Screening and Estimation of Bioactive Compounds of Azanza garckeana (Jakjak) Fruit Using GC-MS, UV–Visible Spectroscopy, and HPLC Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents and Standards
2.2. Fruit Collection and Extraction Process
2.3. Phenolic Compounds Assay
2.3.1. Phenolic Contents Estimation
2.3.2. Estimation of the Total Flavonoid Content
2.3.3. Estimation of Total Tannin Content
2.3.4. Estimation of Flavanols Content
2.4. Sugar Content Determination Assay
Estimation of Total Soluble Sugar
2.5. HPLC Equipment and Compounds Quantification
2.5.1. Quantification of Glucose
2.5.2. Quantification of Fructose
2.5.3. Quantification of Maltose
2.5.4. Estimation of Ascorbic Acid
2.5.5. Quantification of Rutin
2.5.6. Quantification of Quercetin
2.5.7. Quantification of Gallic Acid
2.6. GC-MS Analysis of Fruit Extracts
2.7. DPPH Radical Scavenging Assay
2.8. Statistical Analysis
3. Results and Discussion
3.1. Sugar Content Estimation
3.2. Phenolic Compounds of Jakjak Fruit
3.3. Antioxidant Activity Assay
3.4. Gas Chromatography–Mass Spectrometry Analysis of Fruit Extracts of Azanza garckeana
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taylor, F.; Kwerepe, B. Towards domestication of some indigenous fruit trees in Botswana. In Proceedings of the Conference on the Improvement of Indigenous Fruit Trees of the Miombo Woodlands of Southern Africa, Mangochi, Malawi, 23–27 January 1994. [Google Scholar]
- Agriculture Organization of the United Nations. Food and Fruit-Bearing Forest Species; Food and Agriculture Organization of the United Nations: Rome, Italy, 1983; Volume 44. [Google Scholar]
- Sulieman, A.-H. Azanza garckeana L.: Distribution, Composition, Nutritive Value, and Utilization. In Wild Fruits: Composition, Nutritional Value and Products; Springer: Berlin/Heidelberg, Germany, 2019; pp. 379–393. [Google Scholar]
- Ochokwu, I.; Dasuki, A.; Oshoke, J. Azanza garckeana (Goron Tula) as an edible indigenous fruit in North Eastern Part of Nigeria. J. Biol. Agric. Healthc. 2015, 5, 26–31. [Google Scholar]
- Dikko, Y.; Khan, M.; Tor-Anyiin, T.; Anyam, J.; Linus, U. In vitro antimicrobial activity of fruit pulp extracts of Azanza garckeana (f. hoffm.) exell & hillc. and isolation of one of its active principles, betulinic acid. Methodology 2016, 14, 1–10. [Google Scholar] [CrossRef]
- Maroyi, A. Azanza garckeana fruit tree: Phytochemistry, pharmacology, nutritional and primary healthcare applications as herbal medicine: A Review. Res. J. Med. Plants 2017, 11, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Suliman, A.M.E.; Difa, I.Y.; Salih, Z.A. The Nutritive Value of Jakjak (Azanza garckeana L.) Fruit and its Utilization in Juice Production. Asian J. Biol. Sci. 2012, 5, 209–215. [Google Scholar]
- Lee, K.; Roth, R.A.; LaPres, J.J. Hypoxia, drug therapy and toxicity. Pharmacol. Ther. 2007, 113, 229–246. [Google Scholar] [CrossRef]
- Glew, R.S.; Vanderjagt, D.J.; Chuang, L.-T.; Huang, Y.-S.; Millson, M.; Glew, R.H. Nutrient content of four edible wild plants from West Africa. Plant Foods Hum. Nutr. 2005, 60, 187–193. [Google Scholar] [CrossRef]
- Gelfland, M.; Mavi, S.; Drummond, R.; Ndemera, B. The Traditional Medical Practitioner in Zimbabwe: His Principles of Practice and Pharmacopoeia; Mambo Press: Gweru, Zimbabwe, 1985. [Google Scholar]
- Mshelia, E.; Watirahyel, E.; Maigari, A.; Yohanna, C.; Ismail, F. Cytotoxicity and antioxidant activity of stem bark extracts of Azanza garckeana (kola of Tula). Eur. J. Pure Appl. Chem. 2016, 3, 16–24. [Google Scholar]
- World Health Organization. This year’s malaria report at glance. In World Malaria Report; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Mojeremane, W.; Tshwenyane, S. Azanza garckeana: A Valuable Edible Indigenous Fruit Tree of Botswana. Pak. J. Nutr. 2004, 3, 264–267. [Google Scholar] [CrossRef] [Green Version]
- Chawafambira, A. Extraction and Characterization of Pectin from Snot Apple (Azanza garckeana) Fruits with Potential Use in Zimbabwe. Int. J. Fruit Sci. 2021, 21, 791–803. [Google Scholar] [CrossRef]
- Karu, E.; Maitale, J.; Maigari, F. Extraction and Identification of Reducing Sugars in Azanza garckeana Fruit. BIMA J. Sci. Technol. (2536–6041) 2019, 3, 87–95. [Google Scholar]
- Momodu, I.; Okungbowa, E.; Agoreyo, B.; Maliki, M. Gas Chromatography–Mass Spectrometry Identification of Bioactive Compounds in Methanol and Aqueous Seed Extracts of Azanza garckeana Fruits. Niger. J. Biotechnol. 2022, 38, 25–38. [Google Scholar] [CrossRef]
- Parr, A.J.; Bolwell, G.P. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J. Sci. Food Agric. 2000, 80, 985–1012. [Google Scholar] [CrossRef]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef]
- Rahman, M.A.A.; Moon, S.-S. Antioxidant polyphenol glycosides from the plant Draba nemorosa. Bull. Korean Chem. Soc. 2007, 28, 827–831. [Google Scholar] [CrossRef]
- Tsao, A.S.; Kim, E.S.; Hong, W.K. Chemoprevention of cancer. CA A Cancer J. Clin. 2004, 54, 150–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bravo, L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 1998, 56, 317–333. [Google Scholar] [CrossRef]
- Van Wyk, B.-E. The potential of South African plants in the development of new medicinal products. S. Afr. J. Bot. 2011, 77, 812–829. [Google Scholar] [CrossRef] [Green Version]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef]
- Ordonez, A.; Gomez, J.; Vattuone, M. Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chem. 2006, 97, 452–458. [Google Scholar] [CrossRef]
- Rodrigues, C.I.; Marta, L.; Maia, R.; Miranda, M.; Ribeirinho, M.; Máguas, C. Application of solid-phase extraction to brewed coffee caffeine and organic acid determination by UV/HPLC. J. Food Compos. Anal. 2007, 20, 440–448. [Google Scholar] [CrossRef]
- Kumaran, A.; Karunakaran, R.J. In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. LWT-Food Sci. Technol. 2007, 40, 344–352. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers Pt Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Montesano, D.; Cossignani, L.; Giua, L.; Urbani, E.; Simonetti, M.; Blasi, F. A simple HPLC-ELSD method for sugar analysis in goji berry. J. Chem. 2016, 2016, 6271808. [Google Scholar] [CrossRef] [Green Version]
- Castro, R.; Azeredo, L.; Azeredo, M.; De Sampaio, C. HPLC assay for the determination of ascorbic acid in honey samples. J. Liq. Chromatogr. Relat. Technol. 2001, 24, 1015–1020. [Google Scholar] [CrossRef]
- Nour, V.; Trandafir, I.; Cosmulescu, S. HPLC determination of phenolic acids, flavonoids and juglone in walnut leaves. J. Chromatogr. Sci. 2013, 51, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Abass, A.A.; Ahmed, G.A. Assessment of the Suitability of Using Jakjak Fruits (Azanza garcheana) for Production of Lokum Candy; Sudan University of Science and Technology: Khartoum, Sudan, 2017. [Google Scholar]
- Lovegrove, A.; Edwards, C.; De Noni, I.; Patel, H.; El, S.; Grassby, T.; Zielke, C.; Ulmius, M.; Nilsson, L.; Butterworth, P. Role of polysaccharides in food, digestion, and health. Crit. Rev. Food Sci. Nutr. 2017, 57, 237–253. [Google Scholar] [CrossRef] [Green Version]
- Kilic, A.O.; Honeyman, A.L.; Tao, L. Overlapping substrate specificity for sucrose and maltose of two binding protein-dependent sugar uptake systems in Streptococcus mutans. FEMS Microbiol. Lett. 2007, 266, 218–223. [Google Scholar] [CrossRef] [Green Version]
- Lawal, B.; Sani, S.; Onikanni, A.S.; Ibrahim, Y.O.; Agboola, A.R.; Lukman, H.Y.; Olawale, F.; Jigam, A.A.; Batiha, G.E.-S.; Babalola, S.B. Preclinical anti-inflammatory and antioxidant effects of Azanza garckeana in STZ-induced glycemic-impaired rats, and pharmacoinformatics of it major phytoconstituents. Biomed. Pharmacother. 2022, 152, 113196. [Google Scholar] [CrossRef]
- Patel, K.; Patel, D.K. The beneficial role of rutin, a naturally occurring flavonoid in health promotion and disease prevention: A systematic review and update. In Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases; Academic Press: Cambridge, MA, USA, 2019; pp. 457–479. [Google Scholar]
- Baghel, S.S.; Shrivastava, N.; Baghel, R.S.; Agrawal, P.; Rajput, S. A review of quercetin: Antioxidant and anticancer properties. World J. Pharm. Pharm. Sci. 2012, 1, 146–160. [Google Scholar]
- Gunckel, S.; Santander, P.; Cordano, G.; Ferreira, J.; Munoz, S.; Nunez-Vergara, L.; Squella, J. Antioxidant activity of gallates: An electrochemical study in aqueous media. Chem. Biol. Interact. 1998, 114, 45–59. [Google Scholar] [CrossRef]
- Shukla, Y.; Srivastava, A.; Kumar, S.; Kumar, S. Phytotoxic and antimicrobial constituents of Argyreia speciosa and Oenothera biennis. J. Ethnopharmacol. 1999, 67, 241–245. [Google Scholar] [CrossRef]
- Jacob, C.; Shehu, Z.; Danbature, W.; Karu, E. Proximate analysis of the fruit Azanza garckeana (“Goron Tula”). Bayero J. Pure Appl. Sci. 2016, 9, 221–224. [Google Scholar] [CrossRef] [Green Version]
- Foyer, C.H. Ascorbic acid. In Antioxidants in Higher Plants; CRC Press: Boca Raton, FL, USA, 2017; pp. 31–58. [Google Scholar]
- Salih, A.M.; Al-Qurainy, F.; Nadeem, M.; Tarroum, M.; Khan, S.; Shaikhaldein, H.O.; Al-Hashimi, A.; Alfagham, A.; Alkahtani, J. Optimization Method for Phenolic Compounds Extraction from Medicinal Plant (Juniperus procera) and Phytochemicals Screening. Molecules 2021, 26, 7454. [Google Scholar] [CrossRef] [PubMed]
- Saeed, N.; Khan, M.R.; Shabbir, M. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement. Altern. Med. 2012, 12, 221. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.; Lee, J. Antioxidant and antiproliferative properties of a tocotrienol-rich fraction from grape seeds. Food Chem. 2009, 114, 1386–1390. [Google Scholar] [CrossRef]
- Kadoma, Y.; Ito, S.; Atsumi, T.; Fujisawa, S. Mechanisms of cytotoxicity of 2- or 2,6-di-tert-butylphenols and 2-methoxyphenols in terms of inhibition rate constant and a theoretical parameter. Chemosphere 2009, 74, 626–632. [Google Scholar] [CrossRef]
- Malek, S.N.A.; Shin, S.K.; Wahab, N.A.; Yaacob, H. Cytotoxic components of Pereskia bleo (Kunth) DC. (Cactaceae) leaves. Molecules 2009, 14, 1713–1724. [Google Scholar] [CrossRef]
- Zhou, B.; Chen, Z.; Du, L.; Xie, Y.; Zhang, Q.; Ye, X. Allelopathy of root exudates from different resistant eggplants to Verticillium dahliae and the identification of allelochemicals. Afr. J. Biotechnol. 2011, 10, 8284–8290. [Google Scholar]
- Abdullah, A.-S.H.; Mirghani, M.E.S.; Jamal, P. Antibacterial Activity of Malaysian mango kernel. Afr. J. Biotechnol. 2011, 10, 18739–18748. [Google Scholar]
Solvent | Total Sugar (%) | Glucose (µg/g DW) | Fructose (µg/g DW) | Maltose (µg/g DW) |
---|---|---|---|---|
Methanol | 48.53 ± 0.7 | 978.21 ± 14 a | 202.27 ± 2.81 a | 209.12 ± 9.12 |
DI water | 40.44 ± 0.7 | 428.57 ± 10.15 b | 65.60 ± 19.16 b | Not detected |
Solvents | TPC | TTC | TFC | Total Flavanol Content |
---|---|---|---|---|
Methanol | 133.05 ± 0.35 a | 55.78 ± 0.26 a | 12 ± 0.08 a | 5.54 ± 0.21 a |
DI water | 104.23 ± 0.00 b | 43.13 ± 0.38 b | 2.90 ±0.01 b | 1.8 ± 0.01 b |
Solvent | Quercetin | Rutin | Gallic acid | Tannic acid | Ascorbic acid |
---|---|---|---|---|---|
Methanol | 0.066 ± 0.002 | 1.46 ± 0.02 | 0.04 ± 0.01 a | 0.05 ± 0.04 | 6.1 ± 1.83 b |
DI water | Not detected | Not detected | 0.03 ± 0.01 b | 0.04 ± 0.08 | 12.18 ± 4.1 a |
Compounds | RT (min) |
---|---|
4-(1E)-3-Hydroxy-1-propenyl | 18.505 |
Di-n-octylphthalate | 23.219 |
Benzonitrile | 10.149 |
Phenol, 2,4-bis(1,1-dimethylethyl) | 12.858 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salih, A.M.; Al-Qurainy, F.; Tarroum, M.; Shaikhaldein, H.O.; Hashimi, A. Screening and Estimation of Bioactive Compounds of Azanza garckeana (Jakjak) Fruit Using GC-MS, UV–Visible Spectroscopy, and HPLC Analysis. Separations 2022, 9, 172. https://doi.org/10.3390/separations9070172
Salih AM, Al-Qurainy F, Tarroum M, Shaikhaldein HO, Hashimi A. Screening and Estimation of Bioactive Compounds of Azanza garckeana (Jakjak) Fruit Using GC-MS, UV–Visible Spectroscopy, and HPLC Analysis. Separations. 2022; 9(7):172. https://doi.org/10.3390/separations9070172
Chicago/Turabian StyleSalih, Abdalrhaman M., Fahad Al-Qurainy, Mohamed Tarroum, Hassan O. Shaikhaldein, and Abdulrahman Hashimi. 2022. "Screening and Estimation of Bioactive Compounds of Azanza garckeana (Jakjak) Fruit Using GC-MS, UV–Visible Spectroscopy, and HPLC Analysis" Separations 9, no. 7: 172. https://doi.org/10.3390/separations9070172
APA StyleSalih, A. M., Al-Qurainy, F., Tarroum, M., Shaikhaldein, H. O., & Hashimi, A. (2022). Screening and Estimation of Bioactive Compounds of Azanza garckeana (Jakjak) Fruit Using GC-MS, UV–Visible Spectroscopy, and HPLC Analysis. Separations, 9(7), 172. https://doi.org/10.3390/separations9070172