Effect of Contact Angle on Friction Properties of Superhydrophobic Nickel Surface
Abstract
:1. Introduction
2. Experimental Details
2.1. Sample Preparation
2.2. Laser Surface Texturing
2.3. The Measurement of the Wettability
2.4. The Antifriction Performance
3. Results
3.1. Effect of Laser Energy Density on Contact Angle
3.2. Analysis of Wettability Transition Reasons
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kung, C.H.; Sow, P.K.; Zahiri, B.; Mérida, W. Assessment and Interpretation of Surface Wettability Based on Sessile Droplet Contact Angle Measurement: Challenges and Opportunities. Adv. Mater. Interfaces 2019, 6, 1900839. [Google Scholar] [CrossRef]
- Sharma, A.; Arora, H.; Grewal, H.S. Self-regenerative superhydrophobic metallic coatings with enhanced durability. Surf. Coatings Technol. 2023, 462, 129459. [Google Scholar] [CrossRef]
- Ding, K.; Wang, C.; Li, S.; Zhang, X.; Lin, N. Large-area cactus-like micro-/nanostructures with anti-reflection and superhydrophobicity fabricated by femtosecond laser and thermal treatment. Surf. Interfaces 2022, 33, 102292. [Google Scholar] [CrossRef]
- Feng, X.; Sun, P.; Tian, G. Recent Developments of Superhydrophobic Surfaces (SHS) for Underwater Drag Reduction Opportunities and Challenges. Adv. Mater. Interfaces 2021, 9, 2101616. [Google Scholar] [CrossRef]
- Lan, X.; Zhang, B.; Wang, J.; Fan, X.; Zhang, J. Hydrothermally structured superhydrophobic surface with superior anti-corrosion, anti-bacterial and anti-icing behaviors. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 624, 126820. [Google Scholar] [CrossRef]
- Liravi, M.; Pakzad, H.; Moosavi, A.; Nouri-Borujerdi, A. A comprehensive review on recent advances in superhy-drophobic surfaces and their applications for drag reduction. Prog. Org. Coat. 2020, 140, 105537. [Google Scholar] [CrossRef]
- Wang, C.X.; Zhang, X.F. A non-particle and fluorine-free superhydrophobic surface based on one-step electrodep-osition of dodecyltrimethoxysilane on mild steel for corrosion protection. Corros. Sci. 2020, 163, 108284. [Google Scholar] [CrossRef]
- Song, Y.; Wang, C.; Dong, X.; Yin, K.; Zhang, F.; Xie, Z.; Chu, D.; Duan, J. Controllable superhydrophobic aluminum surfaces with tunable adhesion fabricated by femtosecond laser. Opt. Laser Technol. 2018, 102, 25–31. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Niu, S.; Cao, X.; Han, Z.; Ren, L. Bio-inspired micro-nano structured surface with structural color and anisotropic wettability on Cu substrate. Appl. Surf. Sci. 2016, 379, 230–237. [Google Scholar] [CrossRef]
- Rajab, F.H.; Liu, Z.; Li, L. Long term superhydrophobic and hybrid superhydrophobic/superhydrophilic surfaces produced by laser surface micro/nano surface structuring. Appl. Surf. Sci. 2018, 466, 808–821. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Ordikhani-Seyedlar, R.; Samanta, A.; Shaw, S.; Ding, H. Quantification of superhydrophobic functionali-zation for laser textured metal surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2022, 636, 128126. [Google Scholar] [CrossRef]
- Lu, Y.; Guan, Y.; Li, Y.; Yang, L.; Wang, M.; Wang, Y. Nanosecond laser fabrication of superhydrophobic surface on 316L stainless steel and corrosion protection application. Colloids Surfaces A Physicochem. Eng. Asp. 2020, 604, 125259. [Google Scholar] [CrossRef]
- Huang, J.; Yang, S. Investigation on anisotropic tribological properties of superhydrophobic/superlipophilic lead bronze surface textured by femtosecond laser. Appl. Surf. Sci. 2021, 579, 152223. [Google Scholar] [CrossRef]
- Shimada, H.; Kato, S.; Watanabe, T.; Yamaguchi, M. Direct laser processing of two-scale periodic structures for su-perhydrophobic surfaces using a nanosecond pulsed laser. Lasers Manuf. Mater. Process. 2020, 7, 496–512. [Google Scholar] [CrossRef]
- He, Y.; Wang, L.; Wu, T.; Wu, Z.; Chen, Y.; Yin, K. Facile fabrication of hierarchical textures for substrate-independent and durable superhydrophobic surfaces. Nanoscale 2022, 14, 9392–9400. [Google Scholar] [CrossRef]
- Han, X.; Ren, L.; Ma, Y.; Gong, X.; Wang, H. A mussel-inspired self-repairing superhydrophobic coating with good anti-corrosion and photothermal properties. Carbon 2022, 197, 27–39. [Google Scholar] [CrossRef]
- Li, H.; Luo, Y.; Yu, F.; Zhang, H. In-situ construction of MOFs-based superhydrophobic/superoleophilic coating on filter paper with self-cleaning and antibacterial activity for efficient oil/water separation. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 625, 126976. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhang, T.; Ji, J.; Guo, Y.; Wang, Z.; Tao, T.; Xu, J.; Liu, X.; Liu, K. Functional Microtextured Superhydrophobic Surface with Excellent Anti-Wear Resistance and Friction Reduction Properties. Langmuir 2022, 38, 13166–13176. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhang, X.; Wang, X.; Xu, Q.; Geng, T. Wetting and tribological properties of superhydrophobic aluminum surfaces with different water adhesion. J. Mater. Sci. 2020, 55, 11658–11668. [Google Scholar] [CrossRef]
- Huang, J.; Wei, S.; Zhang, L.; Yang, Y.; Yang, S.; Shen, Z. Fabricating the Superhydrophobic Nickel and Improving Its Antifriction Performance by the Laser Surface Texturing. Materials 2019, 12, 1155. [Google Scholar] [CrossRef] [Green Version]
- Kasman, Ş.; Uçar, I.C.; Ozan, S. Investigation of laser surface texturing parameters of biomedical grade Co-Cr-Mo alloy. Int. J. Adv. Manuf. Technol. 2023, 125, 4271–4291. [Google Scholar] [CrossRef]
- Ahangaran, F.; Navarchian, A.H. Recent advances in chemical surface modification of metal oxide nanoparticles with silane coupling agents: A review. Adv. Colloid Interface Sci. 2020, 286, 102298. [Google Scholar] [CrossRef] [PubMed]
- Allahdini, A.; Jafari, R.; Momen, G. Transparent non-fluorinated superhydrophobic coating with enhanced anti-icing performance. Prog. Org. Coatings 2022, 165, 106758. [Google Scholar] [CrossRef]
- Guan, Y.; Cui, X.; Chen, D.; Su, W.; Zhao, Y.; Li, J.; Feng, L.; Li, X.; Jin, G. Realizing excellent tribological properties of BCC/FCC gradient high -entropy alloy coating via an in-situ interface reaction. Mater. Today Commun. 2023, 35, 106098. [Google Scholar] [CrossRef]
- Huang, J.; Guan, Y.; Ramakrishna, S. Tribological behavior of femtosecond laser-textured leaded brass. Tribol. Int. 2021, 162, 107115. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Zhu, Z.; Zhang, L.; Guo, D.; Niu, Z.; Zhang, W. Effect of Contact Angle on Friction Properties of Superhydrophobic Nickel Surface. Photonics 2023, 10, 829. https://doi.org/10.3390/photonics10070829
Huang J, Zhu Z, Zhang L, Guo D, Niu Z, Zhang W. Effect of Contact Angle on Friction Properties of Superhydrophobic Nickel Surface. Photonics. 2023; 10(7):829. https://doi.org/10.3390/photonics10070829
Chicago/Turabian StyleHuang, Junyuan, Zhiwei Zhu, Ling Zhang, Dongdong Guo, Zhen Niu, and Wei Zhang. 2023. "Effect of Contact Angle on Friction Properties of Superhydrophobic Nickel Surface" Photonics 10, no. 7: 829. https://doi.org/10.3390/photonics10070829
APA StyleHuang, J., Zhu, Z., Zhang, L., Guo, D., Niu, Z., & Zhang, W. (2023). Effect of Contact Angle on Friction Properties of Superhydrophobic Nickel Surface. Photonics, 10(7), 829. https://doi.org/10.3390/photonics10070829