Two New Fumarprotocetraric Acid Lactones Identified and Characterized by UHPLC-PDA/ESI/ORBITRAP/MS/MS from the Antarctic Lichen Cladonia metacorallifera
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Identification of Lichen
2.2. UHPLC-Q/Orbitrap/ESI/MS/MS
2.2.1. Sample Preparation
2.2.2. Instrument
2.2.3. LC Parameters
2.2.4. MS Parameters
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boustie, J.; Grube, M. Lichens—A promising source of bioactive secondary metabolites. Plant Genet. Resour. 2005, 3, 273–287. [Google Scholar] [CrossRef] [Green Version]
- Shukla, V.; Joshi, G.P.; Rawat, M.S.M. Lichens as a potential natural source of bioactive compounds: A review. Phytochem. Rev. 2010, 9, 303–314. [Google Scholar] [CrossRef]
- Molnár, K.; Farkas, E. Current Results on Biological Activities of Lichen Secondary Metabolites: A Review. Z. Naturforsch. C. J. Biosci. 2010, 65, 157–173. [Google Scholar] [CrossRef] [PubMed]
- Boustie, J.; Tomasi, S.; Grube, M. Bioactive lichen metabolites: Alpine habitats as an untapped source. Phytochem. Rev. 2011, 10, 287–307. [Google Scholar] [CrossRef]
- Shrestha, G.; Clair, L.L.S. Lichens: A promising source of antibiotic and anticancer drugs. Phytochem. Rev. 2013, 12, 229–244. [Google Scholar] [CrossRef]
- White, P.A.S.; Oliveira, R.C.M.; Oliveira, A.P.; Serafini, M.R.; Araújo, A.A.S.; Gelain, D.P.; Moreira, J.C.F.; Almeida, J.R.G.S.; Quintans, J.; Quintans-Junior, L.J.; et al. Antioxidant Activity and Mechanisms of Action of Natural Compounds Isolated from Lichens: A Systematic Review. Molecules 2014, 19, 14496–14527. [Google Scholar] [CrossRef]
- Zambare, V.P.; Christopher, L.P. Biopharmaceutical potential of lichens. Pharm. Biol. 2012, 50, 778–798. [Google Scholar] [CrossRef]
- Calla-Quispe, E.; Robles, J.; Areche, C.; Sepulveda, B. Are Ionic Liquids Better Extracting Agents Than Toxic Volatile Organic Solvents? A Combination of Ionic Liquids, Microwave and LC/MS/MS, Applied to the Lichen Stereocaulon glareosum. Front. Chem. 2020, 8, 450. [Google Scholar] [CrossRef]
- Parrot, D.; Jan, S.; Baert, N.; Guyot, S.; Tomasi, S. Comparative metabolite profiling and chemical study of Ramalina siliquosa complex using LC–ESI-MS/MS approach. Phytochemistry 2013, 89, 114–124. [Google Scholar] [CrossRef]
- Musharraf, S.G.; Kanwal, N.; Thadhani, V.M.; Choudhary, M.I. Rapid identification of lichen compounds based on the structure–fragmentation relationship using ESI-MS/MS analysis. Anal. Methods 2015, 7, 6066–6076. [Google Scholar] [CrossRef]
- Le Pogam, P.; Schinkovitz, A.; Legouin, B.; Le Lamer, A.-C.; Boustie, J.; Richomme, P. Matrix-Free UV-Laser Desorption Ionization Mass Spectrometry as a Versatile Approach for Accelerating Dereplication Studies on Lichens. Anal. Chem. 2015, 87, 10421–10428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornejo, A.; Salgado, F.; Caballero, J.; Vargas, R.; Simirgiotis, M.; Areche, C. Secondary Metabolites in Ramalina terebrata Detected by UHPLC/ESI/MS/MS and Identification of Parietin as Tau Protein Inhibitor. Int. J. Mol. Sci. 2016, 17, 1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kind, T.; Tsugawa, H.; Cajka, T.; Ma, Y.; Lai, Z.; Mehta, S.S.; Wohlgemuth, G.; Barupal, D.K.; Showalter, M.R.; Arita, M.; et al. Identification of small molecules using accurate mass MS/MS search. Mass Spectrom. Rev. 2018, 37, 513–532. [Google Scholar] [CrossRef] [PubMed]
- Vaniya, A.; Fiehn, O. Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics. Trends Analyt. Chem. 2015, 69, 52–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, O.N.; Benites, J.; Rodilla, J.M.L.; Santiago, J.C.; Simirgiotis, M.; Sepulveda, B.; Areche, C. Metabolomic Analysis of the Lichen Everniopsis trulla Using Ultra High Performance Liquid Chromatography-Quadrupole-Orbitrap Mass Spectrometry (UHPLC-Q-OT-MS). Chromatographia 2017, 80, 967–973. [Google Scholar] [CrossRef]
- Li, Z.H.; Wang, Q.; Lia, J.J.; Ruan, X.; Pan, C.D.; Jiang, D.A.; Luo, C.C. Elementary identification of potential autotoxins from Picea schrenkiana litters. Chin. J. Anal. Chem. 2009, 6, 888–892. [Google Scholar]
- Huneck, S.; Yoshimura, I. Data of lichen substances. In Identification of Lichen Substances; Springer: Berlin/Heidelberg, Germany, 1996; Volume 3, pp. 125–446. [Google Scholar]
- Osyczka, P. The lichen genus Cladonia (Cladoniaceae, lichenized Ascomycota) from Spitsbergen. Pol. Polar Res. 2006, 27, 207–242. [Google Scholar]
- Studzińska-Sroka, E.; Hołderna-Kędzia, E.; Galanty, A.; Bylka, W.; Kacprzak, K.; Ćwiklińska, K. In Vitro antimicrobial activity of extracts and compounds isolated from Cladonia uncialis. Nat. Prod. Res. 2015, 29, 2302–2307. [Google Scholar] [CrossRef]
- Ranković, B.; Kosanić, M. Lichens as a potential source of bioactive secondary metabolites. In Lichen Secondary Metabolites, 1st ed.; Ranković, B., Ed.; Springer: Cham, Switzerland, 2015; pp. 1–26. [Google Scholar]
- Xu, M.; Heidmarsson, S.; Thorsteinsdottir, M.; Kreuzer, M.; Hawkins, J.; Omarsdottir, S.; Olafsdottir, E.S. Authentication of Iceland Moss (Cetraria islandica) by UPLC-QToF-MS chemical profiling and DNA barcoding. Food Chem. 2018, 245, 989–996. [Google Scholar] [CrossRef]
- Salgado, F.; Albornoz, L.; Cortéz, C.; Stashenko, E.; Urrea-Vallejo, K.; Nagles, E.; Galicia-Virviescas, C.; Cornejo, A.; Ardiles, A.; Simirgiotis, M.; et al. Secondary Metabolite Profiling of Species of the Genus Usnea by UHPLC-ESI-OT-MS-MS. Molecules 2018, 23, 54. [Google Scholar] [CrossRef] [Green Version]
- Oettl, S.K.; Gerstmeier, J.; Khan, S.Y.; Wiechmann, K.; Bauer, J.; Atanasov, A.G.; Malainer, C.; Awad, E.M.; Uhrin, P.; Heiss, E.H.; et al. Imbricaric Acid and Perlatolic Acid: Multi-Targeting Anti-Inflammatory Depsides from Cetrelia monachorum. PLoS ONE 2013, 8, e76929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araújo, A.A.S.; de Melo, M.G.D.; Rabelo, T.K.; Nunes, P.S.; Santos, S.L.; Serafini, M.R.; Santos, M.R.V.; Quintans, L.; Gelain, D.P. Review of the biological properties and toxicity of usnic acid. Nat. Prod. Res. 2015, 29, 2167–2180. [Google Scholar] [CrossRef] [PubMed]
- Jeong, M.-H.; Park, C.-H.; Kim, J.; Choi, E.; Kim, S.; Hur, J.-S.; Park, S.-Y. Production and Activity of Cristazarin in the Lichen-Forming Fungus Cladonia metacorallifera. J. Fungi 2021, 7, 601. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Matsubara, H.; Kinoshita, Y.; Kinoshita, K.; Koyama, K.; Takahashi, K.; Ahmadjiam, V.; Kurokawa, T.; Yoshimura, I. Naphthazarin derivatives from cultures of the lichen Cladonia cristatella. Phytochemistry 1996, 43, 1239–1242. [Google Scholar] [CrossRef]
- González, C.; Cartagena, C.; Caballero, L.; Melo, F.; Areche, C.; Cornejo, A. The Fumarprotocetraric Acid Inhibits Tau Covalently, Avoiding Cytotoxicity of Aggregates in Cells. Molecules 2021, 26, 3760. [Google Scholar] [CrossRef]
- Brakni, R.; Ahmed, M.A.; Burger, P.; Schwing, A.; Michel, G.; Pomares, C.; Hasseine, L.; Boyer, L.; Fernandez, X.; Landreau, A.; et al. UHPLC-HRMS/MS Based Profiling of Algerian Lichens and Their Antimicrobial Activities. Chem. Biodivers. 2018, 15, e1800031. [Google Scholar] [CrossRef]
Peak | Tentative Identification | [M-H]- | Retention Time (min.) | Theoretical Mass (m/z) | Measured Mass (m/z) | Accuracy (ppm) | Metabolite Type | MS Ions (ppm) |
---|---|---|---|---|---|---|---|---|
1 | Orsellinic acid | C8H7O4 | 10.95 | 167.0344 | 167.0336 | 5.5 | A | 123.0441 |
2 | Ethyl 4-carboxyorsellinate | C11H11O6 | 14.77 | 239.0556 | 239.0546 | 6.5 | A | 195.0649; 149.0229 |
3 | Squamatic acid | C19H17O9 | 15.18 | 389.0873 | 389.0860 | 3.3 | d | 209.0442; 181.0490 |
4 | Psoromic acid isomer | C18H13O8 | 15.58 | 357.0610 | 357.0598 | 3.4 | d | 313.0701; 179.0335 |
5 | Hydroxy fumarprotocetraric acid lactone | C22H13O14 | 15.84 | 501.0311 | 501.0284 | 5.4 | D | 341.0285; 297.0389; 253.0491; 225.0542; 115.0023 |
6 | Connorstictic acid | C18H13O9 | 18.57 | 373.0565 | 373.0547 | 4.8 | D | 329.0666; 181.0555 |
7 | Fumarprotocetraric acid lactone | C22H13O13 | 18.81 | 485.0362 | 485.0336 | 5.4 | D | 369.0232; 297.0386; 253.0489; 225.0540; 167.0334; 115.0022 |
8 | Siphulellic acid | C19H13O10 | 19.20 | 401.0509 | 401.0495 | 3.5 | D | 253.0505; 149.0238; 123.0444 |
9 | Lecanoric acid | C16H13O7 | 19.44 | 317.0667 | 317.0651 | 5.0 | d | 167.0343; 149.0237; 123.0444 |
10 | Succinprotocetraric acid | C22H17O12 | 19.62 | 473.0725 | 473.0701 | 5.1 | D | 355.0441; 311.0544; 117.0179 |
11 | Pentahydroxytetracosanoic acid | C24H47O7 | 19.71 | 447.3327 | 447.3305 | 4.9 | L | - |
12 | tetrahydroxydocosanoic acid | C22H43O6 | 19.85 | 403.3065 | 403.3040 | 6.2 | L | - |
13 | Fumarprotocetraric acid | C22H15O12 | 20.11 | 471.0569 | 471.0544 | 5.3 | D | 355.0441; 311.0545; 115.0023 |
14 | tetrahydroxytricosanoic acid | C23H45O6 | 20.35 | 417.3222 | 417.3201 | 5.0 | L | - |
15 | Cryptostictic acid | C19H15O9 | 20.57 | 387.0716 | 387.0726 | 2.6 | D | 343.0826; 311.0566; 267.0661 |
16 | 6-ethyl-6-n-pentylpentadecan-4,5,7,8,15-pentol-15-acetate | C24H47O6 | 20.83 | 431.3373 | 431.3358 | 3.5 | L | - |
17 | Thamnolic acid | C20H19O10 | 20.99 | 419.0978 | 419.0963 | 3.6 | d | 375.0722; 211.0238; 167.0345 |
18 | Gyrophoric acid * | C24H19O10 | 21.30 | 467.0978 | 467.0959 | 4.1 | d | 317.0667; 167.0345; 149.0238; 123.0443 |
19 | Psoromic acid | C18H13O8 | 21.58 | 357.0610 | 357.0599 | 3.1 | d | 269.0791; 177.0181 |
20 | Dihydroxyoxodocosanoic acid | C22H41O5 | 23.94 | 385. | 385.2940 | 2.4 | d | - |
21 | Lobaric acid | C25H27O8 | 24.81 | 455.1711 | 455.1709 | 0.4 | D | 411.1815; 367.1909; 352.1681; 296.1048 |
22 | Ethyl-4-O-methylolivetolcarboxylate | C15H21O4 | 25.34 | 265.1445 | 265.1465 | 7.5 | A | - |
23 | Usnic acid * | C18H15O7 | 26.15 | 343.0818 | 343.0807 | 3.2 | DBF | 328.0591; 259.0609; 231.0661 |
24 | Atranorin | C19H17O8 | 26.48 | 373.0923 | 373.0911 | 3.2 | d | 177.0187; 163.0394 |
25 | Dihydroxyheptadecatrienoic acid | C17H27O4 | 27.46 | 295.1915 | 295.1916 | 0.3 | L | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sepúlveda, B.; Cornejo, A.; Bárcenas-Pérez, D.; Cheel, J.; Areche, C. Two New Fumarprotocetraric Acid Lactones Identified and Characterized by UHPLC-PDA/ESI/ORBITRAP/MS/MS from the Antarctic Lichen Cladonia metacorallifera. Separations 2022, 9, 41. https://doi.org/10.3390/separations9020041
Sepúlveda B, Cornejo A, Bárcenas-Pérez D, Cheel J, Areche C. Two New Fumarprotocetraric Acid Lactones Identified and Characterized by UHPLC-PDA/ESI/ORBITRAP/MS/MS from the Antarctic Lichen Cladonia metacorallifera. Separations. 2022; 9(2):41. https://doi.org/10.3390/separations9020041
Chicago/Turabian StyleSepúlveda, Beatriz, Alberto Cornejo, Daniela Bárcenas-Pérez, José Cheel, and Carlos Areche. 2022. "Two New Fumarprotocetraric Acid Lactones Identified and Characterized by UHPLC-PDA/ESI/ORBITRAP/MS/MS from the Antarctic Lichen Cladonia metacorallifera" Separations 9, no. 2: 41. https://doi.org/10.3390/separations9020041
APA StyleSepúlveda, B., Cornejo, A., Bárcenas-Pérez, D., Cheel, J., & Areche, C. (2022). Two New Fumarprotocetraric Acid Lactones Identified and Characterized by UHPLC-PDA/ESI/ORBITRAP/MS/MS from the Antarctic Lichen Cladonia metacorallifera. Separations, 9(2), 41. https://doi.org/10.3390/separations9020041