Development and Application of THz Gyrotrons for Advanced Spectroscopic Methods
Abstract
:1. Introduction
2. High-Resolution Radio-Acoustic Molecular Spectroscopy
3. Gyrotron-Based ESR Spectroscopy
4. DNP-NMR Spectroscopy
5. XDMR Spectroscopy
6. Measuring of the HFS of Positronium
7. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thumm, M. State-Of-The-Art of High-Power Gyro-Devices and Free Electron Masers. J. Infrared Millim. Terahertz Waves 2020, 41, 1–140. [Google Scholar] [CrossRef]
- Bykov, Y.V.; Ginzburg, N.S.; Glyavin, M.Y.; Golubev, S.V.; Denisov, G.G.; Luchinin, A.G.; Manuilov, V.N.; The IAP RAS-GYCOM Team. (Invited paper) The development of gyrotrons and their applications for plasma science and material processing. Int. J. Terahertz Sci. Technol. 2014, 7, 70–79. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, U.; Bera, A.; Sinha, A.K. A review on the sub-THz/THz gyrotrons. Infrared Phys. Technol. 2016, 76, 38–51. [Google Scholar] [CrossRef]
- Glyavin, M.; Sabchevski, S.; Idehara, T.; Mitsudo, S. Gyrotron-Based Technological Systems for Material Processing—Current Status and Prospects. J. Infrared Millim. Terahertz Waves 2020, 41, 1022–1037. [Google Scholar] [CrossRef]
- Idehara, T.; Sabchevski, S.; Glyavin, M.; Mitsudo, S. The Gyrotrons as Promising Radiation Sources for THz Sensing and Imaging. Appl. Sci. 2020, 10, 980. [Google Scholar] [CrossRef]
- Sabchevski, S.; Glyavin, M.; Mitsudo, S.; Tatematsu, Y.; Idehara, T. Novel and Emerging Applications of the Gyrotrons Worldwide: Current Status and Prospects. J. Infrared Millim. Terahertz Waves 2021, 42, 715–741. [Google Scholar] [CrossRef]
- Litvak, A.G.; Denisov, G.G.; Glyavin, M.Y. Russian Gyrotrons: Achievements and Trends. IEEE J. Microw. 2021, 1, 260–268. [Google Scholar] [CrossRef]
- Nowak, K. The gyrotron for DNP-NMR spectroscopy: A review. Bull. Pol. Acad. Sci. Tech. Sci. 2022, 70, e140354. [Google Scholar] [CrossRef]
- Karmakar, S.; Mudiganti, J.C. Gyrotron: The Most Suitable Millimeter-Wave Source for Heating of Plasma in Tokamak. In Plasma Science and Technology; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Prinz, H.O. Frequency measurement system for gyrotron diagnostics. IEEE Potentials 2007, 26, 25–30. [Google Scholar] [CrossRef]
- Han, S.-T.; Griffin, R.G.; Hu, K.-N.; Joo, C.-G.; Joye, C.D.; Sirigiri, J.R.; Temkin, R.J.; Torrezan, A.C.; Woskov, P.P. Spectral Characteristics of a 140-GHz Long-Pulsed Gyrotron. IEEE Trans. Plasma Sci. 2007, 35, 559–564. [Google Scholar] [CrossRef]
- Denisov, G.G.; Glyavin, M.Y.; Fedotov, A.E.; Zotova, I.V. Theoretical and Experimental Investigations of Terahertz-Range Gyrotrons with Frequency and Spectrum Control. J. Infrared Millim. Terahertz Waves 2020, 41, 1131–1143. [Google Scholar] [CrossRef]
- Khutoryan, E.M.; Idehara, T.; Kuleshov, A.; Ueda, K. Gyrotron Output Power Stabilization by PID Feedback Control of Heater Current and Anode Voltage. J. Infrared Millim. Terahertz Waves 2014, 35, 1018–1029. [Google Scholar] [CrossRef]
- Khutoryan, E.M.; Idehara, T.; Kuleshov, A.N.; Tatematsu, Y.; Yamaguchi, Y.; Matsuki, Y.; Fujiwara, T. Stabilization of Gyrotron Frequency by PID Feedback Control on the Acceleration Voltage. J. Infrared Millim. Terahertz Waves 2015, 36, 1157–1163. [Google Scholar] [CrossRef]
- Khutoryan, E.M.; Idehara, T.; Kuleshov, A.N.; Tatematsu, Y.; Yamaguchi, Y.; Matsuki, Y.; Fujiwara, T. Simultaneous Stabilization of Gyrotron Frequency and Power by PID Double Feedback Control on the Acceleration and Anode Voltages. J. Infrared Millim. Terahertz Waves 2017, 38, 813–823. [Google Scholar] [CrossRef]
- Fokin, A.; Glyavin, M.; Golubiatnikov, G.; Lubyako, L.; Morozkin, M.; Movschevich, B.; Tsvetkov, A.; Denisov, G. High-power sub-terahertz source with a record frequency stability at up to 1 Hz. Sci. Rep. 2018, 8, 4317. [Google Scholar] [CrossRef]
- Zotova, I.V.; Ginzburg, N.S.; Denisov, G.G.; Rozental’, R.M.; Sergeev, A.S. Frequency Locking and Stabilization Regimes in High-Power Gyrotrons with Low-Q Resonators. Radiophys. Quantum Electron. 2016, 58, 684–693. [Google Scholar] [CrossRef]
- Denisov, G.G.; Fokin, A.P.; Glyavin, M.Y.; Golubiatnikov, G.Y.; Lubyako, L.V.; Morozkin, M.V.; Movschevich, B.Z.; Tsvetkov, A.I. High precision frequency stabilization of a 100 W/263 GHz continuous wave gyrotron. In Proceedings of the 2017 Eighteenth International Vacuum Electronics Conference (IVEC), London, UK, 24–26 April 2017; pp. 1–2. [Google Scholar] [CrossRef]
- Bakunin, V.L.; Denisov, G.G.; Novozhilova, Y.V. Principal Enhancement of THz-Range Gyrotron Parameters Using Injection Locking. IEEE Electron Device Lett. 2020, 41, 777–780. [Google Scholar] [CrossRef]
- Glyavin, M.Y.; Denisov, G.G.; Kulygin, M.L.; Novozhilova, Y.V. Stabilization of gyrotron frequency by reflection from nonresonant and resonant loads. Tech. Phys. Lett. 2015, 41, 628–631. [Google Scholar] [CrossRef]
- Glyavin, M.Y.; Ogawa, I.; Zotova, I.V.; Ginzburg, N.S.; Fokin, A.P.; Sergeev, A.S.; Rozental, R.M.; Tarakanov, V.P.; Bogdashov, A.A.; Krapivnitskaia, T.O.; et al. Frequency Stabilization in a Sub-Terahertz Gyrotron with Delayed Reflections of Output Radiation. IEEE Trans. Plasma Sci. 2018, 46, 2465–2469. [Google Scholar] [CrossRef]
- Fokin, A.P.; Bogdashov, A.A.; Novozhilova, Y.V.; Bakunin, V.L.; Parshin, V.V.; Glyavin, M.Y. Experimental Demonstration of Gyrotron Frequency Stabilization by Resonant Reflection. IEEE Electron Device Lett. 2021, 42, 1077–1080. [Google Scholar] [CrossRef]
- Fokin, A.P.; Tsvetkov, A.I.; Manuilov, V.N.; Sedov, A.S.; Bozhkov, V.G.; Genneberg, V.A.; Movshevich, B.Z.; Glyavin, M.Y. Control of sub-terahertz gyrotron frequency by modulation-anode voltage: Comparison of theoretical and experimental results. Rev. Sci. Instrum. 2019, 90, 124705. [Google Scholar] [CrossRef]
- Chang, T.H.; Idehara, T.; Ogawa, I.; Agusu, L.; Kobayashi, S. Frequency tunable gyrotron using backward-wave components. J. Appl. Phys. 2009, 105, 063304. [Google Scholar] [CrossRef]
- Idehara, T.; Kosuga, K.; Agusu, L.; Ikeda, R.; Ogawa, I.; Saito, T.; Matsuki, Y.; Ueda, K.; Fujiwara, T. Continuously frequency tunable high power sub-THz radiation source—Gyrotron FU CW VI for 600 MHz DNP-NMR spectroscopy. J. Infrared Millim. Terahertz Waves 2010, 31, 775–790. [Google Scholar] [CrossRef]
- Torrezan, A.C.; Shapiro, M.A.; Sirigiri, J.R.; Temkin, R.J.; Griffin, R.G. Operation of a Continuously Frequency-Tunable Second-Harmonic CW 330-GHz Gyrotron for Dynamic Nuclear Polarization. IEEE Trans. Electron Devices 2011, 58, 2777–2783. [Google Scholar] [CrossRef]
- Idehara, T.; Pereyaslavets, M.; Nishida, N.; Yoshida, K.; Ogawa, I. Frequency Modulation in a Submillimeter-Wave Gyrotron. Phys. Rev. Lett. 1998, 81, 1973–1976. [Google Scholar] [CrossRef]
- Dammertz, G.; Alberti, S.; Fasel, D.; Giguet, E.; Koppenburg, K.; Kuntze, M.; Legrand, F.; Leonhardt, W.; Lievin, C.; Müller, G.; et al. Power modulation capabilities of the 140 GHz/1 MW gyrotron for the stellarator Wendelstein 7-X. Fusion Eng. Des. 2003, 66–68, 497–502. [Google Scholar] [CrossRef]
- Idehara, T.; Khutoryan, E.M.; Ogawa, I.; Matsuki, Y.; Fujiwara, T. Modulation and Stabilization of the Output Power and Frequency of FU Series Gyrotrons. Terahertz Sci. Technol. 2016, 9, 117–130. [Google Scholar]
- Ananichev, A.A.; Sedov, A.S.; Tsvetkov, A.I.; Chekmarev, N.V. The Use of Simultaneous Tuning of Several Control Parameters to Stabilize the Radiation Power of a Subterahertz Gyrotron when Tuning the Generation Frequency. Instrum. Exp. Tech. 2022, 65, 262–266. [Google Scholar] [CrossRef]
- Denisov, G.G.; Bratman, V.L.; Phelps, A.D.; Samsonov, S.V. Gyro-TWT with a helical operating waveguide: New possibilities to enhance efficiency and frequency bandwidth. IEEE Trans. Plasma Sci. 1998, 26, 508–518. [Google Scholar] [CrossRef]
- Ginzburg, N.S.; Denisov, G.G.; Vilkov, M.N.; Zotova, I.V.; Sergeev, A.S.; Rozental, R.M.; Samsonov, S.V.; Mishakin, S.V.; Marek, A.; Jelonnek, J. Ultrawideband millimeter-wave oscillators based on two coupled gyro-TWTs with helical waveguide. IEEE Trans. Electron Devices 2018, 65, 2334–2339. [Google Scholar] [CrossRef]
- Idehara, T.; Mudiganti, J.C.; Agusu, L.; Kanemaki, T.; Ogawa, I.; Fujiwara, T.; Matsuki, Y.; Ueda, K. Development of a compact sub-THz gyrotron FU CW CI for application to high power THz technologies. J. Infrared Millim. Terahertz Waves 2012, 33, 724–744. [Google Scholar] [CrossRef]
- Bratman, V.L.; Kalynov, Y.K.; Kulagin, O.P.; Leontyev, A.N.; Makhalov, P.B.; Manuilov, V.N.; Osharin, I.V.; Savilov, A.V.; Fedotov, A.E.; Fokin, A.P.; et al. A Compact THz Source for Enhancing the Sensitivity of Nuclear Magnetic Resonance Spectroscopy with Dynamic Nuclear Polarization. Bull. Russ. Acad. Sci. Phys. 2018, 82, 1592–1595. [Google Scholar] [CrossRef]
- Han, S.-T. Application of a Compact Sub-Terahertz Gyrotron for Nondestructive Inspections. IEEE Trans. Plasma Sci. 2020, 48, 3238–3245. [Google Scholar] [CrossRef]
- De Lucia, F.C.; Goyette, T.M. Terahertz source requirements for molecular spectroscopy. In Proceedings of the Nonlinear Optics for High-Speed Electronics and Optical Frequency Conversion, Los Angeles, CA, USA, 24–26 January 1994; Volume 2145, pp. 239–247. [Google Scholar] [CrossRef]
- Golubiatnikov, G.Y. High Power Microwave Spectroscopy. In Quasi-Optical Control of Intense Microwave Transmission. NATO Science Series II: Mathematics, Physics and Chemistry; Hirshfield, J.L., Petelin, M.I., Eds.; Springer: Dordrecht, The Netherlands, 2015; Volume 203. [Google Scholar] [CrossRef]
- Golubiatnikov, G.Y.; Koshelev, M.A.; Tsvetkov, A.I.; Fokin, A.P.; Glyavin, M.Y.; Tretyakov, M.Y. Sub-terahertz high-sensitivity high-resolution molecular spectroscopy with a gyrotron. IEEE Trans. Terahertz Sci. Technol. 2020, 10, 502–512. [Google Scholar] [CrossRef]
- Glyavin, M.Y.; Chirkov, A.V.; Denisov, G.G.; Fokin, A.P.; Kholoptsev, V.V.; Kuftin, A.N.; Luchinin, A.G.; Golubyatnikov, G.Y.; Malygin, V.I.; Morozkin, M.V.; et al. Experimental tests of a 263 GHz gyrotron for spectroscopic applications and diagnostics of various media. Rev. Sci. Instr. 2015, 86, 054705. [Google Scholar] [CrossRef]
- Koshelev, M.A.; Tsvetkov, A.I.; Morozkin, M.V.; Glyavin, M.Y.; Tretyakov, M.Y. Molecular Gas Spectroscopy Using Radioacoustic Detection and High-Power Coherent Subterahertz Radiation Sources. J. Mol. Spectrosc. 2016, 331, 9–16. [Google Scholar] [CrossRef]
- Denisov, G.; Zotova, I.; Zheleznov, I.; Malkin, A.; Sergeev, A.; Rozental, R.; Glyavin, M. Towards Watt-Level THz Sources for High-Resolution Spectroscopy Based on 5th-Harmonic Multiplication in Gyrotrons. Appl. Sci. 2022, 12, 11370. [Google Scholar] [CrossRef]
- Denisov, G.G.; Zotova, I.V.; Malkin, A.M.; Sergeev, A.S.; Rozental, R.R.; Fokin, A.P.; Belousov, V.I.; Shmelev, M.Y.; Chirkov, A.V.; Tsvetkov, A.I.; et al. Boosted excitation of an ultra-high cyclotron harmonic based on frequency multiplication by a weakly relativistic beam of gyrating electrons. Phys. Rev. E 2022, 106, L023203. [Google Scholar] [CrossRef]
- Reijerse, E.J. High-frequency EPR instrumentation. Appl. Magn. Reson. 2010, 37, 795–818. [Google Scholar] [CrossRef]
- Hruszowiec, M.; Nowak, K.; Szlachetko, B.; Grzelczak, M.; Czarczyński, W.; Pliński, E.F.; Więckowski, T. The Microwave Sources for EPR Spectroscopy. J. Telecommun. Inf. Technol. 2017, 2, 18–25. [Google Scholar] [CrossRef]
- Tatsukawa, T.; Maeda, T.; Sasai, H.; Idehara, T.; Mekata, I.; Saito, T.; Kanemaki, T. ESR spectrometer with a wide frequency-range using a gyrotron as a radiation power source. Int. J. Infrared Millim. Waves 1995, 16, 293–305. [Google Scholar] [CrossRef]
- Caspers, C.; da Silva, P.F.; Soundararajan, M.; Haider, M.A.; Philippe Ansermet, J.-P. Field and frequency modulated sub-THz electron spin resonance spectrometer. APL Photonics 2016, 1, 026101. [Google Scholar] [CrossRef]
- Mitsudo, S.; Shirai, T.; Matsuda, T.; Kanemaki, T.; Idehara, T. High power, frequency tunable, submillimeter wave ESR device using a gyrotron as a radiation source. Int. J. Infrared Millim. Waves 2000, 21, 661–676. [Google Scholar] [CrossRef]
- Mitsudo, S.; Higuchi, T.; Kanazawa, K.; Idehara, T.; Ogawa, I.; Chiba, M. High field ESR measurements using gyrotron FU series as radiation sources. J. Phys. Soc. Jpn. 2003, 72 (Suppl. B), 172–176. [Google Scholar] [CrossRef]
- Mitsudo, S.; Hiiragi, I.K.; Kono, K.; Dono, K.; Ishikawa, Y.; Fujii, Y. Observation of FID on BDPA by Pulsed ESR using a gyrotron as high-power millimeter wave source. In Proceedings of the 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Nagoya, Japan, 9–14 September 2018; p. 1. [Google Scholar] [CrossRef]
- Mitsudo, S.; Umegaki, C.; Hiiragi, K.; Narioka, M.; Fujii, Y.; Tatematsu, Y. Development of a millimeter wave pulsed ESR system by using a gyrotron as a light source. In Proceedings of the 2016 41st International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Copenhagen, Denmark, 25–30 September 2016; p. 1. [Google Scholar] [CrossRef]
- Mitsudo, S.; Dono, K.; Hayashi, K.; Ishikawa, Y.; Fujii, Y. Improvement in sensitivity of FT-ESR measurements by using a gyrotron as high-power millimeter wave source. In Proceedings of the 2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Buffalo, NY, USA, 8–13 November 2020; p. 1. [Google Scholar] [CrossRef]
- Mitsudo, S.; Sano, T.; Nishio, H.; Hayashi, K.; Ishikawa, Y.; Fujii, Y. Application of high frequency gyrotron to pulsed ESR measurement. In Proceedings of the 2022 47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), Delft, The Netherlands, 4–9 September 2022; p. 1. [Google Scholar] [CrossRef]
- Takahashi, H.; Okamoto, T.; Ishimura, K.; Hara, S.; Ohmichi, E.; Ohta, H. Force-detected high-frequency electron spin resonance spectroscopy using magnet-mounted nanomembrane: Robust detection of thermal magnetization modulation. Rev. Sci. Instrum. 2018, 89, 083905. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Ishikawa, Y.; Okamoto, T.; Hachiya, D.; Dono, K.; Hayashi, K.; Asano, T.; Mitsudo, S.; Ohmichi, E.; Ohta, H. Force detection of high-frequency electron spin resonance near room temperature using high-power millimeter-wave source gyrotron. Appl. Phys. Lett. 2021, 118, 022407. [Google Scholar] [CrossRef]
- Becerra, L.R.; Gerfen, G.J.; Temkin, R.J.; Singel, D.J.; Griffn, R.G. Dynamic Nuclear Polarization with a Cyclotron Resonance Maser at 5 T. Phys. Rev. Lett. 1993, 71, 3561–3564. [Google Scholar] [CrossRef]
- Temkin, R.J. Development of terahertz gyrotrons for spectroscopy at MIT. Terahertz Sci. Technol. 2014, 7, 1–9. [Google Scholar] [CrossRef]
- Nanni, E.A.; Jawla, S.; Lewis, S.M.; Shapiro, M.A.; Temkin, R.J. Photonic-band-gap gyrotron amplifier with picosecond pulses. Appl. Phys. Lett. 2017, 111, 233504. [Google Scholar] [CrossRef]
- Jawla, S.K.; Griffin, R.G.; Mastovsky, I.A.; Shapiro, M.A.; Temkin, R.J. Second harmonic 527-GHz gyrotron for DNP-NMR: Design and experimental results. IEEE Trans. Electron Devices 2019, 67, 328–334. [Google Scholar] [CrossRef]
- Griffin, R.G.; Swager, T.M.; Temkin, R.J. High frequency dynamic nuclear polarization: New directions for the 21st century. J. Magn. Reson. 2019, 306, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Tatematsu, Y.; Yusuke, Y.; Ichioka, R.; Kotera, M.; Saito, T.; Idehara, T. Development of the Multi-Frequency Gyrotron FU CW GV with Gaussian Beam Output. J. Infrared Millim. Terahertz Waves 2015, 36, 697–708. [Google Scholar] [CrossRef]
- Idehara, T.; Sabchevski, S.P. Gyrotrons for High-Power Terahertz Science and Technology at FIR UF. J. Infrared Millim. Terahertz Waves 2017, 38, 62–86. [Google Scholar] [CrossRef] [Green Version]
- Matsuki, Y.; Idehara, T.; Fukazawa, J.; Fujiwara, T. Advanced Instrumentation for DNP-enhanced MAS NMR for higher magnetic fields and lower temperatures. J. Magn. Reson. 2016, 264, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Idehara, T.; Glyavin, M.; Kuleshov, A.; Sabchevski, S.; Manuilov, V.; Zaslavsky, V.; Zotova, I.; Sedov, A. A novel THz-band double-beam gyrotron for high-field DNP-NMR spectroscopy. Rev. Sci. Instrum. 2017, 88, 094708. [Google Scholar] [CrossRef] [PubMed]
- Idehara, T.; Sabchevski, S.P. Development and Application of Gyrotrons at FIR UF. IEEE Trans. Plasma Sci. 2018, 46, 2452–2459. [Google Scholar] [CrossRef]
- Bogdashov, A.A.; Belousov, V.I.; Chirkov, A.V.; Denisov, G.G.; Korchagin, V.V.; Kornishin, S.Y. Transmission Line for 258 GHz Gyrotron DNP Spectrometry. J. Infrared Millim. Terahertz Waves 2011, 32, 823–837. [Google Scholar] [CrossRef]
- Glyavin, M.Y.; Idehara, T.; Sabchevski, S.P. Development of THz Gyrotrons at IAP RAS and FIR UF and Their Applications in Physical Research and High-Power THz Technologies. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 788–797. [Google Scholar] [CrossRef]
- Glyavin, M.Y.; Denisov, G.G.; Zapevalov, V.E.; Koshelev, M.A.; Tretyakov, M.Y.; Tsvetkov, A.I. High-power terahertz sources for spectroscopy and material diagnostics. Physics-Uspekhi 2016, 59, 595. [Google Scholar] [CrossRef]
- Alberti, S.; Ansermet, J.-P.; Avramides, K.A.; Fasel, D.; Hogge, J.-P.; Kern, S.; Lievin, C.; Liu, Y.; Macor, A.; Pagonakis, I. Design of a frequency-tunable gyrotron for DNP-enhanced NMR spectroscopy. In Proceedings of the 2009 34th International Conference on Infrared, Millimeter, and Terahertz Waves, Busan, Repulic of Korea, 21–25 September 2009; pp. 1–2. [Google Scholar] [CrossRef]
- Alberti, S.; Ansermet, J.-P.; Avramides, K.A.; Braunmueller, F.; Cuanillon, P.; Dubray, J.; Fasel, D.; Hogge, J.-P.; Macor, A.; de Rijk, E.; et al. Experimental study from linear to chaotic regimes on a terahertz-frequency gyrotron oscillator. Phys. Plasmas 2012, 19, 123102. [Google Scholar] [CrossRef]
- Yoon, D.; Soundararajan, M.; Cuanillon, P.; Braunmueller, F.; Alberti, S.; Ansermet, J.P. Dynamic nuclear polarization by frequency modulation of a tunable gyrotron of 260 GHz. J. Magn. Reson. 2016, 262, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Hogge, J.P.; Braunmueller, F.; Alberti, S.; Genoud, J.; Tran, T.M.; Vuillemin, Q.; Tran, M.Q.; Ansermet, J.P.; Cuanillon, P.; Macor, A.; et al. Detailed characterization of a frequency-tunable 260 GHz gyrotron oscillator planned for DNP/NMR spectroscopy. In Proceedings of the 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Mainz, Germany, 1–6 September 2013. [Google Scholar] [CrossRef]
- Singh, R.K.; Thottappan, M. Design and Investigations of Millimeter-Wave Gyrotron with Multisection Slightly Tapered RF Cavity for DNP/NMR Spectrometer Application. IEEE Trans. Plasma Sci. 2021, 49, 1097–1104. [Google Scholar] [CrossRef]
- Wang, X.; Xue, Q.; Zhang, S.; Liu, G.; Zhao, D. Theory Analysis of Nonlinear Excitation of Second Harmonic THz Gyrotron for DNP-NMR. IEEE Trans. Plasma Sci. 2020, 48, 733–738. [Google Scholar] [CrossRef]
- Pagonakis, I.G.; Genoud, J.; Gao, C.; Sirigiri, J.R.; Alaniva, N.H.; Alberti, S.; Angehn, F.N.; Björgvinsdóttir, S.; Chen, P.H.; Däpp, A.; et al. Development of Kilowatt THz Gyrotrons for Pulsed Dynamic Nuclear Polarization—Cavity Design Code Phaedra. In Proceedings of the 2022 47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), Delft, The Netherlands, 4–9 September 2022; pp. 1–2. [Google Scholar] [CrossRef]
- Scott, F.J.; Saliba, E.P.; Albert, B.J.; Alaniva, N.; Sesti, E.L.; Gao, C.; Golota, N.C.; Choi, E.J.; Jagtap, A.P.; Wittmann, J.J.; et al. Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization. J. Magn. Reson. 2018, 289, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Denysenkov, V.; Prandolini, M.J.; Gafurov, M.; Sezer, D.; Endeward, B.; Prisner, T.F. Liquid state dnp using a 260 GHz high power gyrotron. Phys. Chem. Chem. Phys. 2010, 12, 5786–5790. [Google Scholar] [CrossRef]
- Bratman, V.L.; Fedotov, A.E.; Kalynov, Y.K.; Samoson, A. THz gyrotron and BWO designed for operation in DNP-NMR spectrometer magnet. J. Infrared Millim. Terahertz Waves 2013, 34, 837–846. [Google Scholar] [CrossRef]
- Sirigiri, J.R.; Maly, T. Integrated High-Frequency Generator System Utilizing the Magnetic Field of the Target Application. U.S. Patent No. 8,786,284, 22 July 2014. [Google Scholar]
- Bratman, V.L.; Fedotov, A.E.; Kalynov, Y.K.; Makhalov, P.B.; Osharin, I.V. Numerical study of a low-voltage gyrotron (“gyrotrino”) for DNP/NMR spectroscopy. IEEE Trans. Plasma Sci. 2017, 45, 644–648. [Google Scholar] [CrossRef]
- Ryan, H.; van Bentum, J.; Maly, T. A ferromagnetic shim insert for NMR magnets–Towards an integrated gyrotron for DNP-NMR spectroscopy. J. Magn. Reson. 2017, 277, 1–7. [Google Scholar] [CrossRef]
- Goulon, J.; Rogalev, A.; Goujon, G.; Wilhelm, F.; Youssef, J.B.; Gros, C.; Barbe, J.-M.; Guilard, R. X-Ray Detected Magnetic Resonance: A Unique Probe of the Precession Dynamics of Orbital Magnetization Components. Int. J. Mol. Sci. 2011, 12, 8797–8835. [Google Scholar] [CrossRef]
- Rogalev, A.; Goulon, J.; Goujon, G.; Wilhelm, F.; Ogawa, I.; Idehara, T. X-ray detected magnetic resonance at sub-THz frequencies using a high power gyrotron source. J. Infrared Millim. Terahertz Waves 2012, 33, 777–793. [Google Scholar] [CrossRef]
- Asai, S.; Yamazaki, T.; Miyazaki, A.; Suehara, T.; Namba, T.; Kobayashi, T.; Saito, H.; Idehara, T.; Ogawa, I.; Sabchevski, S. Direct Measurement of Positronium Hyper Fine Structure—A New Horizon of Precision Spectroscopy Using Gyrotrons. J. Infrared Millim. Terahertz Waves 2012, 3, 766–776. [Google Scholar] [CrossRef]
- Yamazaki, T.; Miyazaki, A.; Suehara, T.; Namba, T.; Asai, S.; Kobayashi, T.; Saito, H.; Ogawa, I.; Idehara, T.; Sabchevski, S. Direct observation of the hyperfine transition of ground-state positronium. Phys. Rev. Lett. 2012, 108, 253401. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, A.; Yamazaki, T.; Suehara, T.; Namba, T.; Asai, S.; Kobayashi, T.; Saito, H.; Tatematsu, Y.; Ogawa, I.; Idehara, T. First millimeter-wave spectroscopy of ground-state positronium. Prog. Theor. Exp. Phys. 2015, 2015, 011C01. [Google Scholar] [CrossRef]
- Fedotov, A.E.; Rozental, R.M.; Zotova, I.V.; Ginzburg, N.S.; Sergeev, A.S.; Tarakanov, V.P.; Glyavin, M.Y.; Idehara, T. Frequency Tunable sub-THz Gyrotron for Direct Measurements of Positronium Hyperfine Structure. J. Infrared Millim. Terahertz Waves 2018, 39, 975–983. [Google Scholar] [CrossRef]
- Asai, S.; Idehara, T.; Yokoyama, H. Fundamental Particle Physics Using Gyrotrons in Table-Top Experiments. Exhibition (Entrance Event) at MEXT (Ministry of Education, Culture, Sports, Science and Technology of Japan) Presented by University of Fukui and Tokyo University (1 September–21 October 2016). Newsletter of the International Consortium for Development of High-Power THz Science and Technology. N 4, 2016, Page 2. Available online: http://fir.u-fukui.ac.jp/Website_Consortium/documents/Newsletter_%234.pdf (accessed on 1 January 2023).
Institution/Gyrotron | Frequency, GHz | Spectrometer |
---|---|---|
MIT | 140 | 210 MHz (the 1st in the world) |
MIT | 250 | 380 MHz |
CPI | 263 | 400 MHz |
MIT | 330 | 500 MHz |
CPI | 395 | 600 MHz |
MIT | 460 | 700 MHz |
MIT, CPI | 527 | 800 MHz |
FIR FU/FU CW IV | 131 | 200 MHz at FIR UF |
FIR FU/FU CW VII | 187 | 300 MHz at Warwick Univ. |
FIR FU/FU CW II, FU CW VI | 394 | 600 MHz at Osaka Univ. |
FIR FU/FU CW GVI FU CW GVIA | 460 | 700 MHz |
IAP-RAS | 260 | 400 MHz at Goethe University, Germany |
EPFL, Switzerland | 265–530 | 400–800 MHz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabchevski, S.; Glyavin, M. Development and Application of THz Gyrotrons for Advanced Spectroscopic Methods. Photonics 2023, 10, 189. https://doi.org/10.3390/photonics10020189
Sabchevski S, Glyavin M. Development and Application of THz Gyrotrons for Advanced Spectroscopic Methods. Photonics. 2023; 10(2):189. https://doi.org/10.3390/photonics10020189
Chicago/Turabian StyleSabchevski, Svilen, and Mikhail Glyavin. 2023. "Development and Application of THz Gyrotrons for Advanced Spectroscopic Methods" Photonics 10, no. 2: 189. https://doi.org/10.3390/photonics10020189
APA StyleSabchevski, S., & Glyavin, M. (2023). Development and Application of THz Gyrotrons for Advanced Spectroscopic Methods. Photonics, 10(2), 189. https://doi.org/10.3390/photonics10020189