A Diamond Terahertz Large Aperture Photoconductive Antenna Biased by a Longitudinal Field
Abstract
:1. Introduction
2. Materials and Methods
2.1. Assembling LAPCAs
2.2. Testing LAPCAs
2.3. Numerical Simulation of LAPCA Operation
3. Results and Discussion
3.1. Analytical Description of the Transversal Field LAPCA Output
3.2. Computation of LAPCA with Longitudinal Bias Field
3.3. Main Characteristics of Longitudinal Bias Field LAPCAs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Symbols and Abbreviations
PCA | photoconductive antenna |
LAPCA | large aperture PCA |
HPHT | high pressure—high temperature |
CVD | chemical vapor deposition |
BBO | -barium borate |
PCB | printed circuit board |
ITO | indium tin oxide |
HV | high voltage |
THz pulse duration | |
THz E-field | |
E | applied bias field |
free space impedance | |
optical pump fluence | |
saturation fluence | |
photon energy | |
n | refractive index |
e | electron charge |
carrier mobility | |
R | reflected power of optical wave |
transmitted power of the p-polarized wave | |
transmitted field of the p-polarized wave | |
angle of incidence | |
angle of refraction |
References
- Smye, S.; Chamberlain, J.; Fitzgerald, A.; Berry, E. The interaction between terahertz radiation and biological tissue. Phys. Med. Biol. 2001, 46, R101. [Google Scholar] [CrossRef]
- Brabec, T.; Krausz, F. Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys. 2000, 72, 545. [Google Scholar] [CrossRef]
- Pickwell, E.; Wallace, V. Biomedical applications of terahertz technology. J. Phys. D Appl. Phys. 2006, 39, R301. [Google Scholar] [CrossRef]
- Hoshina, H.; Sasaki, Y.; Hayashi, A.; Otani, C.; Kawase, K. Noninvasive mail inspection system with terahertz radiation. Appl. Spectrosc. 2009, 63, 81–86. [Google Scholar] [CrossRef] [PubMed]
- El Haddad, J.; Bousquet, B.; Canioni, L.; Mounaix, P. Review in terahertz spectral analysis. TrAC Trends Anal. Chem. 2013, 44, 98–105. [Google Scholar] [CrossRef]
- Kleine-Ostmann, T.; Nagatsuma, T. A review on terahertz communications research. J. Infrared Millim. Terahertz Waves 2011, 32, 143–171. [Google Scholar] [CrossRef]
- Hafez, H.; Chai, X.; Ibrahim, A.; Mondal, S.; Férachou, D.; Ropagnol, X.; Ozaki, T. Intense terahertz radiation and their applications. J. Opt. 2016, 18, 093004. [Google Scholar] [CrossRef]
- Yang, K.; Richards, P.; Shen, Y. Generation of far-infrared radiation by picosecond light pulses in LiNbO3. Appl. Phys. Lett. 1971, 19, 320–323. [Google Scholar] [CrossRef]
- Auston, D.H.; Cheung, K.P.; Smith, P.R. Picosecond photoconducting Hertzian dipoles. Appl. Phys. Lett. 1984, 45, 284–286. [Google Scholar] [CrossRef]
- He, Y.; Chen, Y.; Zhang, L.; Wong, S.W.; Chen, Z.N. An overview of terahertz antennas. China Commun. 2020, 17, 124–165. [Google Scholar] [CrossRef]
- Isgandarov, E.; Ropagnol, X.; Singh, M.; Ozaki, T. Intense terahertz generation from photoconductive antennas. Front. Optoelectron. 2021, 14, 64–93. [Google Scholar] [CrossRef]
- Fattinger, C.; Grischkowsky, D. Terahertz beams. Appl. Phys. Lett. 1989, 54, 490–492. [Google Scholar] [CrossRef]
- Burford, N.M.; El-Shenawee, M.O. Review of terahertz photoconductive antenna technology. Opt. Eng. 2017, 56, 010901. [Google Scholar] [CrossRef]
- Yoneda, H.; Tokuyama, K.; Ueda, K.; Yamamoto, H.; Baba, K. High-power terahertz radiation emitter with a diamond photoconductive switch array. Appl. Opt. 2001, 40, 6733–6736. [Google Scholar] [CrossRef] [PubMed]
- Imafuji, O.; Singh, B.P.; Hirose, Y.; Fukushima, Y.; Takigawa, S. High power subterahertz electromagnetic wave radiation from GaN photoconductive switch. Appl. Phys. Lett. 2007, 91, 071112. [Google Scholar] [CrossRef]
- Ropagnol, X.; Morandotti, R.; Ozaki, T.; Reid, M. Toward high-power terahertz emitters using large aperture ZnSe photoconductive antennas. IEEE Photonics J. 2011, 3, 174–186. [Google Scholar] [CrossRef]
- Ropagnol, X.; Bouvier, M.; Reid, M.; Ozaki, T. Improvement in thermal barriers to intense terahertz generation from photoconductive antennas. J. Appl. Phys. 2014, 116, 043107. [Google Scholar] [CrossRef]
- Ropagnol, X.; Kovács, Z.; Gilicze, B.; Zhuldybina, M.; Blanchard, F.; Garcia-Rosas, C.; Szatmári, S.; Földes, I.; Ozaki, T. Intense sub-terahertz radiation from wide-bandgap semiconductor based large-aperture photoconductive antennas pumped by UV lasers. New J. Phys. 2019, 21, 113042. [Google Scholar] [CrossRef]
- Yoneda, H.; Ueda, K.i.; Aikawa, Y.; Baba, K.; Shohata, N. Photoconductive properties of chemical vapor deposited diamond switch under high electric field strength. Appl. Phys. Lett. 1995, 66, 460–462. [Google Scholar] [CrossRef]
- Kubarev, V. Optical properties of CVD-diamond in terahertz and infrared ranges. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2009, 603, 22–24. [Google Scholar] [CrossRef]
- Isberg, J.; Hammersberg, J.; Johansson, E.; Wikström, T.; Twitchen, D.J.; Whitehead, A.J.; Coe, S.E.; Scarsbrook, G.A. High carrier mobility in single-crystal plasma-deposited diamond. Science 2002, 297, 1670–1672. [Google Scholar] [CrossRef] [PubMed]
- Chizhov, P.A.; Komlenok, M.S.; Kononenko, V.V.; Bukin, V.V.; Ushakov, A.A.; Bulgakova, V.V.; Khomich, A.A.; Bolshakov, A.P.; Konov, V.I.; Garnov, S.V. Photoconductive terahertz generation in nitrogen-doped single-crystal diamond. Opt. Lett. 2022, 47, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Iakoubovskii, K.; Adriaenssens, G. Optical transitions at the substitutional nitrogen centre in diamond. J. Phys. Condens. Matter 2000, 12, L77. [Google Scholar] [CrossRef]
- Kononenko, V.V.; Komlenok, M.S.; Chizhov, P.A.; Bukin, V.V.; Bulgakova, V.V.; Khomich, A.A.; Bolshakov, A.P.; Konov, V.I.; Garnov, S.V. Efficiency of Photoconductive Terahertz Generation in Nitrogen-Doped Diamonds. Photonics 2022, 9, 18. [Google Scholar] [CrossRef]
- You, D.; Jones, R.; Bucksbaum, P.; Dykaar, D. Generation of high-power sub-single-cycle 500-fs electromagnetic pulses. Opt. Lett. 1993, 18, 290–292. [Google Scholar] [CrossRef]
- Smith, P.R.; Auston, D.H.; Nuss, M.C. Subpicosecond photoconducting dipole antennas. IEEE J. Quantum Electron. 1988, 24, 255–260. [Google Scholar] [CrossRef]
- Kononenko, T.V.; Ashikkalieva, K.K.; Kononenko, V.V.; Zavedeev, E.V.; Dezhkina, M.A.; Komlenok, M.S.; Ashkinazi, E.E.; Bukin, V.V.; Konov, V.I. Diamond Photoconductive Antenna for Terahertz Generation Equipped with Buried Graphite Electrodes. Photonics 2023, 10, 75. [Google Scholar] [CrossRef]
- Carron, N.; Longmire, C. Electromagnetic pulse produced by obliquely incident X rays. IEEE Trans. Nucl. Sci. 1976, 23, 1897–1902. [Google Scholar] [CrossRef]
- Rothschild, M.; Arnone, C.; Ehrlich, D.J. Excimer-laser etching of diamond and hard carbon films by direct writing and optical projection. J. Vac. Sci. Technol. B 1986, 4, 310. [Google Scholar] [CrossRef]
- Kononenko, T.V.; Kononenko, V.V.; Konov, V.I.; Pimenov, S.M.; Garnov, S.V.; Tishchenko, A.V.; Prokhorov, A.M.; Khomich, A.V. Formation of antireflective surface structures on diamond films by laser patterning. Appl. Phys. A Mater. Sci. Process. 1999, 68, 99–102. [Google Scholar] [CrossRef]
- Kononenko, V.V.; Kononenko, T.V.; Pimenov, S.M.; Sinyavskii, M.N.; Konov, V.I.; Dausinger, F. Effect of the pulse duration on graphitisation of diamond during laser ablation. Quantum Electron. 2005, 35, 252–256. [Google Scholar] [CrossRef]
- Geis, M.W.; Rothschild, M.; Kunz, R.R.; Aggarwal, R.L.; Wall, K.F.; Parker, C.D.; McIntosh, K.A.; Efremow, N.N.; Zayhowski, J.J.; Ehrlich, D.J.; et al. Electrical, crystallographic, and optical properties of ArF laser modified diamond surfaces. Appl. Phys. Lett. 1989, 55, 2295–2297. [Google Scholar] [CrossRef]
- Darrow, J.T.; Zhang, X.C.; Auston, D.H.; Morse, J.D. Saturation properties of large-aperture photoconducting antennas. IEEE J. Quantum Electron. 1992, 28, 1607–1616. [Google Scholar] [CrossRef]
- Park, S.G.; Weiner, A.; Melloch, M.R.; Sider, C.; Sider, J.; Taylor, A.J. High-power narrow-band terahertz generation using large-aperture photoconductors. IEEE J. Quantum Electron. 1999, 35, 1257–1268. [Google Scholar] [CrossRef]
- Truchin, V.; Andrianov, A.; Zinov’ev, N. Generation of terahertz radiation by a moving bunch of nonequilibrium electron-hole plasma. Phys. Rev. B 2008, 78, 155325. [Google Scholar] [CrossRef]
- Benicewicz, P.; Roberts, J.; Taylor, A. Scaling of terahertz radiation from large-aperture biased photoconductors. JOSA B 1994, 11, 2533–2546. [Google Scholar] [CrossRef]
Transverse E-Field | Longitudinal E-Field | |
---|---|---|
Clear biased aperture, A | 5.2 × 2.4 mm | 3.6 × 2.0 mm |
Incidence angle | 0 | 45–50 |
HV electrodes | Edge graphitized surface | Grid graphitized surface |
Saturation fluence, F | 245 J/cm | 255 J/cm |
Maximum THz yield | 0.76 nJ | 0.62 nJ |
Optical-to-THz conversion | 0.0004% | 0.0008% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kononenko, V.V.; Bukin, V.V.; Komlenok, M.S.; Zavedeev, E.V.; Kononenko, T.V.; Dezhkina, M.A.; Ratnikov, P.P.; Dolmatov, T.V.; Chizhov, P.A.; Ushakov, A.A.; et al. A Diamond Terahertz Large Aperture Photoconductive Antenna Biased by a Longitudinal Field. Photonics 2023, 10, 1169. https://doi.org/10.3390/photonics10101169
Kononenko VV, Bukin VV, Komlenok MS, Zavedeev EV, Kononenko TV, Dezhkina MA, Ratnikov PP, Dolmatov TV, Chizhov PA, Ushakov AA, et al. A Diamond Terahertz Large Aperture Photoconductive Antenna Biased by a Longitudinal Field. Photonics. 2023; 10(10):1169. https://doi.org/10.3390/photonics10101169
Chicago/Turabian StyleKononenko, Vitali V., Vladimir V. Bukin, Maxim S. Komlenok, Evgeny V. Zavedeev, Taras V. Kononenko, Margarita A. Dezhkina, Pavel P. Ratnikov, Timophey V. Dolmatov, Pavel A. Chizhov, Alexander A. Ushakov, and et al. 2023. "A Diamond Terahertz Large Aperture Photoconductive Antenna Biased by a Longitudinal Field" Photonics 10, no. 10: 1169. https://doi.org/10.3390/photonics10101169
APA StyleKononenko, V. V., Bukin, V. V., Komlenok, M. S., Zavedeev, E. V., Kononenko, T. V., Dezhkina, M. A., Ratnikov, P. P., Dolmatov, T. V., Chizhov, P. A., Ushakov, A. A., Konov, V. I., & Garnov, S. V. (2023). A Diamond Terahertz Large Aperture Photoconductive Antenna Biased by a Longitudinal Field. Photonics, 10(10), 1169. https://doi.org/10.3390/photonics10101169