Individual Tuning of Directional Emission and Luminance of a Quantum Emitter in a Composite Plasmonic Antenna
Abstract
:1. Introduction
2. Structure Description
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Romeira, B.; Figueiredo, J.M.; Javaloyes, J. NanoLEDs for energy-efficient and gigahertz-speed spike-based sub-λ neuromorphic nanophotonic computing. Nanophotonics 2020, 9, 4149–4162. [Google Scholar] [CrossRef]
- Ali, A.; Qasem, Z.A.; Li, Y.; Li, Q.; Fu, H.Y. All-inorganic liquid phase quantum dots and blue laser diode-based white-light source for simultaneous high-speed visible light communication and high-efficiency solid-state lighting. Opt. Express 2022, 30, 35112–35124. [Google Scholar] [CrossRef] [PubMed]
- Ren, A.; Wang, H.; Zhang, W.; Wu, J.; Wang, Z.; Penty, R.V.; White, I.H. Emerging light-emitting diodes for next-generation data communications. Nat. Electron. 2021, 4, 559–572. [Google Scholar] [CrossRef]
- Zeng, H.Z.; Ngyuen, M.A.; Ai, X.; Bennet, A.; Solntsev, A.S.; Laucht, A.; Al-Juboori, A.; Toth, M.; Mildren, R.P.; Malaney, R.; et al. Integrated room temperature single-photon source for quantum key distribution. Opt. Lett. 2022, 47, 1673–1676. [Google Scholar] [CrossRef] [PubMed]
- Somaschi, N.; Giesz, V.; De Santis, L.; Loredo, J.C.; Almeida, M.P.; Hornecker, G.; Portalupi, S.L.; Grange, T.; Anton, C.; Demory, J.; et al. Near-optimal single-photon sources in the solid state. Nat. Photonics 2016, 10, 340–345. [Google Scholar] [CrossRef]
- Zhong, H.S.; Wang, H.; Deng, Y.H.; Chen, M.C.; Peng, L.C.; Luo, Y.H.; Qin, J.; Wu, D.; Ding, X.; Hu, Y.; et al. Quantum computational advantage using photons. Science 2020, 370, 1460–1463. [Google Scholar] [CrossRef]
- Russell, K.J.; Liu, T.L.; Cui, S.; Hu, E.L. Large spontaneous emission enhancement in plasmonic nanocavities. Nat. Photonics 2012, 6, 459–462. [Google Scholar] [CrossRef]
- Hochrainer, A.; Lahiri, M.; Erhard, M.; Krenn, M.; Zeilinger, A. Quantum indistinguishability by path identity and with undetected photons. Rev. Mod. Phys. 2022, 94, 025007. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Y.; Sun, H. Advances and prospects for whispering gallery mode microcavities. Adv. Opt. Mater. 2015, 3, 1136–1162. [Google Scholar] [CrossRef]
- Chiasera, A.; Dumeige, Y.; Feron, P.; Ferrari, M.; Jestin, Y.; Nunzi Conti, G.; Pelli, S.; Soria, S.; Righini, G.C. Spherical whispering-gallery-mode microresonators. Laser Photonics Rev. 2010, 4, 457–482. [Google Scholar] [CrossRef]
- Cai, Z.; Li, Z.; Ravaine, S.; He, M.; Song, Y.; Yin, Y.; Zheng, H.; Teng, J.; Zhang, A.O. From colloidal particles to photonic crystals: Advances in self-assembly and their emerging applications. Chem. Soc. Rev. 2021, 50, 5898–5951. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Roy, P.; Claude, J.B.; Wenger, J. Single photon source from a nanoantenna-trapped single quantum dot. Nano Lett. 2021, 21, 7030–7036. [Google Scholar] [CrossRef] [PubMed]
- Abudayyeh, H.; Lubotzky, B.; Blake, A.; Wang, J.; Majumder, S.; Hu, Z.; Kim, Y.; Htoon, H.; Bose, R.; Malko, A.V.; et al. Single photon sources with near unity collection efficiencies by deterministic placement of quantum dots in nanoantennas. APL Photonics 2021, 6, 036109. [Google Scholar] [CrossRef]
- Shen, L.; Lin, X.; Shalaginov, M.Y.; Low, T.; Zhang, X.; Zhang, B.; Chen, H. Broadband enhancement of on-chip single-photon extraction via tilted hyperbolic metamaterials. Appl. Phys. Rev. 2020, 7, 021403. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, S. A novel dual-beam terahertz leaky-wave antenna based on spoof surface plasmon waveguide. Optoelectron. Lett. 2022, 7, 404–407. [Google Scholar] [CrossRef]
- Roy, P.; Zhu, S.; Claude, J.B.; Liu, J.; Wenger, J. Ultraviolet Resonant Nanogap Antennas with Rhodium Nanocube Dimers for Enhancing Protein Intrinsic Autofluorescence. ACS Nano 2023, 17, 22418–22429. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Shen, Q.; Niu, Y.; Wei, H.; Bai, B.; Mikkelsen, M.H.; Sun, H.B. Unidirectional, ultrafast, and bright spontaneous emission source enabled by a hybrid plasmonic nanoantenna. Laser Photonics Rev. 2020, 14, 1900213. [Google Scholar] [CrossRef]
- Yang, J.; Kong, F.; Li, K.; Zhao, J. Optimizing the bowtie nano-antenna for enhanced purcell factor and electric field. Prog. Electromagn. Res. Lett. 2014, 44, 93–99. [Google Scholar] [CrossRef]
- Carlson, C.; Hughes, S. Dissipative modes, Purcell factors, and directional beta factors in gold bowtie nanoantenna structures. Phys. Rev. B 2020, 102, 155301. [Google Scholar] [CrossRef]
- Qian, Z.; Li, Z.; Hao, H.; Shan, L.; Zhang, Q.; Dong, J.; Gong, Q.; Gu, Y. Absorption reduction of large purcell enhancement enabled by topological state-led mode coupling. Phys. Rev. Lett. 2021, 126, 023901. [Google Scholar] [CrossRef]
- Kountouris, G.; Mørk, J.; Denning, E.V.; Kristensen, P.T. Modal properties of dielectric bowtie cavities with deep sub-wavelength confinement. Opt. Express 2022, 30, 40367–40378. [Google Scholar] [CrossRef] [PubMed]
- Weisman, D.; Carmesin, C.M.; Rozenman, G.G.; Efremov, M.A.; Shemer, L.; Schleich, W.P.; Arie, A. Diffractive guiding of waves by a periodic array of slits. Phys. Rev. Lett. 2021, 127, 014303. [Google Scholar] [CrossRef] [PubMed]
- Sayed, M.; Yu, J.; Liu, G.; Jaroniec, M. Non-noble plasmonic metal-based photocatalysts. Chem. Rev. 2022, 122, 10484–10537. [Google Scholar] [CrossRef]
- Zain, H.A.; Batumalay, M.; Rahim, H.R.; Harun, S.W. Numerical analysis of a Kretschmann surface plasmon resonance sensor with silver/TiO2/BaTiO3/silver/graphene for refractive index sensing. Optoelectron. Lett. 2023, 19, 583–586. [Google Scholar] [CrossRef]
- Kullock, R.; Ochs, M.; Grimm, P.; Emmerling, M.; Hecht, B. Electrically-driven Yagi-Uda antennas for light. Nat. Commun. 2020, 11, 115. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Ren, J.; Du, X.; Mikkelsen, J.H.; Shen, M.; Yin, Y.Z. Pattern-reconfigurable Yagi–Uda antenna based on liquid metal. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 587–591. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, D.; Huang, F.; Li, Z.; Hu, F. Design of a terahertz metamaterial sensor based on split ring resonator nested square ring resonator. Mater. Res. Express 2020, 7, 095802. [Google Scholar] [CrossRef]
- Rahbany, N.; Geng, W.; Bachelot, R.; Couteau, C. Plasmon–emitter interaction using integrated ring grating–nanoantenna structures. Nanotechnology 2017, 28, 185201. [Google Scholar] [CrossRef] [PubMed]
- Jeon, W.B.; Moon, J.S.; Kim, K.Y.; Ko, Y.H.; Richardson, C.J.; Waks, E.; Kim, J.H. Plug-and-Play Single-Photon Devices with Efficient Fiber-Quantum Dot Interface. Adv. Quantum Technol. 2022, 5, 2200022. [Google Scholar] [CrossRef]
- Ma, Y.; Ballesteros, G.; Zajac, J.M.; Sun, J.; Gerardot, B.D. Highly directional emission from a quantum emitter embedded in a hemispherical cavity. Opt. Lett. 2015, 40, 2373–2376. [Google Scholar] [CrossRef]
- Chen, Y.; Zopf, M.; Keil, R.; Ding, F.; Schmidt, O.G. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna. Nat. Commun. 2018, 9, 2994. [Google Scholar] [CrossRef]
- Ahn, D.H.; Jang, Y.D.; Baek, J.S.; Park, S.I.; Song, J.D.; Lee, D. A broadband high-brightness quantum-dot double solid immersion lens single photon source. APL Photonics 2023, 1, 8. [Google Scholar]
- Dong, Z.; Gorelik, S.; Paniagua-Dominguez, R.; Yik, J.; Ho, J.; Tjiptoharsono, F.; Lassalle, E.; Rezaei, S.D.; Neo, D.C.; Bai, P.; et al. Silicon nanoantenna mix arrays for a trifecta of quantum emitter enhancements. Nano Lett. 2021, 21, 4853–4860. [Google Scholar] [CrossRef]
- Abudayyeh, H.; Mildner, A.; Liran, D.; Lubotzky, B.; Luder, L.; Fleischer, M.; Rapaport, R. Overcoming the rate-directionality trade-off: A room-temperature ultrabright quantum light source. Acs Nano 2021, 15, 17384–17391. [Google Scholar] [CrossRef]
- Barreda, A.; Hell, S.; Weissflog, M.A.; Minovich, A.; Pertsch, T.; Staude, I. Metal, dielectric and hybrid nanoantennas for enhancing the emission of single quantum dots: A comparative study. J. Quant. Spectrosc. Radiat. Transf. 2021, 276, 107900. [Google Scholar] [CrossRef]
- Schraml, K.; Spiegl, M.; Kammerlocher, M.; Bracher, G.; Bartl, J.; Campbell, T.; Finley, J.J.; Kaniber, M. Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate. Phys. Rev. B 2014, 90, 035435. [Google Scholar] [CrossRef]
- Santhosh, K.; Bitton, O.; Chuntonov, L.; Haran, G. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat. Commun. 2016, 7, ncomms11823. [Google Scholar] [CrossRef] [PubMed]
- Kabiri, A.; Girgis, E.; Capasso, F. Buried nanoantenna arrays: Versatile antireflection coating. Nano Lett. 2013, 13, 6040–6047. [Google Scholar] [CrossRef] [PubMed]
- Morshed, M.; Li, Z.; Olbricht, B.C.; Fu, L.; Haque, A.; Li, L.; Rifat, A.A.; Rahmani, M.; Miroshnichenko, A.E.; Hattori, H.T. High fluence chromium and tungsten bowtie nano-antennas. Sci. Rep. 2019, 9, 13023. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.S.; Callegari, V.; Geisler, P.; Brüning, C.; Kern, J.; Prangsma, J.C.; Wu, X.; Feichtner, T.; Ziegler, J.; Weinmann, P.; et al. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nat. Commun. 2010, 1, 150. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, C.; Huang, Y.; Li, R.; Ma, Y. Individual Tuning of Directional Emission and Luminance of a Quantum Emitter in a Composite Plasmonic Antenna. Photonics 2024, 11, 444. https://doi.org/10.3390/photonics11050444
Xin C, Huang Y, Li R, Ma Y. Individual Tuning of Directional Emission and Luminance of a Quantum Emitter in a Composite Plasmonic Antenna. Photonics. 2024; 11(5):444. https://doi.org/10.3390/photonics11050444
Chicago/Turabian StyleXin, Chaonuo, Yuming Huang, Renpu Li, and Yong Ma. 2024. "Individual Tuning of Directional Emission and Luminance of a Quantum Emitter in a Composite Plasmonic Antenna" Photonics 11, no. 5: 444. https://doi.org/10.3390/photonics11050444
APA StyleXin, C., Huang, Y., Li, R., & Ma, Y. (2024). Individual Tuning of Directional Emission and Luminance of a Quantum Emitter in a Composite Plasmonic Antenna. Photonics, 11(5), 444. https://doi.org/10.3390/photonics11050444