, 50, 1062–1065. [Google Scholar] [CrossRef]
- Massey, J.L. Optimum Frame Synchronization. IEEE Trans. Commun. 1972, 20, 115–119. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, P.T. Some Optimum and Suboptimum Frame Synchronizers for Binary Data in Gaussian Noise. IEEE Trans. Commun. 1973, 21, 770–772. [Google Scholar] [CrossRef] [Green Version]
- Lui, G.L.; Tan, H.H. Frame synchronization for Gaussian channels. IEEE Trans. Commun. 1987, 35, 818–829. [Google Scholar]
- Robertson, P. Maximum likelihood frame synchronization for flat fading channels. In Proceedings of the 1992 IEEE International Conference on Communications, Chicago, IL, USA, 14–18 June 1992; pp. 1426–1430. [Google Scholar]
- Wang, Y.; Shi, K.; Serpedin, E. Continuous Mode Frame Synchronization for Frequency Selective Channels. IEEE Trans. Commun. 2004, 53, 865–871. [Google Scholar] [CrossRef]
- Kopansky, A.; Bystrom, M. Frame Synchronization for Noncoherent Demodulation on Flat Fading Channels. In Proceedings of the 2000 IEEE International Conference on Communications, New Orleans, LA, USA, 18–22 June 2000; pp. 312–316. [Google Scholar]
- Chiani, M.; Martini, M. Optimum synchronization of frames with unknown, variable lengths on Gaussian channels. In Proceedings of the IEEE Global Telecommunications Conference, Dallas, TX, USA, 29 November–3 December 2004; Volume 6, pp. 4087–4091. [Google Scholar]
- Chiani, M.; Martini, M. Practical frame synchronization for data with unknown distribution on AWGN channels. IEEE Commun. Lett. 2005, 9, 456–458. [Google Scholar] [CrossRef] [Green Version]
- Chiani, M.; Martini, M. On sequential frame synchronization in AWGN channels. IEEE Trans. Commun. 2006, 54, 339–348. [Google Scholar] [CrossRef] [Green Version]
- Kim, P.; Pedone, R.; Villanti, M.; Vanelli-Coralli, A.; Corazza, G.E.; Chang, D.I.; Oh, D.G. Robust frame synchronization for the DVB-S2 system with large frequency offsets. Int. J. Satell. Commun. Netw. 2009, 27, 35–52. [Google Scholar] [CrossRef]
- Pedone, R.; Villanti, M.; Vanelli-Coralli, A.; Corazza, G.; Mathiopoulos, P.T. Frame Synchronization in Frequency Uncertainty. IEEE Trans. Commun. 2010, 58, 1235–1246. [Google Scholar] [CrossRef]
- Bai, Y.; Yang, J.X.; Zhang, Y. A Recognition Method of m-sequence Synchronization Codes using Higher-order statistical Processing. J. Electrinics Inf. Technol. 2012, 34, 33–37. (In Chinese) [Google Scholar] [CrossRef]
- Bai, Y.; Yang, J.X.; Zhang, Y. Recognition Method of Fame Synchronization Codes based on Relativity Filter and Hadamard transformation Algorithm. J. Detect. Contol. 2011, 33, 69–72. (In Chinese) [Google Scholar]
- Naseri, A.; Salemm, J.; Hajimohammadii, M. Improving the blind recovering algorithm and synchronization word in satellite communication systems. Indian J. Sci. Res. 2014, 1, 15–19. [Google Scholar]
- Qin, J.Y.; Huang, Z.P. Novel Blind Recognition Algorithm of Frame Synchronization Words Based on Soft-Decision in Digital Communication Systems. PLoS ONE 2015, 10, e0132114. [Google Scholar] [CrossRef] [Green Version]
- Guo, F.K.; Wang, M. Research on Detection of Frame Head on Fixed Frame Length. J. Signal Inf. Process. 2014, 44, 33–36. (In Chinese) [Google Scholar]
- Xu, Y.Y.; Zhong, Y.; Huang, P.Z. An Improved Blind Recognition Algorithm of Frame Parameters Based on Self-Correlation. Information 2019, 10, 64. [Google Scholar] [CrossRef] [Green Version]
- Imad, R.; Sicot, G.; Houcke, S. Blind frame synchronization for error correcting codes having a sparse parity check matrix. IEEE Trans. Commun. 2009, 57, 1574–1577. [Google Scholar] [CrossRef]
- Xia, T.; Wu, H. Joint Blind Frame Synchronization and Encoder Identification for Low-Density Parity-Check Codes. IEEE Commun. Lett. 2014, 18, 353–355. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, Z.; Su, S. Blind Frame Synchronization of Reed-Solomon Coded Optical Transmission Systems. OPTIK 2013, 124, 998–1002. [Google Scholar]
- Qi, Y.; Wang, B.; Rong, M.; Liu, T. Comments on “Theoretical Analysis of a MAP Based Blind Frame Synchronizer. IEEE Trans. Wirel. Commun. 2011, 10, 3127–3132. [Google Scholar]
- Hough, P.V.C. A Method and Means for Recognizing Complex Patterns. U.S. Patent 3,069,654, 18 December 1962. [Google Scholar]
- Mukhopadhyay, P.; Chaudhuri, B. A survey of Hough Transform. Pattern Recognit. 2014, 48, 993–1010. [Google Scholar] [CrossRef]
- Duda, R.O.; Hart, P.E. Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 1972, 15, 11–15. [Google Scholar] [CrossRef]
- Imad, R.; Houcke, S. Theoretical Analysis of a MAP Based Blind Frame Synchronizer. IEEE Trans. Wirel. Commun. 2009, 8, 5472–5476. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, H.; Li, S.; Huang, Z.; Chen, J. A Novel Data-Aided Frame Synchronization Method Based on Hough Transform for Optical Communications. Photonics 2020, 7, 65. https://doi.org/10.3390/photonics7030065
Yin H, Li S, Huang Z, Chen J. A Novel Data-Aided Frame Synchronization Method Based on Hough Transform for Optical Communications. Photonics. 2020; 7(3):65. https://doi.org/10.3390/photonics7030065
Chicago/Turabian StyleYin, Huiwen, Sida Li, Zhiping Huang, and Jie Chen. 2020. "A Novel Data-Aided Frame Synchronization Method Based on Hough Transform for Optical Communications" Photonics 7, no. 3: 65. https://doi.org/10.3390/photonics7030065
APA StyleYin, H., Li, S., Huang, Z., & Chen, J. (2020). A Novel Data-Aided Frame Synchronization Method Based on Hough Transform for Optical Communications. Photonics, 7(3), 65. https://doi.org/10.3390/photonics7030065