Simultaneous Quantification of Vitamin A and Derivatives in Cosmetic Products by Liquid Chromatography with Ultraviolet Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Samples
2.2. Apparatus
2.3. Proposed Method
2.3.1. Preparation of Standards and Sample Solutions
2.3.2. Chromatographic Analysis
3. Results and Discussion
3.1. Study of the Chromatographic Variables
3.2. Sample Treatment
3.3. Analytical Figures of Merit of the Developed Method
3.4. Analysis of Commercially-Available Cosmetic Samples
3.5. Advantages of the Proposed Method: Evaluation of the Greenness of the Proposed Sample Preparation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Casas, C. Vitamins. In Analysis of Cosmetic Products, 1st ed.; Salvador, A., Chisvert, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 364–379. [Google Scholar]
- Takahashi, N.; Saito, D.; Hasegawa, S.; Yamasaki, M.; Imai, M. Vitamin A in Health Care: Suppression of Growth and Induction of Differentiation in Cancer Cells by Vitamin A and Its Derivatives and Their Mechanisms of Action. Pharmacol. Ther. 2021, 107942, in press. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.C. Retinol: Properties and Determination. In Encyclopedia of Food and Health, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 1, pp. 604–609. [Google Scholar]
- European Commission. Commission Decision of 9 February 2006 Amending Decision 96/335/EC Establishing an Inventory and a Common Nomenclature of Ingredients Employed in Cosmetic Products. Official Journal of the European Union, 5 April 2006; L97. [Google Scholar]
- Zasada, M.; Budzisz, E.; Kolodziejska, J.; Kalinowska-Lis, U. An Evaluation of the Physicochemical Parameters and the Content of the Active Ingredients in Original Formulas Containing Retinol. J. Cosmet. Dermatol. 2020, 19, 2374–2383. [Google Scholar] [CrossRef] [PubMed]
- CosIng Database—European Comission Database for Information on Cosmetic Substances and Ingredients. Available online: https://ec.europa.eu/growth/tools-databases/cosing/index.cfm?fuseaction=search.simple (accessed on 11 January 2022).
- Mukherjee, S.; Date, A.; Patravale, V.; Korting, H.C.; Roeder, A.; Weindl, G. Retinoids in the Treatment of Skin Aging: An Overview of Clinical Effi Cacy and Safety. Clin. Interv. Aging 2006, 1, 327–348. [Google Scholar] [CrossRef]
- Regulation (EC), No. 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products, and Its Successive Amendments. Official Journal of the European Union, 22 December 2009; L342.
- Rousselle, C. Opinion of the Scientific Committee on Consumer Safety (SCCS)—Final Version of the Opinion on Vitamin A (Retinol, Retinyl Acetate and Retinyl Palmitate) in Cosmetic Products. Regul. Toxicol. Pharm. 2017, 84, 102–104. [Google Scholar] [CrossRef]
- Fanali, C.; D’Orazio, G.; Fanali, S.; Gentili, A. Advanced Analytical Techniques for Fat-Soluble Vitamin Analysis. TrAC—Trends Anal. Chem. 2017, 87, 82–97. [Google Scholar] [CrossRef]
- Karaźniewicz-Łada, M.; Głõwka, A. A Review of Chromatographic Methods for the Determination of Water- and Fat-Soluble Vitamins in Biological Fluids. J. Sep. Sci. 2016, 39, 132–148. [Google Scholar] [CrossRef]
- Wang, X.; Li, K.; Yao, L.; Wang, C.; Van Schepdael, A. Recent Advances in Vitamins Analysis by Capillary Electrophoresis. J. Pharm. Biomed. Anal. 2018, 147, 278–287. [Google Scholar] [CrossRef]
- Akhavan, A.; Levitt, J. Assessing Retinol Stability in a Hydroquinone 4%/Retinol 0.3% Cream in the Presence of Antioxidants and Sunscreen under Simulated-Use Conditions: A Pilot Study. Clin. Ther. 2008, 30, 543–547. [Google Scholar] [CrossRef]
- Scalia, S.; Renda, A.; Ruberto, G.; Bonina, F.; Menegatti, E. Assay of Vitamin A Palmitate and Vitamin E Acetate in Cosmetic Creams and Lotions by Supercritical Fluid Extraction and HPLC. J. Pharm. Biomed. Anal. 1995, 13, 273–277. [Google Scholar] [CrossRef]
- Wang, L.H.; Huang, S.H. Determination of Vitamins A, D, E, and K in Human and Bovine Serum, and β-Carotene and Vitamin A Palmitate in Cosmetic and Pharmaceutical Products, by Isocratic HPLC. Chromatographia 2002, 55, 289–296. [Google Scholar] [CrossRef]
- Guaratini, T.; Gianeti, M.D.; Campos, P.M.B.G.M. Stability of Cosmetic Formulations Containing Esters of Vitamins E and A: Chemical and Physical Aspects. Int. J. Pharm. 2006, 327, 12–16. [Google Scholar] [CrossRef]
- Wang, L.H. Simultaneous Determination of Retinal, Retinol and Retinoic Acid (All-Trans and 13-Cis) in Cosmetics and Pharmaceuticals at Electrodeposited Metal Electrodes. Anal. Chim. Acta 2000, 415, 193–200. [Google Scholar] [CrossRef]
- Hubinger, J.C. Determination of Retinol, Retinyl Palmitate, and Retinoic Acid in Consumer Cosmetic Products. J. Cosmet. Sci. 2009, 60, 485–500. [Google Scholar] [CrossRef]
- Temova Rakuša, Ž.; Škufca, P.; Kristl, A.; Roškar, R. Quality Control of Retinoids in Commercial Cosmetic Products. J. Cosmet. Dermatol. 2021, 20, 1166–1175. [Google Scholar] [CrossRef]
- Jashari, G.; Musliu, A.; Sýs, M.; Arbneshi, T.; Mikysek, T.; Švancara, I.; Metelka, R. Simultaneous Determination of Lipophilic Vitamin Esters Using Square-Wave Voltammetry at the Glassy Garbon Electrode. Electroanalysis 2021, 33, 537–542. [Google Scholar] [CrossRef]
- Eldin, A.B.; Ismaiel, O.A.; Hassan, W.E.; Shalaby, A.A. Green Analytical Chemistry: Opportunities for Pharmaceutical Quality Control. J. Anal. Chem. 2016, 71, 861–871. [Google Scholar] [CrossRef]
- Carlotti, M.E.; Rossatto, V.; Gallarate, M. Vitamin A and Vitamin A Palmitate Stability over Time and under UVA and UVB Radiation. Int. J. Pharm. 2002, 240, 85–94. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.M.; Konieczka, P.; Namieśnik, J. Analytical Eco-Scale for Assessing the Greenness of Analytical Procedures. TrAC—Trends Anal. Chem. 2012, 37, 61–72. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J. A New Tool for the Evaluation of the Analytical Procedure: Green Analytical Procedure Index. Talanta 2018, 181, 204–209. [Google Scholar] [CrossRef]
- Armenta, S.; de la Guardia, M.; Namieśnik, J. Green Microextraction. In Analytical Microextraction Techniques; Valcarcel, M., Cárdenas, S., Lucena, R., Eds.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2016; pp. 3–27. [Google Scholar]
- Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 Principles of Green Analytical Chemistry and the SIGNIFICANCE Mnemonic of Green Analytical Practices. TrAC—Trends Anal. Chem. 2013, 50, 78–84. [Google Scholar] [CrossRef]
Retinoid | Chemical Structure | N° CAS | LogPow a |
---|---|---|---|
Retinol (ROL) | 68-26-8 | 6.078 | |
Retinal (RAL) | 116-31-4 | 6.376 | |
Retinyl Acetate (RAc) | 127-47-9 | 7.190 | |
Retinyl Propionate (RPr) | 7069-42-3 | 7.699 | |
Retinyl Palmitate (RPal) | 79-81-2 | 14.322 |
Sample Type | Sample Code | Retinoid | ||||
---|---|---|---|---|---|---|
ROL | RAL | RAc | RPr | RPal | ||
Night moisturizer | S1 | X | X | |||
Rejuvenating face mask | S2 | X | X | |||
Hand cream | S3 | X | X | |||
Anti-age serum | S4 | X | ||||
Anti-age cream 1 | S5 | X | X | X | ||
Anti-age cream 2 | S6 | X | ||||
Anti-age cream 3 | S7 | X |
Retinoid | ILOD a (µg mL−1) | ILOQ a (µg mL−1) | MLOD b (%, w/w)/10−4 | MLOQ b (%, w/w)/10−4 | Precision (RSD, %) c | |||||
---|---|---|---|---|---|---|---|---|---|---|
Intra-Day | Inter-Day | |||||||||
1 µg mL−1 | 10 µg mL−1 | 25 µg mL−1 | 1 µg mL−1 | 10 µg mL−1 | 25 µg mL−1 | |||||
ROL | 0.05 | 0.2 | 1.1 | 3.6 | 8.8 | 2.5 | 0.8 | 7.4 | 2.9 | 0.9 |
RAL | 0.3 | 1.0 | 5.9 | 19.3 | 10.0 | 1.5 | 0.7 | 8.1 | 5.9 | 5.2 |
RAc | 0.03 | 0.08 | 0.5 | 1.5 | 8.9 | 1.9 | 0.8 | 5.9 | 4.6 | 1.5 |
RPr | 0.02 | 0.06 | 0.3 | 1.1 | 13.8 | 1.8 | 0.8 | 6.2 | 4.6 | 1.4 |
RPal | 0.02 | 0.08 | 0.5 | 1.5 | 11.4 | 2.7 | 1.1 | 9.8 | 4.6 | 2.4 |
Analytes | tR (min) a | As b | N/m c | k d |
---|---|---|---|---|
ROL | 14.35 | 0.72 | 72,080 | 5.08 |
RAL | 14.97 | 0.83 | 88,700 | 5.34 |
RAc | 17.09 | 0.77 | 229,896 | 6.24 |
RPr | 17.66 | 0.79 | 298,932 | 6.48 |
RPal | 19.85 | 0.95 | 1,371,136 | 7.41 |
Sample | Found Amount (%, w/w) (n = 3) | ||||
---|---|---|---|---|---|
ROL | RAL | RAc | RPr | RPal | |
S1 | <MLOD | <MLOD | <MLOD | 0.2735 ± 0.0011 | <MLOD |
S2 | 2.57 ± 0.07 | <MLOD | <MLOD | 0.432 ± 0.012 | <MLOD |
S3 | <MLOD | <MLOD | <MLOD | <MLOD | <MLOD |
S4 | <MLOD | <MLOD | <MLOD | <MLOD | <MLOD |
S5 | 0.00363 ± 0.00005 | 0.00290 ± 0.00005 | <MLOD | <MLOD | 0.00121 ± 0.00007 |
S6 | 0.267 ± 0.006 | <MLOD | <MLOD | <MLOD | <MLOD |
S7 | <MLOD | <MLOD | <MLOD | <MLOD | 0.301 ± 0.004 |
Sample | Recovery Values (%) (n = 3) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
ROL | RAL | RAc | RPr | RPal | ||||||
2 µg mL−1 | 4 µg mL−1 | 2 µg mL−1 | 4 µg mL−1 | 2 µg mL−1 | 4 µg mL−1 | 2 µg mL−1 | 4 µg mL−1 | 2 µg mL−1 | 4 µg mL−1 | |
S1 | 103 ± 2 | 102 ± 2 | 94 ± 9 | 97 ± 5 | 98 ± 1 | 97 ± 2 | 96 ± 5 | 96 ± 1 | 95 ± 2 | 99 ± 6 |
S2 | 102 ± 2 | 99 ± 3 | 103 ± 3 | 104 ± 3 | 92 ± 2 | 93 ± 2 | 94 ± 2 | 94 ± 2 | 102 ± 2 | 95 ± 2 |
S3 | 93 ± 3 | 99 ± 1 | 87 ± 9 | 114 ± 2 | 86 ± 1 | 90 ± 1 | 89 ± 1 | 91 ± 1 | 89 ± 1 | 91 ± 2 |
S4 | 108 ± 5 | 101 ± 2 | 95 ±1 | 87 ± 1 | 93 ± 4 | 90 ± 1 | 97 ± 5 | 95 ± 1 | 93 ± 5 | 91 ± 1 |
S5 | 93 ± 2 | 93 ± 4 | 95 ± 3 | 85 ± 8 | 79 ± 1 | 83 ± 4 | 82 ± 1 | 86 ± 4 | 90 ± 2 | 90 ± 3 |
S6 | 105 ± 2 | 101 ± 2 | 117 ± 2 | 107 ± 3 | 93 ± 2 | 93 ± 1 | 92 ± 2 | 92 ± 1 | 97 ± 4 | 92 ± 1 |
S7 | 102 ± 4 | 101 ± 3 | 107 ± 2 | 103 ± 5 | 92 ± 4 | 93 ± 2 | 91 ± 3 | 92 ± 2 | 91 ± 6 | 91 ± 2 |
Analytes | Matrix | Extraction Solvent a | Instrumental Technique b | Ref. |
---|---|---|---|---|
RPal | Creams and lotions | Extraction with supercritical CO2 and collection in THF:MeOH 4:1 | LC-UV | [14] |
ROL, RAL | Anti-acne and anti-wrinkle creams and gel | IPA:MeOH 1:1 | DPV and LC-UV | [17] |
ROL, RAc, RPal | Body lotions and skin nourishing creams | MeOH:Hex 1:1 | LC-UV | [15] |
RPal | Gel-cream preparations | IPA | LC-UV | [16] |
ROL, RAL, RPal | Creams and lotions | Hex:IPA:AcOEt 1:1:1 | LC-UV | [18] |
ROL | Serums | CHCl3 | UV | [5] |
ROL, RAc, RPal | Serums, creams, filler fluid, lip gloss and fixing spray | ACN, Hex | LC-UV | [19] |
RAc, RPal | Face hands creams, refreshing cleaning body milk | 0.1 M LiClO4 in acetone | CV | [20] |
ROL, RAL, RAc, RPr, RPal | Moisturizer, face mask, hand creams, anti-age serum | EtOH | LC-UV | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vállez-Gomis, V.; Carchano-Olcina, S.; Azorín, C.; Benedé, J.L.; Chisvert, A.; Salvador, A. Simultaneous Quantification of Vitamin A and Derivatives in Cosmetic Products by Liquid Chromatography with Ultraviolet Detection. Separations 2022, 9, 40. https://doi.org/10.3390/separations9020040
Vállez-Gomis V, Carchano-Olcina S, Azorín C, Benedé JL, Chisvert A, Salvador A. Simultaneous Quantification of Vitamin A and Derivatives in Cosmetic Products by Liquid Chromatography with Ultraviolet Detection. Separations. 2022; 9(2):40. https://doi.org/10.3390/separations9020040
Chicago/Turabian StyleVállez-Gomis, Víctor, Sonia Carchano-Olcina, Cristian Azorín, Juan L. Benedé, Alberto Chisvert, and Amparo Salvador. 2022. "Simultaneous Quantification of Vitamin A and Derivatives in Cosmetic Products by Liquid Chromatography with Ultraviolet Detection" Separations 9, no. 2: 40. https://doi.org/10.3390/separations9020040
APA StyleVállez-Gomis, V., Carchano-Olcina, S., Azorín, C., Benedé, J. L., Chisvert, A., & Salvador, A. (2022). Simultaneous Quantification of Vitamin A and Derivatives in Cosmetic Products by Liquid Chromatography with Ultraviolet Detection. Separations, 9(2), 40. https://doi.org/10.3390/separations9020040