2 μm Broadband Amplification in Tapered Fiber Devices Using PbS Quantum Dots
Abstract
1. Introduction
2. Experiments
2.1. Synthesis and Characterization of PbS QDs
2.2. Fabrication and Characteristics of Optical Fiber Amplifier Based on PbS QDs
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kilper, D.C.; Peyghambarian, N. Changing evolution of optical communication systems at the network edges. Appl. Opt. 2020, 59, G209–G218. [Google Scholar] [CrossRef] [PubMed]
- Soref, R.J.N.P. Enabling 2 μm communications. Nat. Photonics 2015, 9, 358–359. [Google Scholar] [CrossRef]
- Yao, C.Y.; Xiao, L.M.; Gao, S.F.; Wang, Y.Y.; Wang, P.; Kan, R.F.; Jin, W.; Ren, W. Sub-ppm CO detection in a sub-meter-long hollow-core negative curvature fiber using absorption spectroscopy at 2.3 μm. Sens. Actuator B-Chem. 2020, 303, 127238. [Google Scholar] [CrossRef]
- Wollin, T.A.; Denstedt, J.D. The holmium laser in urology. J. Clin. Laser Med. Sur. 1998, 16, 13–20. [Google Scholar] [CrossRef]
- Qin, Q.; Li, T.; Yan, F.P.; Feng, T.; Sun, W.W.; Han, W.G.; Yang, D.D.; Wang, X.D.; Yu, C.H.; Wang, P.F.; et al. Demonstration of the First Outdoor 2-μm-Band Real-Time Video Transmission Free-Space Optical Communication System Using a Self-Designed Single-Frequency Fiber Laser. J. Light. Technol. 2023, 41, 5275–5283. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Z.; Kavanagh, N.; Zhao, J.; Ye, N.; Chen, Y.; Wheeler, N.V.; Wooler, J.P.; Hayes, J.R.; Sandoghchi, S.R.; et al. 81 Gb/s WDM Transmission at 2 μm over 1.15 km of Low-Loss Hollow Core Photonic Bandgap Fiber. In Proceedings of the European Conference on Optical Communication (ECOC), Cannes, France, 21–25 September 2014; IEEE: New York, NY, USA, 2014. [Google Scholar]
- Li, Z.Y.; Pei, W.X.; Li, H.; Huang, W.; Li, X.X.; Wang, Z.F.; Chen, J.B. D2-Filled Hollow-Core Fiber Gas Raman Laser at 2.15 μm. Photonics 2022, 9, 753. [Google Scholar] [CrossRef]
- Lim, T.; Xu, S.T.; Hooper, L.; Davey, M.; Sander, M.Y. Sub-200 fs Polarization-Maintaining All-Fiber Thulium-Doped Dissipative Soliton Fiber Laser System at 1920 nm. Photonics 2025, 12, 361. [Google Scholar] [CrossRef]
- Chen, Y.J.; Xie, Z.Y.; Huang, J.; Deng, Z.; Chen, B.L. High-speed uni-traveling carrier photodiode for 2 μm wavelength application. Optica 2019, 6, 884–889. [Google Scholar] [CrossRef]
- Gunning, F.C.G.; Kavanagh, N.; Russell, E.; Sheehan, R.; O'Callaghan, J.; Corbett, B. Key enabling technologies for optical communications at 2000 nm. Appl. Opt. 2018, 57, E64–E70. [Google Scholar] [CrossRef]
- Alharbi, A.G.; Kanwal, F.; Ghafoor, S.; Habib, N.; Kanwal, B.; Atieh, A.; Kousar, T.; Mirza, J. Performance Optimization of Holmium Doped Fiber Amplifiers for Optical Communication Applications in 2–2.15 μm Wavelength Range. Photonics 2022, 9, 245. [Google Scholar] [CrossRef]
- Li, Z.; Heidt, A.M.; Simakov, N.; Jung, Y.; Daniel, J.M.O.; Alam, S.U.; Richardson, D.J. Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800–2050 nm window. Opt. Express 2013, 21, 26450–26455. [Google Scholar] [CrossRef]
- Sun, T.R.; Su, X.Y.; Zhang, Y.H.; Zhang, H.W.; Xu, T.J.; Zheng, Y. All-Fiber Wavelength-Tunable Narrow-Linewidth Polarization-Maintaining Tm-Doped Fiber MOPA System. Photonics 2022, 9, 778. [Google Scholar] [CrossRef]
- Huang, M.; Sun, S.Y.; Saini, T.S.; Fu, Q.; Xu, L.; Wu, D.; Ren, H.; Shen, L.; Hawkins Thomas, W.; Ballato, J.; et al. Raman amplification at 2.2 μm in silicon core fibers with prospects for extended mid-infrared source generation. Light Sci. Appl. 2023, 12, 209. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chen, Q.P.; Zhao, Y.F.; Le, Y.K.; Ye, S.D.; Wan, M.; Huang, X.J.; Dong, G.P. PbS quantum dots and BaF2: Tm3+ nanocrystals co-doped glass for ultra-broadband near-infrared emission. Chin. Opt. Lett. 2022, 20, 021603. [Google Scholar] [CrossRef]
- Gui, L. Enhanced slow and fast light in strong dispersion region of the Raman assisted narrow band fiber optical parametric amplifier. Opt. Commun. 2020, 473, 125594. [Google Scholar] [CrossRef]
- Peng, X.F.; Wu, Z.J.; Ding, Y. Research on CdSe/ZnS Quantum Dots-Doped Polymer Fibers and Their Gain Characteristics. Nanomaterials 2024, 14, 1463. [Google Scholar] [CrossRef]
- Liu, J.J.; Li, K.; Zhao, Z.P.; Chen, H.; Wei, J.H.; Zhang, W.C.; Cao, S.Y.; Chang, Z.W.; Xiao, X.H.; Deng, Z.; et al. Net Optical Gain from PbS Quantum Dot-Doped Glasses under Continuous-Wave Pumping. Laser Photon. Rev. 2024, 18, 2400305. [Google Scholar] [CrossRef]
- Chen, D.; Cui, J.; Xu, B.; Man, T.; Zhang, D.; Tu, Y.; Liu, X.; Qiu, J. PbS Quantum Dot Doped Polymer Broadband Optical Fiber Amplifier. Chin. J. Lumin. 2023, 44, 1824–1832. [Google Scholar] [CrossRef]
- Cui, J.J.; Chen, D.Y.; Fang, Z.J.; Liu, X.F.; Chen, Z.; Qiu, J.R.; Xu, B.B. Optical amplification across the whole communication windows in PbS quantum-dot-doped fiber. Opt. Fiber Technol. 2024, 88, 103822. [Google Scholar] [CrossRef]
- Cheng, C.; Hu, N.S.; Cheng, X. Experimental realization of a PbSe quantum dot doped fiber amplifier with ultra-bandwidth characteristic. Opt. Commun. 2017, 382, 470–476. [Google Scholar] [CrossRef]
- Shi, X.L.; Chen, S.; Luo, M.Y.; Huang, B.; Zhang, G.Z.; Cui, R.; Zhang, M.X. Zn-doping enhances the photoluminescence and stability of PbS quantum dots for in vivo high-resolution imaging in the NIR-II window. Nano Res. 2020, 13, 2239–2245. [Google Scholar] [CrossRef]
- Wilton, S.R.; Fetterman, M.R.; Low, J.J.; You, G.J.; Jiang, Z.Y.; Xu, J. Monte Carlo study of PbSe quantum dots as the fluorescent material in luminescent solar concentrators. Opt. Express 2014, 22, A35–A43. [Google Scholar] [CrossRef] [PubMed]
- Pérez, L.M.; El Aouami, A.; Feddi, K.; Tasco, V.; Ben Abdellah, A.; Dujardin, F.; Courel, M.; Riquelme, J.A.; Laroze, D.; Feddi, E.L.M. Parameters Optimization of Intermediate Band Solar Cells: Cases of PbTe/CdTe, PbSe/ZnTe and InN/GaN Quantum Dots. Crystals 2022, 12, 1002. [Google Scholar] [CrossRef]
- Liu, L.Y.; Sun, X.L.; Zhao, W.; Zhou, B.; Huang, Q.Q.; Zou, C.H.; Mou, C. Passively Q-switched pulses generation from Erbium-doped fiber laser based on microfiber coated PbS quantum dots. Opt. Fiber Technol. 2018, 46, 162–166. [Google Scholar] [CrossRef]
- Eyvazi, M.; Yadipour, R.; Rostami, A.; Rostami, P.; Mirtagioglu, H. Theoretical analysis and design of a dual-wavelength and selectable all-optical broadband QDs semiconductor optical amplifier (QDs-SOA) with inhomogeneous broadening. Opt. Quant. Electron. 2025, 57, 122. [Google Scholar] [CrossRef]
- Al-Nashy, B.O.; Al-Mosawi, B.T.S.; Oleiwi, M.O.; Al-Khursan, A.H. Gain of TlBr/BrCl Quantum Dot Semiconductor Optical Amplifier. J. Electr. Comput. Eng. 2023, 2023, 1941232. [Google Scholar] [CrossRef]
- Eyvazi, M.; Yadipour, R.; Rostami, A. All-Optical Broadband QDs Semiconductor Optical Amplifier (QDs-SOA): Inhomogeneous Broadening. IEEE Access 2024, 12, 47993–48003. [Google Scholar] [CrossRef]
- Bakueva, L.; Gorelikov, I.; Musikhin, S.; Zhao, X.S.; Sargent, E.H.; Kumacheva, E. PbS quantum dots with stable efficient luminescence in the near-IR spectral range. Adv. Mater. 2004, 16, 926–929. [Google Scholar] [CrossRef]
- Cheng, C.; Wang, F.J.; Cheng, X.Y. PbSe quantum-dot-doped broadband fiber amplifier based on sodium-aluminum-borosilicate-silicate glass. Opt. Laser Technol. 2020, 122, 105812. [Google Scholar] [CrossRef]
- Dong, Y.H.; Zhang, M.; Zhang, H.Y.; Fang, G.; Wen, J.X.; Huang, Y.; Zhang, X.B.; Shang, Y.N.; Wei, H.M.; Wang, T.Y. Enhanced fluorescence and gain characteristics of PbS doped silica fiber with PbSe nano-semiconductor co-doping. Opt. Fiber Technol. 2023, 80, 103370. [Google Scholar] [CrossRef]
- Pang, F.F.; Sun, X.L.; Guo, H.R.; Yan, J.W.; Wang, J.; Zeng, X.L.; Chen, Z.Y.; Wang, T.Y. A PbS quantum dots fiber amplifier excited by evanescent wave. Opt. Express 2010, 18, 14024–14030. [Google Scholar] [CrossRef]
- Guo, H.R.; Pang, F.F.; Zeng, X.L.; Wang, T.Y. PbS quantum dot fiber amplifier based on a tapered SMF fiber. Opt. Commun. 2012, 285, 3222–3227. [Google Scholar] [CrossRef]
- Fan, M.D.; Yan, Y.Y.; Zhou, S.; Sun, X.L.; Honkanen, S. Mesoporous silica enriched PbS quantum dots for optical fiber amplifiers. Opt. Commun. 2021, 499, 127310. [Google Scholar] [CrossRef]
- Sun, X.L.; Xie, L.B.; Zhou, W.; Pang, F.F.; Wang, T.Y.; Kost, A.R.; An, Z.S. Optical fiber amplifiers based on PbS/CdS QDs modified by polymers. Opt. Express 2013, 21, 8214–8219. [Google Scholar] [CrossRef]
- Sun, X.L.; Dai, R.; Chen, J.J.; Zhou, W.; Wang, T.Y.; Kost, A.R.; Tsung, C.K.; An, Z.S. Enhanced thermal stability of oleic-acid-capped PbS quantum dot optical fiber amplifier. Opt. Express 2014, 22, 519–524. [Google Scholar] [CrossRef]
- Weidman, M.C. Controlling Nanomaterial Self-Assembly for Next Generation Optoelectronic Applications; Massachusetts Institute of Technology: Cambridge, MA, USA, 2017. [Google Scholar]
- Yin, S.C.; Ho, C.H.Y.; Ding, S.; Fu, X.Y.; Zhu, L.P.; Gullett, J.; Dong, C.; So, F. Enhanced Surface Passivation of Lead Sulfide Quantum Dots for Short-Wavelength Photodetectors. Chem. Mat. 2022, 34, 5433–5442. [Google Scholar] [CrossRef]
- Lee, J.W.; Kim, D.Y.; Baek, S.; Yu, H.; So, F. Inorganic UV-Visible-SWIR Broadband Photodetector Based on Monodisperse PbS Nanocrystals. Small 2016, 12, 1328–1333. [Google Scholar] [CrossRef]
- Dong, Y.H.; Sun, W.T.; Huang, C.H.; Huang, S.J.; Yan, C.; Wen, J.X.; Zhang, X.B.; Huang, Y.; Shang, Y.N.; Wang, T.Y. Influence of particle size on the magneto-refractive effect in PbS quantum dots-doped liquid core fiber. Opt. Mater. Express 2022, 12, 1838–1849. [Google Scholar] [CrossRef]
- Rogach, A.L.; Eychmüller, A.; Hickey, S.G.; Kershaw, S.V. Infrared-emitting colloidal nanocrystals: Synthesis, assembly, spectroscopy, and applications. Small 2007, 3, 536–557. [Google Scholar] [CrossRef]
- Wang, Y.R.; Hou, S.D.; Yu, Y.; Liu, W.J.; Yan, P.G.; Yang, J.B. Photonic device combined optical microfiber coupler with saturable-absorption materials and its application in mode-locked fiber laser. Opt. Express 2021, 29, 20526–20534. [Google Scholar] [CrossRef]
- Xie, P.; Ni, Z.J.; Zhang, D.W.; Huang, Y.S. Investigation of multi-wavelength effect during the measurement of fluorescence spectrum. Opt. Instrum. 2008, 30, 16–20. (In Chinese) [Google Scholar]
Gain Medium | Emission Peak | Maximum On-Off Gain/Gain (dB) | Gain Bandwidth | References |
---|---|---|---|---|
QDs | ||||
CdSe/ZnS | ~608 nm | ~16.2 | ~70 nm | [17] |
PbSe | ~1316 nm | ~12 | ~120 nm | [21] |
PbS | ~1400 nm | ~5 | ~370 nm | [20] |
PbS/CdS | ~1500 nm | ~6.5 | >100 nm | [19] |
PbS/NaCl | ~1560 nm | ~9.34 | ~46 nm | [18] |
PbS | ~1997 nm | ~15.2 | ~200 nm | This work |
TlBr/BrCl | ~800 nm ~3000 nm | - | - | [26] |
InAs1₋xSbx/ZnS | ~3 μm ~5 μm | ~14.3 ~12.9 | ~12 THz ~15 THz | [27] |
InAs0.4Sb0.6/InP | ~6 μm | ~8.9 | ~17 THz | [28] |
Rare-earth ions | ||||
Holmium ions | - | ~56.5 | ~115 nm | [11] |
Thulium ions | - | >10 | ~110 nm | [13] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Wan, S.; Wang, C.; Jin, Z.; Sun, X.; Kost, A.R.; Honkanen, S. 2 μm Broadband Amplification in Tapered Fiber Devices Using PbS Quantum Dots. Photonics 2025, 12, 876. https://doi.org/10.3390/photonics12090876
Wang D, Wan S, Wang C, Jin Z, Sun X, Kost AR, Honkanen S. 2 μm Broadband Amplification in Tapered Fiber Devices Using PbS Quantum Dots. Photonics. 2025; 12(9):876. https://doi.org/10.3390/photonics12090876
Chicago/Turabian StyleWang, Deen, Siyu Wan, Chenxi Wang, Zhiyang Jin, Xiaolan Sun, Alan R. Kost, and Seppo Honkanen. 2025. "2 μm Broadband Amplification in Tapered Fiber Devices Using PbS Quantum Dots" Photonics 12, no. 9: 876. https://doi.org/10.3390/photonics12090876
APA StyleWang, D., Wan, S., Wang, C., Jin, Z., Sun, X., Kost, A. R., & Honkanen, S. (2025). 2 μm Broadband Amplification in Tapered Fiber Devices Using PbS Quantum Dots. Photonics, 12(9), 876. https://doi.org/10.3390/photonics12090876