Multifunctional Smart Optical Fibers: Materials, Fabrication, and Sensing Applications
Abstract
:1. Introduction
2. Materials and Fabrication Methods
2.1. Silica Glass-Based Fibers
2.2. Soft Glass-Based Fibers
2.3. PMMA POFs
2.4. Biopolymer Optical Fibers/Waveguides
2.5. Elastomer Optical Fibers/Waveguides
2.6. Multi-Material Multifunctional Fibers
2.7. Polyperfluoro-Butenylvinylether (CYTOP®) POFs
3. Multifunctional Microstructures in Optical Fibers
4. Fiber Grating Technology
4.1. Sensing Principle
4.2. Fabrication Techniques
5. Interferometric Technology
6. Sensing Applications
6.1. Pressure Sensing Based on the FBG and Interferometry
Type | Sensing Principle | Pressure Sensitivity | Reported Year | Reference |
---|---|---|---|---|
SMF | FBG | 3.1 pm/MPa | 1993 | [108] |
High-birefringence side-hole fiber | FBG | −1.93 pm/MPa for LP01x and −5.37 pm/MPa for LP01y | 2003 | [115] |
Carbon fiber ribbon-wound composite cylindrical shell | FBG | 452 pm/MPa | 2009 | [116] |
“Grapefruit” MOF | FBG | 12.8 pm/MPa | 2010 | [109] |
Micro-structured POF | FBG | 130 pm/MPa | 2012 | [117] |
“Butterfly”-type MOF | FBG | 33 pm/MPa | 2012 | [118] |
Single-ring suspended fiber | FBG | 44 pm/MPa | 2019 | [82] |
POF | FBG | 200 pm/MPa | 2015 | [110] |
Few-mode fiber | Mode interferometer | −23.7 pm/MPa | 2011 | [103] |
Index-guiding PCF | Fabry-Perot interferometer | −5.8 pm/MPa | 2011 | [100] |
Twin-core PCF | Supermode interferometer | −21 pm/MPa | 2012 | [119] |
PM-PCF | Sagnac interferometer | 3.42 nm/MPa | 2008 | [112] |
High-birefringence suspended core fiber | Sagnac interferometer | 2.82 nm/MPa | 2014 | [78] |
Elliptical-core side-hole fiber | Polarimetric (Sagnac interferometer) | ~26 nm/MPa | 2016 | [120] |
Capillary fiber with an embedded core | Polarimetric (Sagnac interferometer) | 10.4 nm/MPa | 2017 | [121] |
Semicircular-hole MOF | Sagnac interferometer | ~50 nm/MPa | 2018 | [79] |
Silicone structured POF sensor | POF FBG | 820 pm/kPa | 2013 | [114] |
6.2. Optofluidic Sensing Based on Multifunctional MOFs
6.3. Health Monitoring and Promotion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Erdogan, T. Fiber grating spectra. Light. Technol. J. 1997, 15, 1277–1294. [Google Scholar] [CrossRef]
- Kersey, A.D.; Davis, M.A.; Patrick, H.J.; LeBlanc, M.; Koo, K.P.; Askins, C.G.; Putnam, M.A.; Friebele, E.J. Fiber grating sensors. IEEE J. Light. Technol. 1997, 15, 1442–1463. [Google Scholar] [CrossRef]
- Tam, H.Y.; Pun, C.-F.J.; Zhou, G.; Cheng, X.; Tse, M.L.V. Special structured polymer fibers for sensing applications. Opt. Fiber Technol. 2010, 16, 357–366. [Google Scholar] [CrossRef]
- Johnson, I.P.; Kalli, K.; Webb, D.J.; Yuan, W.; Khan, L.; Bang, O.; Rasmussen, H.K.; Stefani, A.; Nielsen, K. Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer. Electron. Lett. 2011, 47, 271. [Google Scholar] [CrossRef]
- Woyessa, G.; Fasano, A.; Markos, C.; Stefani, A.; Rasmussen, H.K.; Bang, O. Zeonex micro-structured polymer optical fiber: Fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing. Opt. Mater. Express 2017, 7, 286. [Google Scholar] [CrossRef]
- Leber, A.; Cholst, B.; Sandt, J.; Vogel, N.; Kolle, M. Stretchable Thermoplastic Elastomer Optical Fibers for Sensing of Extreme Deformations. Adv. Funct. Mater. 2019, 29, 1–8. [Google Scholar] [CrossRef]
- Choi, M.; Choi, J.W.; Kim, S.; Nizamoglu, S.; Hahn, S.K.; Yun, S.H. Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo. Nat. Photonics 2013, 7, 987–994. [Google Scholar] [CrossRef] [Green Version]
- Le Coq, D.; Boussard-Plédel, C.; Fonteneau, G.; Pain, T.; Bureau, B.; Adam, J.L. Chalcogenide double index fibers: Fabrication, design, and application as a chemical sensor. Mater. Res. Bull. 2003, 38, 1745–1754. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, B.; Wang, X.; Pan, Z.; Liu, Z.; Zhang, P.; Shen, X.; Nie, Q.; Dai, S.; Wang, R. Mid-infrared supercontinuum covering 2.0–16 μm in a low-loss telluride single-mode fiber. Laser Photonics Rev. 2017, 11, 2–6. [Google Scholar] [CrossRef]
- Zhang, B.; Yu, Y.; Zhai, C.; Qi, S.; Wang, Y.; Yang, A.; Gai, X.; Wang, R.; Yang, Z.; Luther-Davies, B. High Brightness 2.2–12 μm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber. J. Am. Ceram. Soc. 2016, 4, 1–4. [Google Scholar] [CrossRef]
- Caillaud, C.; Gilles, C.; Provino, L.; Brilland, L.; Jouan, T.; Ferre, S.; Carras, M.; Brun, M.; Mechin, D.; Adam, J.-L.; et al. Highly birefringent chalcogenide optical fiber for polarization-maintaining in the 3–8.5 µm mid-IR window. Opt. Express 2016, 24, 7977. [Google Scholar] [CrossRef]
- Bernier, M.; Fortin, V.; Caron, N.; El-Amraoui, M.; Messaddeq, Y.; Vallée, R. Mid-infrared chalcogenide glass Raman fiber laser. Opt. Lett. 2013, 38, 127–129. [Google Scholar] [CrossRef] [PubMed]
- Egusa, S.; Wang, Z.; Chocat, N.; Ruff, Z.M.; Stolyarov, A.M.; Shemuly, D.; Sorin, F.; Rakich, P.T.; Joannopoulos, J.D.; Fink, Y. Multi-material piezoelectric fibres. Nat. Mater. 2010, 9, 643–648. [Google Scholar] [CrossRef]
- Lee, J.; Khudiyev, T.; Su, H.-W.; Levy, E.; Voldman, J.; Fink, Y.; Yuan, R. Microfluidics in structured multi-material fibers. Proc. Natl. Acad. Sci. USA 2018, 115, E10830–E10838. [Google Scholar]
- Lestoquoy, G.; Chocat, N.; Wang, Z.; Joannopoulos, J.D.; Fink, Y. Fabrication and characterization of thermally drawn fiber capacitors. Appl. Phys. Lett. 2013, 102, 152908. [Google Scholar] [CrossRef]
- Bayindir, M.; Abouraddy, A.F.; Arnold, J.; Joannopoulos, J.D.; Fink, Y. Thermal-sensing fiber devices by multi-material codrawing. Adv. Mater. 2006, 18, 845–849. [Google Scholar] [CrossRef]
- Hill, K.O.; Fujii, Y.; Johnson, D.C.; Kawasaki, B.S. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Appl. Phys. Lett. 1978, 32, 647. [Google Scholar] [CrossRef]
- Moulton, P.F.; Rines, G.A.; Slobodtchikov, E.V.; Wall, K.F.; Frith, G.; Samson, B.; Carter, A.L.G. Tm-doped fiber lasers: Fundamentals and power scaling. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 85–92. [Google Scholar] [CrossRef]
- Arai, K.; Namikawa, H.; Kumata, K.; Honda, T.; Ishii, Y.; Handa, T. Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass. J. Appl. Phys. 1986, 59, 3430–3436. [Google Scholar] [CrossRef]
- Ramírez-Martínez, N.J.; Núñez-Velázquez, M.; Umnikov, A.A.; Sahu, J.K. Highly efficient thulium-doped high-power laser fibers fabricated by MCVD. Opt. Express 2019, 27, 196. [Google Scholar] [CrossRef]
- Russell, P. Photonic crystal fibers. Science 2003, 299, 358–362. [Google Scholar] [CrossRef]
- Russell, P.S.J. Photonic-Crystal Fibers. J. Light. Technol. 2006, 24, 4729–4749. [Google Scholar]
- Tanaka, K.; Toyosawa, N.; Hisakuni, H. Photoinduced Bragg gratings in As2S3 optical fibers. Opt. Lett. 1995, 20, 1976–1978. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Rochette, M.; Baker, C. Fabrication of Bragg gratings in subwavelength diameter As2Se3 chalcogenide wires. Opt. Lett. 2011, 36, 2886–2888. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, X.; Dai, S.; Pan, Z.; Liu, S.; Sun, L.; Zhang, P.; Liu, Z.; Nie, Q.; Shen, X.; et al. 1.5–14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber. Opt. Lett. 2016, 41, 5222–5225. [Google Scholar] [CrossRef]
- Hartouni, E.; Mecholsky, J.J. Mechanical Properties of Chalcogenide Glasses. In Proceedings Volume 0683, Infrared and Optical Transmitting Materials; Schwartz, R.W., Ed.; SPIE: Bellingham, WA, USA, 1986; Volume I, p. 92. [Google Scholar]
- Lucas, P.; Riley, M.R.; Boussard-Plédel, C.; Bureau, B. Advances in chalcogenide fiber evanescent wave biochemical sensing. Anal. Biochem. 2006, 351, 1–10. [Google Scholar] [CrossRef]
- Bureau, B.; Boussard, C.; Cui, S.; Chahal, R.; Anne, M.L.; Nazabal, V.; Sire, O.; Loréal, O.; Lucas, P.; Monbet, V.; et al. Chalcogenide optical fibers for mid-infrared sensing. Opt. Eng. 2014, 53, 027101. [Google Scholar] [CrossRef]
- Van Popta, A.; Decorby, R.; Haugen, C.; Robinson, T.; McMullin, J.; Tonchev, D.; Kasap, S. Photoinduced refractive index change in As2Se3 by 633 nm illumination. Opt. Express 2002, 10, 639–644. [Google Scholar] [CrossRef] [PubMed]
- El-Amraoui, M.; Gadret, G.; Jules, J.C.; Fatome, J.; Fortier, C.; Désévédavy, F.; Skripatchev, I.; Messaddeq, Y.; Troles, J.; Brilland, L.; et al. Micro-structured chalcogenide optical fibers from As2S3 glass: Towards new IR broadband sources. Opt. Express 2010, 18, 26655–26665. [Google Scholar] [CrossRef]
- Peng, G.D.; Xiong, Z.; Chu, P.L. Photosensitivity and gratings in dye-doped polymer optical fibers. Opt. Fiber Technol. 1999, 5, 242–251. [Google Scholar] [CrossRef]
- Yu, J.; Tao, X.; Tam, H. Trans-4-stilbenemethanol-doped photosensitive polymer fibers and gratings. Opt. Lett. 2004, 29, 156–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Zhang, C.; Webb, D.J.; Peng, G.D.; Kalli, K. Bragg grating in a polymer optical fibre for strain, bend and temperature sensing. Meas. Sci. Technol. 2010, 21, 94005. [Google Scholar] [CrossRef]
- Xiong, Z.; Peng, G.D.; Wu, B.; Chu, P.L. Highly Tunable Bragg Gratings in Single-Mode Polymer Optical Fibers. IEEE Photonics Technol. Lett. 1999, 11, 352–354. [Google Scholar] [CrossRef]
- Dobb, H.; Webb, D.J.; Kalli, K.; Argyros, A.; Large, M.C.J.; van Eijkelenborg, M.A. Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode micro-structured polymer optical fibers. Opt. Lett. 2005, 30, 3296–3298. [Google Scholar] [PubMed]
- Kowal, D.; Statkiewicz-Barabach, G.; Mergo, P.; Urbanczyk, W. Micro-structured polymer optical fiber for long period gratings fabrication using an ultraviolet laser beam. Opt. Lett. 2014, 39, 2242. [Google Scholar] [CrossRef] [PubMed]
- Bundalo, I.-L.; Nielsen, K.; Markos, C.; Bang, O. Bragg grating writing in PMMA micro-structured polymer optical fibers in less than 7 minutes. Opt. Express 2014, 22, 5270–5276. [Google Scholar] [CrossRef]
- Rosenberger, M.; Hellmann, R.; Belle, S.; Schmauss, B.; Hessler, S. TOPAS based humidity insensitive polymer planar Bragg gratings for temperature and multi-axial strain sensing. In Proceedings Volume 9444, International Seminar on Photonics, Optics, and Its Applications (ISPhOA 2014); SPIE: Bellingham, WA, USA, 2015. [Google Scholar]
- Choi, M.; Humar, M.; Kim, S.; Yun, S.H. Step-Index Optical Fiber Made of Biocompatible Hydrogels. Adv. Mater. 2015, 27, 4081–4086. [Google Scholar] [CrossRef]
- Guo, J.; Zhou, M.; Yang, C. Fluorescent hydrogel waveguide for on-site detection of heavy metal ions. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef]
- Lin, S.; Yuk, H.; Zhang, T.; Parada, G.A.; Koo, H.; Yu, C.; Zhao, X. Stretchable Hydrogel Electronics and Devices. Adv. Mater. 2016, 28, 4497–4505. [Google Scholar] [CrossRef]
- Liu, X.; Yun, S.-H.; Guo, J.; Khademhosseini, A.; Yetisen, A.K.; Yang, C.; Jiang, N.; Yuk, H.; Zhao, X. Highly Stretchable, Strain Sensing Hydrogel Optical Fibers. Adv. Mater. 2016, 28, 10244–10249. [Google Scholar] [Green Version]
- Pathak, A.K.; Singh, V.K. A wide range and highly sensitive optical fiber pH sensor using polyacrylamide hydrogel. Opt. Fiber Technol. 2017, 39, 43–48. [Google Scholar] [CrossRef]
- Parker, S.T.; Domachuk, P.; Amsden, J.; Bressner, J.; Lewis, J.A.; Kaplan, D.L.; Omenetto, F.C. Biocompatible silk printed optical waveguides. Adv. Mater. 2009, 21, 2411–2415. [Google Scholar] [CrossRef]
- Qiao, X.; Qian, Z.; Li, J.; Sun, H.; Han, Y.; Xia, X.; Zhou, J.; Wang, C.; Wang, Y.; Wang, C. Synthetic Engineering of Spider Silk Fiber as Implantable Optical Waveguides for Low-Loss Light Guiding. Acs Appl. Mater. Interfaces 2017, 9, 14665–14676. [Google Scholar] [CrossRef]
- Jain, A.; Yang, A.H.J.; Erickson, D. Gel-based optical waveguides with live cell encapsulation and integrated microfluidics. Opt. Lett. 2012, 37, 1472. [Google Scholar] [CrossRef]
- Rahman, H.A.; Ahmad, H.; Hamida, B.A.; Al-Askari, S.; Harun, S.W.; Irawati, N.; Yasin, M. Relative Humidity Sensing Using a PMMA Doped Agarose Gel Microfiber. J. Light. Technol. 2017, 35, 3940–3944. [Google Scholar] [Green Version]
- Nizamoglu, S.; Gather, M.C.; Humar, M.; Choi, M.; Kim, S.; Kim, K.S.; Hahn, S.K.; Scarcelli, G.; Randolph, M.; Redmond, R.W.; et al. Bioabsorbable polymer optical waveguides for deep-tissue photomedicine. Nat. Commun. 2016, 7, 1–7. [Google Scholar] [CrossRef]
- Yetisen, A.K.; Jiang, N.; Fallahi, A.; Montelongo, Y.; Ruiz-Esparza, G.U.; Tamayol, A.; Zhang, Y.S.; Mahmood, I.; Yang, S.A.; Kim, K.S.; et al. Glucose-Sensitive Hydrogel Optical Fibers Functionalized with Phenylboronic Acid. Adv. Mater. 2017, 29, 1606380. [Google Scholar] [CrossRef]
- Jiang, N.; Ahmed, R.; Rifat, A.A.; Guo, J.; Yin, Y.; Montelongo, Y.; Butt, H.; Yetisen, A.K. Functionalized Flexible Soft Polymer Optical Fibers for Laser Photomedicine. Adv. Opt. Mater. 2018, 6, 1–10. [Google Scholar] [CrossRef]
- Liu, Z.; Kim, G.B.; Kalaba, S.; Zhang, C.; Yang, J.; Mehta, N.; Shan, D. Flexible biodegradable citrate-based polymeric step-index optical fiber. Biomaterials 2017, 143, 142–148. [Google Scholar]
- Sun, Y.L.; Sun, S.M.; Zheng, B.Y.; Hou, Z.S.; Wang, P.; Zhang, X.L.; Dong, W.F.; Zhang, L.; Chen, Q.D.; Tong, L.M.; et al. Protein-Based Multi-Mode Interference Optical Micro-Splitters. IEEE Photonics Technol. Lett. 2016, 28, 629–632. [Google Scholar] [CrossRef]
- Zhao, H.; O’Brien, K.; Li, S.; Shepherd, R.F. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides. Sci. Robot. 2016, 1, 1–10. [Google Scholar] [CrossRef]
- Harnett, C.K.; Zhao, H.; Shepherd, R.F. Stretchable Optical Fibers: Threads for Strain-Sensitive Textiles. Adv. Mater. Technol. 2017, 2, 1–7. [Google Scholar] [CrossRef]
- Missinne, J.; Van Steenberge, G.; Bosman, E.; Kalathimekkad, S.; Vanfleteren, J.; Van Hoe, B. Stretchable optical waveguides. Opt. Express 2014, 22, 4168. [Google Scholar] [CrossRef] [Green Version]
- Martincek, I.; Pudis, D.; Chalupova, M. Technology for the preparation of PDMS optical fibers and some fiber structures. IEEE Photonics Technol. Lett. 2014, 26, 1446–1449. [Google Scholar] [CrossRef]
- Abouraddy, A.F.; Bayindir, M.; Benoit, G.; Hart, S.D.; Kuriki, K.; Orf, N.; Shapira, O.; Sorin, F.; Temelkuran, B.; Fink, Y. Towards multi-material multifunctional fibres that see, hear, sense and communicate. Nat. Mater. 2007, 6, 336–347. [Google Scholar] [CrossRef] [PubMed]
- Temelkuran, B.; Hart, S.D.; Benoit, G.; Joannopoulos, J.D.; Fink, Y. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature 2002, 420, 650–653. [Google Scholar] [CrossRef] [PubMed]
- Viens, J.F.; Hart, S.D.; Benoit, G.; Bayindir, M.; Shapira, O.; Kuriki, K.; Kuriki, Y.; Joannopoulos, J.D.; Fink, Y. Hollow multilayer photonic bandgap fibers for NIR applications. Opt. Express 2004, 12, 1510. [Google Scholar]
- Hart, S.D.; Maskaly, G.R.; Temelkuran, B.; Prideaux, P.H.; Joannopoulos, J.D.; Fink, Y. External reflection from omnidirectional dielectric mirror fibers. Science 2002, 296, 510–513. [Google Scholar] [CrossRef]
- Benoit, G.; Hart, S.D.; Temelkuran, B.; Joannopoulos, J.D.; Fink, Y. Static and Dynamic Properties of Optical Microcavities in Photonic Bandgap Yarns. Adv. Mater. 2003, 15, 2053–2056. [Google Scholar] [CrossRef]
- Bayindir, M.; Fink, Y.; Sorin, F.; Joannopoulos, J.D.; Hinczewski, D.S.; Arnold, J.; Abouraddy, A.F.; Shapira, O. Large-scale optical-field measurements with geometric fibre constructs. Nat. Mater. 2006, 5, 532–536. [Google Scholar] [Green Version]
- Bayindir, M.; Shapira, O.; Saygin-Hinczewski, D.; Viens, J.; Abouraddy, A.F.; Joannopoulos, J.D.; Fink, Y. Integrated fibres for self-monitored optical transport. Nat. Mater. 2005, 4, 820–825. [Google Scholar] [CrossRef]
- Shapira, O.; Kuriki, K.; Orf, N.D.; Abouraddy, A.F.; Benoit, G.; Viens, J.F.; Rodriguez, A.; Ibanescu, M.; Joannopoulos, J.D.; Fink, Y.; et al. Surface-emitting fiber lasers. Opt. Express 2006, 14, 3929. [Google Scholar] [CrossRef]
- Rein, M.; Favrod, V.D.; Hou, C.; Khudiyev, T.; Stolyarov, A.; Cox, J.; Chung, C.C.; Chhav, C.; Ellis, M.; Joannopoulos, J.; et al. Diode fibres for fabric-based optical communications. Nature 2018, 560, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Hanada, Y.; Sugioka, K.; Midorikawa, K. UV waveguides light fabricated in fluoropolymer CYTOP by femtosecond laser direct writing. Opt. Express 2010, 18, 446. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.Y.; Peng, G.D.; Chu, P.L. Thermal stability of gratings in PMMA and CYTOP polymer fibers. Opt. Commun. 2002, 204, 151–156. [Google Scholar] [CrossRef]
- Lacraz, A.; Polis, M.; Theodosiou, A.; Koutsides, C.; Kalli, K. Femtosecond Laser Inscribed Bragg Gratings in Low Loss CYTOP Polymer Optical Fiber. IEEE Photonics Technol. Lett. 2015, 27, 693–696. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, X.; Guo, F.; Wu, B.; Zhao, Z.; Mi, N.; Li, X.; Dai, S.; Liu, Z.; Nie, Q.; et al. Fabrication and characterization of chalcogenide polarization-maintaining fibers based on extrusion. Opt. Fiber Technol. 2017, 39, 26–31. [Google Scholar] [CrossRef]
- Zhang, B.; Zhai, C.; Qi, S.; Guo, W.; Yang, Z.; Yang, A.; Gai, X.; Yu, Y.; Wang, R.; Tang, D.; et al. High-resolution chalcogenide fiber bundles for infrared imaging. Opt. Lett. 2015, 40, 4384–4387. [Google Scholar] [CrossRef]
- Ebendorff-Heidepriem, H.; Warren-Smith, S. Suspended nanowires: Fabrication, design and characterization of fibers with nanoscale cores. Opt. Express 2009, 17, 2646–2657. [Google Scholar] [CrossRef]
- Liu, B.T.; Chen, W.C.; Hsu, J.P. Mathematical modeling of a co-extrusion process for preparing gradient-index polymer optical fibers. Polymer 1999, 40, 1451–1457. [Google Scholar] [CrossRef]
- Wei, C.; Joseph Weiblen, R.; Menyuk, C.R.; Hu, J. Negative curvature fibers. Adv. Opt. Photonics 2017, 9, 504. [Google Scholar] [CrossRef]
- Hasan, M.I.; Akhmediev, N.; Chang, W. Positive and negative curvatures nested in an antiresonant hollow-core fiber. Opt. Lett. 2017, 42, 703. [Google Scholar] [CrossRef]
- Gattass, R.R.; Rhonehouse, D.; Gibson, D.; McClain, C.; Thapa, R.; Nguyen, V.Q.; Bayya, S.S.; Weiblen, J.; Menyuk, C.R.; Shaw, L.B.; et al. Infrared glass-based negative-curvature anti-resonant fibers fabricated through extrusion. Opt. Express 2016, 24, 25697–25703. [Google Scholar] [CrossRef] [PubMed]
- Birks, T.A.; Knight, J.C.; Russell, P.S. Endlessly single-mode photonic crystal fiber. Opt. Lett. 1997, 22, 961–963. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Tam, H.-Y. Fabrication and Sensing Applications of Special Micro-structured Optical Fibers. In Selected Topics on Optical Fiber Technologies and Applications; Xu, F., Mou, C., Eds.; InTech: London, UK, 2018; pp. 1–20. ISBN 978-953-51-3813-6. [Google Scholar]
- Liu, Z.; Wu, C.; Tse, M.-L.V.; Tam, H.-Y. Fabrication, Characterization, and Sensing Applications of a High-Birefringence Suspended-Core Fiber. J. Light. Technol. 2014, 32, 2113–2122. [Google Scholar] [CrossRef]
- Liu, Z.; Htein, L.; Lee, K.-K.; Lau, K.-T.; Tam, H.-Y. Large dynamic range pressure sensor based on two semicircle-holes micro-structured fiber. Sci. Rep. 2018, 8, 65. [Google Scholar] [CrossRef]
- Anuszkiewicz, A.; Statkiewicz-Barabach, G.; Borsukowski, T.; Olszewski, J.; Martynkien, T.; Urbanczyk, W.; Mergo, P.; Makara, M.; Poturaj, K.; Geernaert, T.; et al. Sensing characteristics of the rocking filters in micro-structured fibers optimized for hydrostatic pressure measurements. Opt. Express 2012, 20, 23320. [Google Scholar] [CrossRef]
- Tse, M.-L.V.; Liu, Z.; Cho, L.-H.; Lu, C.; Wai, P.-K.A.; Tam, H. Superlattice Micro-structured Optical Fiber. Materials 2014, 7, 4567–4573. [Google Scholar] [CrossRef] [PubMed]
- Htein, L.; Liu, Z.; Gunawardena, D.; Tam, H.-Y.Y. Single-ring suspended fiber for Bragg grating based hydrostatic pressure sensing. Opt. Express 2019, 27, 9655. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.P.; Guan, B.O.; Tao, X.-M.; Tam, H.Y. Experimental and theoretical analysis of fiber Bragg gratings under lateral compression. Opt. Commun. 2002, 206, 81–87. [Google Scholar] [CrossRef]
- Zhang, A.P.; Guan, B.-O.; Tao, X.-M.; Tam, H.Y. Mode couplings in superstructure fiber Bragg gratings. IEEE Photonics Technol. Lett. 2002, 14, 489–491. [Google Scholar] [CrossRef] [Green Version]
- Du, W.-C.; Tao, X.-M.; Tam, H.-Y. Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature. IEEE Photonics Technol. Lett. 1999, 11, 105–107. [Google Scholar] [Green Version]
- Du, W.; Tao, X.; Tam, H.-Y. Temperature independent strain measurement with a fiber grating tapered cavity sensor. Photonics Technol. Lett. IEEE 1999, 11, 596–598. [Google Scholar] [Green Version]
- Zhang, A.-P.; Tao, X.-M.; Chung, W.-H.; Guan, B.-O.; Tam, H.-Y. Cladding-mode-assisted recouplings in concatenated long-period and fiber Bragg gratings. Opt. Lett. 2002, 27, 1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, B.O.; Zhang, A.P.; Tam, H.Y.; Chan, H.L.; Choy, C.L.; Tao, X.M.; Demokan, M.S. Step-changed long-period fiber gratings. IEEE Photonics Technol. Lett. 2002, 14, 657–659. [Google Scholar] [CrossRef] [Green Version]
- Chi, H.; Tao, X.-M.; Yang, D.-X.; Chen, K.-S. Simultaneous measurement of axial strain, temperature, and transverse load by a superstructure fiber grating. Opt. Lett. 2007, 26, 1949. [Google Scholar] [CrossRef]
- Malo, B.; Albert, J.; Hill, K.O.; Bilodeau, F.; Johnson, D.C. Effective index drift from molecular nydrogen dizusion in hydrogen-loaded optical fibres and its effect on Bragg grating fabrication. Electron. Lett. 1994, 30, 1727–1729. [Google Scholar] [CrossRef]
- Hill, K.O.; Meltz, G. Fiber Bragg grating technology fundamentals and overview. J. Light. Technol. 1997, 15, 1263–1276. [Google Scholar] [CrossRef]
- Ran, Y.; Tan, Y.-N.; Sun, L.-P.; Gao, S.; Li, J.; Jin, L.; Guan, B.-O. 193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing. Opt. Express 2011, 19, 18577–18583. [Google Scholar] [CrossRef]
- Gagné, M.; Kashyap, R. New nanosecond Q-switched 213 and 224 nm lasers for fiber Bragg grating inscription in hydrogen-free fibers. Laser Appl. Microelectron. Optoelectron. Manuf. XVII 2012, 8243, 824314. [Google Scholar]
- Marques, C.A.F.; Min, R.; Leal Junior, A.; Antunes, P.; Fasano, A.; Woyessa, G.; Nielsen, K.; Rasmussen, H.K.; Ortega, B.; Bang, O. Fast and stable gratings inscription in POFs made of different materials with pulsed 248 nm KrF laser. Opt. Express 2018, 26, 2013. [Google Scholar] [CrossRef]
- Cui, W.; Chen, T.; Si, J.; Chen, F.; Hou, X. Femtosecond laser processing of fiber Bragg gratings with photo-induced gradient-index assisted focusing. J. Micromech. Microeng. 2014, 24, 075015. [Google Scholar] [CrossRef]
- Baghdasaryan, T.; Geernart, T.; Morana, A.; Marin, E.; Girard, S.; Makara, M.; Mergo, P.; Thienpont, H.; Berghmans, F. IR femtosecond pulsed laser-based fiber Bragg grating inscription in a photonic crystal fiber using a phase mask and a short focal length lens. Opt. Express 2018, 26, 14741. [Google Scholar] [CrossRef]
- Elsmann, T.; Habisreuther, T.; Graf, A.; Rothhardt, M.; Bartelt, H. Inscription of first-order sapphire Bragg gratings using 400 nm femtosecond laser radiation. Opt. Express 2013, 21, 4591. [Google Scholar] [CrossRef]
- Thomas, J.U.; Jovanovic, N.; Krämer, R.G.; Marshall, G.D.; Withford, M.J.; Tünnermann, A.; Nolte, S.; Steel, M.J. Cladding mode coupling in highly localized fiber Bragg gratings II: Complete vectorial analysis. Opt. Express 2012, 20, 21434. [Google Scholar] [CrossRef] [PubMed]
- Waltermann, C.; Doering, A.; Köhring, M.; Angelmahr, M.; Schade, W. Cladding waveguide gratings in standard single-mode fiber for 3D shape sensing. Opt. Lett. 2015, 40, 3109. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Fu, H.Y.; Qureshi, K.K.; Guan, B.-O.; Tam, H.Y. High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber. Opt. Lett. 2011, 36, 412–414. [Google Scholar] [CrossRef] [PubMed]
- Ke, T.; Zhu, T.; Rao, Y.; Deng, M. Accelerometer based on all-fiber Fabry–Pérot interferometer formed by hollow-core photonic crystal fiber. Microw. Opt. Technol. Lett. 2010, 52, 2531–2535. [Google Scholar] [CrossRef]
- Kim, B.; Kim, T.-H.; Cui, L.; Chung, Y. Twin core photonic crystal fiber for in-line Mach-Zehnder interferometric sensing applications. Opt. Express 2009, 17, 15502–15507. [Google Scholar] [CrossRef]
- Chen, D.; Wu, C.; Tse, M. Hydrostatic Pressure Sensor Based on Mode Interference of a Few Mode Fiber. Prog. Electromagn. 2011, 119, 335–343. [Google Scholar] [CrossRef]
- Ortigosa-Blanch, A.; Knight, J.; Wadsworth, W. Highly birefringent photonic crystal fibers. Opt. Lett. 2000, 25, 1325–1327. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Kubota, H.; Kawanishi, S.; Tanaka, M.; Fujita, M. Optical properties of a low-loss polarization-maintaining photonic crystal fiber. Opt. Express 2001, 9, 676–680. [Google Scholar] [CrossRef] [PubMed]
- Fini, J.M.; Nicholson, J.W.; Mangan, B.; Meng, L.; Windeler, R.S.; Monberg, E.M.; DeSantolo, A.; DiMarcello, F.V.; Mukasa, K. Polarization maintaining single-mode low-loss hollow-core fibres. Nat. Commun. 2014, 5, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Szpulak, M.; Statkiewicz, G.; Olszewski, J.; Martynkien, T.; Urbańczyk, W.; Wójcik, J.; Makara, M.; Klimek, J.; Nasilowski, T.; Berghmans, F.; et al. Experimental and theoretical investigations of birefringent holey fibers with a triple defect. Appl. Opt. 2005, 44, 2652–2658. [Google Scholar] [CrossRef]
- Xu, M.; Reekie, L.; Chow, Y.; Dakin, J.P. Optical in-fibre grating high pressure sensor. Electron. Lett. 1993, 29, 398–399. [Google Scholar] [CrossRef]
- Wu, C.; Guan, B.-O.; Wang, Z.; Feng, X. Characterization of Pressure Response of Bragg Gratings in Grapefruit Micro-structured Fibers. J. Light. Technol. 2010, 28, 1392–1397. [Google Scholar]
- Bhowmik, K.; Peng, G.-D.; Luo, Y.; Ambikairajah, E.; Lovric, V.; Walsh, W.R.; Rajan, G. Experimental Study and Analysis of Hydrostatic Pressure Sensitivity of Polymer Fibre Bragg Gratings. J. Light. Technol. 2015, 33, 2456–2462. [Google Scholar] [CrossRef]
- Available online: http://www2.emersonprocess.com/en-IN/news/pr/Pages/509-Roxar.aspx (accessed on 1 March 2019).
- Fu, H.Y.; Tam, H.Y.; Shao, L.-Y.; Dong, X.; Wai, P.K.A.; Lu, C.; Khijwania, S.K. Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer. Appl. Opt. 2008, 47, 2835–2839. [Google Scholar] [CrossRef]
- Anuszkiewicz, A.; Martynkien, T.; Mergo, P.; Makara, M.; Urbanczyk, W. Sensing and transmission characteristics of a rocking filter fabricated in a side-hole fiber with zero group birefringence. Opt. Express 2013, 21, 12657. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Tao, X.M.; Zhang, H.P.; Zhu, B. Soft fiber optic sensors for precision measurement of shear stress and pressure. IEEE Sens. J. 2013, 13, 1478–1482. [Google Scholar] [CrossRef]
- Chmielewska, E.; Urbańczyk, W.; Bock, W.J. Measurement of pressure and temperature sensitivities of a Bragg grating imprinted in a highly birefringent side-hole fiber. Appl. Opt. 2003, 42, 6284–6291. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Wei, Z.; Zou, J.; Yang, S.; Du, E.; Cui, H. Pressure Sensor Based on Fiber Bragg Grating and Carbon Fiber Ribbon-Wound Composite Cylindrical Shell. Sens. J. 2009, 9, 828–831. [Google Scholar] [CrossRef]
- Johnson, I.P.; Webb, D.J.; Kalli, K. Hydrostatic pressure sensing using a polymer optical fibre Bragg gratings. In Proceedings of the Third Asia Pacific Optical Sensors Conference, Sydney, Australia, 31 Janunary–3 February 2012; Volume 8351, p. 835106. [Google Scholar]
- Sulejmani, S.; Sonnenfeld, C.; Geernaert, T.; Mergo, P.; Makara, M.; Poturaj, K.; Skorupski, K.; Martynkien, T.; Statkiewicz-Barabach, G.; Olszewski, J.; et al. Control over the pressure sensitivity of Bragg grating-based sensors in highly birefringent micro-structured optical fibers. IEEE Photonics Technol. Lett. 2012, 24, 527–529. [Google Scholar] [CrossRef]
- Liu, Z.; Tse, M.-L.V.; Wu, C.; Chen, D.; Lu, C.; Tam, H.-Y. Intermodal coupling of supermodes in a twin-core photonic crystal fiber and its application as a pressure sensor. Opt. Express 2012, 20, 21749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadeghi, J.; Latifi, H.; Murawski, M.; Mirkhosravi, F.; Nasilowski, T.; Mergo, P.; Poturaj, K. Group polarimetric pressure sensitivity of an elliptical-core side-hole fiber at telecommunication wavelengths. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 49–54. [Google Scholar] [CrossRef]
- Osório, J.H.; Chesini, G.; Serrão, V.A.; Franco, M.A.R.; Cordeiro, C.M.B. Simplifying the design of micro-structured optical fibre pressure sensors. Sci. Rep. 2017, 7, 2990. [Google Scholar] [CrossRef] [PubMed]
- Lien, V.; Vollmer, F. Microfluidic flow rate detection based on integrated optical fiber cantilever. Lab Chip 2007, 7, 1352–1356. [Google Scholar] [CrossRef]
- Minzioni, P.; Osellame, R.; Sada, C.; Zhao, S.; Omenetto, F.G.; Gylfason, K.B.; Haraldsson, T.; Zhang, Y.; Ozcan, A.; Wax, A.; et al. Roadmap for optofluidics. J. Opt. 2017, 19, 093003. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Tse, M.-L.V.; Liu, Z.; Guan, B.-O.; Lu, C.; Tam, H.-Y. In-line microfluidic refractometer based on C-shaped fiber assisted photonic crystal fiber Sagnac interferometer. Opt. Lett. 2013, 38, 3283–3286. [Google Scholar] [CrossRef]
- Ertman, S.; Lesiak, P.; Wolinski, T.R. Optofluidic Photonic Crystal Fiber-Based Sensors. J. Light. Technol. 2017, 35, 3399–3405. [Google Scholar] [CrossRef]
- Unterkofler, S.; McQuitty, R.J.; Euser, T.G.; Farrer, N.J.; Sadler, P.J.; Russell, P.S.J. Microfluidic integration of photonic crystal fibers for online photochemical reaction analysis. Opt. Lett. 2012, 37, 1952–1954. [Google Scholar] [CrossRef]
- Ponce, S.; Munoz, M.; Cubillas, A.M.; Euser, T.G.; Zhang, G.-R.; Russell, P.S.J.; Wasserscheid, P.; Etzold, B.J.M. Stable Immobilization of Size-Controlled Bimetallic Nanoparticles in Photonic Crystal Fiber Microreactor. Chem. Ing. Tech. 2018, 90, 653–659. [Google Scholar] [CrossRef]
- Gao, R.; Lu, D.F.; Cheng, J.; Jiang, Y.; Jiang, L.; Xu, J.D.; Qi, Z.M. Fiber optofluidic biosensor for the label-free detection of DNA hybridization and methylation based on an in-line tunable mode coupler. Biosens. Bioelectron. 2016, 86, 321–329. [Google Scholar] [CrossRef]
- Leite, I.T.; Turtaev, S.; Jiang, X.; Šiler, M.; Cuschieri, A.; Russell, P.S.J.; Čižmár, T. Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre. Nat. Photonics 2017, 12, 1–7. [Google Scholar] [CrossRef]
- Massaroni, C.; Saccomandi, P.; Schena, E. Medical smart textiles based on fiber optic technology: An overview. J. Funct. Biomater. 2015, 6, 204–221. [Google Scholar] [CrossRef]
- Wong, M.-S.; Zhao, V.H.; Lou, E.; Chalmers, E.; Hill, D. Development of a Pressure Control System for Brace Treatment of Scoliosis. IEEE Trans. Neural Syst. Rehabil. Eng. 2012, 20, 557–563. [Google Scholar]
- Dziuda, Ł.; Skibniewski, F.W.; Krej, M.; Baran, P.M. Fiber Bragg grating-based sensor for monitoring respiration and heart activity during magnetic resonance imaging examinations. J. Biomed. Opt. 2013, 18, 057006. [Google Scholar] [CrossRef] [Green Version]
- Katsuragawa, Y.; Ishizawa, H. Non-invasive Blood Pressure Measurement by Pulse Wave Analysis Using FBG Sensor. In Proceedings of the 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Pisa, Italy, 11–14 May 2015; pp. 511–515. [Google Scholar]
- Chen, S.; Huang, Z.; Tan, F.; Yang, T.; Tu, J.; Yu, C. Vital signs monitoring using few-mode fiber-based sensors. In Proceedings of the Photonics ASIA 2018, Beijing, China, 11–13 October 2018; p. 108140P. [Google Scholar]
- Chen, S.; Tan, F.; Huang, Z.; Yang, T.; Tu, J.; Yu, C. Non-invasive smart monitoring system based on multi-core fiber optic interferometers. In Proceedings of the 2018 IEEE Asia Communications and Photonics Conference (ACP), Hangzhou, China, 26–29 October 2018; pp. 1–3. [Google Scholar]
- Silva, A.F.; Carmo, J.P.; Mendes, P.M.; Correia, J.H. Simultaneous cardiac and respiratory frequency measurement based on a single fiber Bragg grating sensor. Meas. Sci. Technol. 2011, 22, 75801. [Google Scholar] [CrossRef]
- Miyauchi, Y.; Koyama, S.; Ishizawa, H. Basic experiment of blood-pressure measurement which uses FBG sensors. In Proceedings of the 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Minneapolis, MN, USA, 6–9 May 2013; pp. 1767–1770. [Google Scholar]
- Miyauchi, Y.; Ishizawa, H.; Koyama, S.; Sato, S. Verification of the systolic blood-pressure measurement principle by FBG sensors. In Proceedings of the 2012 SICE Annual Conference (SICE), Akita, Japan, 20–23 August 2012; pp. 619–622. [Google Scholar]
- Bonefacino, J.; Tam, H.Y.; Glen, T.S.; Cheng, X.; Pun, C.J.; Wang, J.; Lee, P.; Tse, M.V.; Boles, S.T. Ultra-fast polymer optical fibre Bragg grating inscription for medical devices. Light Sci. Appl. 2018, 7, 17161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ying, D.Q.; Tao, X.M.; Zheng, W.; Wang, G.F. Fabric strain sensor integrated with looped polymeric optical fiber with large angled V-shaped notches. Smart Mater. Struct. 2013, 22, 015004. [Google Scholar] [CrossRef]
- Zheng, W.; Tao, X.; Zhu, B.; Wang, G.; Hui, C. Fabrication and evaluation of a notched polymer optical fiber fabric strain sensor and its application in human respiration monitoring. Text. Res. J. 2014, 84, 1791–1802. [Google Scholar] [CrossRef]
- Shen, J.; Chui, C.; Tao, X. Luminous fabric devices for wearable low-level light therapy. Biomed. Opt. Express 2013, 4, 2925. [Google Scholar] [CrossRef]
- Shen, J.; Tao, X.; Ying, D.; Hui, C.; Wang, G. Light-emitting fabrics integrated with structured polymer optical fibers treated with an infrared CO2 laser. Text. Res. J. 2013, 83, 730–739. [Google Scholar] [CrossRef]
Type | Materials | Fabrication Method | Application | Reference |
---|---|---|---|---|
Fiber | Core: poly(octamethylene maleate citrate) Cladding: poly(octamethylene citrate) | Cladding tube cured around a steel mold, core solution infiltrated into the cladding and crosslinked | Deep tissue light delivery, fluorescence sensing, laser photomedicine | [50,51] |
Fiber | Core: poly(acrylamide-co-poly(ethylene glycol) diacrylate) Cladding: Ca alginate | Core crosslinked in a tube mold and ejected. Cladding by dip-coating in alginate solution. | Glucose sensing | [49] |
Fiber | Core: spider silk protein No cladding | Core crosslinked in a tube mold | Deep tissue light delivery | [45] |
Waveguide | Core: carbon dot-doped PEGDA No cladding | Photo-crosslinked in mold | Detection of heavy metal ions | [50] |
Waveguide (splitter) | Core: bovine serum albumin No cladding | Core film crosslinked, then splitter fabricated by laser writing | Optic splitter | [52] |
Waveguide | Core: poly(L-lactic acid); PEGDA; silk protein | Melt-pressing; photo-crosslinking; solution-casting | Deep tissue light delivery | [48] |
Fiber | Core: alginate-polyacrylamide No cladding | Core photo-crosslinked in a tube mold; cladding by dip-coating | Strain sensing | [42] |
Fiber | Core: PEGDA Cladding: Ca2+ alginate | Core photo-crosslinked in a tube mold; cladding by dip-coating | Deep tissue light delivery and sensing | [39] |
Waveguide | Core: PEGDA No cladding | Slab waveguide photo-crosslinked | Deep tissue light delivery and collection | [7] |
Waveguide | Core: Agarose Cladding: Agarose | Cladding substrate solution casted; Core created by lithography | Cell encapsulation and | [46] |
Waveguide | Core: silk No cladding | Direct ink writing | - | [44] |
Type | Materials | Fabrication Method | Application | Reference |
---|---|---|---|---|
Fiber | Core: PU Cladding: PDMS | Commercial core, solution-coating cladding | Fibers attached to textiles for >100% strain sensing | [54] |
Waveguide | Core: PDMS (ELASTOSIL M 4601, n: ~1.40) Cladding: Polyurethane (VytaFlex 20, n: ~1.46) | Soft lithography | As touch sensor for the fingertip of a prosthetic hand | [53] |
Waveguide | Core: Silicone (Nusil Technology LS-6257, n = 1.57) Cladding: PDMS (Dow Sylgard®184, n = 1.41) | Cladding made first and core prepolymer was injected (capillary filling) and cured | n/a | [55] |
Fiber | Core: Silicone (Nusil Technology LS-6941) No cladding | Drawing of sticky pre-polymer | n/a | [56] |
Fiber | Core: polystyrene-based polymer (Star Clear, n = 1.52) Cladding: fluorinated polymer Daikin T-530 (n = 1.36) | Continuous coextrusion, fibers up to several hundred meters | Sensing strain up to 300% | [6] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Zhang, Z.F.; Tam, H.-Y.; Tao, X. Multifunctional Smart Optical Fibers: Materials, Fabrication, and Sensing Applications. Photonics 2019, 6, 48. https://doi.org/10.3390/photonics6020048
Liu Z, Zhang ZF, Tam H-Y, Tao X. Multifunctional Smart Optical Fibers: Materials, Fabrication, and Sensing Applications. Photonics. 2019; 6(2):48. https://doi.org/10.3390/photonics6020048
Chicago/Turabian StyleLiu, Zhengyong, Zhi Feng Zhang, Hwa-Yaw Tam, and Xiaoming Tao. 2019. "Multifunctional Smart Optical Fibers: Materials, Fabrication, and Sensing Applications" Photonics 6, no. 2: 48. https://doi.org/10.3390/photonics6020048
APA StyleLiu, Z., Zhang, Z. F., Tam, H. -Y., & Tao, X. (2019). Multifunctional Smart Optical Fibers: Materials, Fabrication, and Sensing Applications. Photonics, 6(2), 48. https://doi.org/10.3390/photonics6020048