GC-MS Analysis, Phytochemical Screening, and Antibacterial Activity of Cerana indica Propolis from Kashmir Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Apparatus
2.2. Collection of Propolis Sample
2.3. Extraction Procedure
2.3.1. Ethanolic Extract (EEKP)
2.3.2. Methanolic Extract (MEKP)
2.3.3. Aqueous Extract (AqEKP)
2.4. Qualitative Phytochemical Analysis
2.5. Identification and Quantification of Bioactive Compounds Using GC-MS
2.6. Antibacterial Screening
2.7. Bacterial Strains
3. Results
3.1. Phytochemical Analysis
3.2. GC-MS Analysis
3.3. Antibacterial Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, Y.K.; Alencar, S.M.; Aguiar, C.L. Botanical origin and chemical composition of Brazilian propolis. J. Agric. Food Chem. 2002, 50, 2502–2506. [Google Scholar] [CrossRef] [PubMed]
- Tosic, S.; Stojanovic, G.; Mitic, S.; Pavlovic, A.; Alagic, S. Mineral composition of selected Serbian propolis samples. J. Apic. Sci. 2017, 61, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Al-Ani, I.; Zimmermann, S.; Reichling, J.; Wink, M. Antimicrobial activities of European propolis collected from various geographic origins alone and in combination with antibiotics. Medicines 2018, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Silva-Carvalho, R.; Baltazar, F.; Almeida-Aguiar, C. Propolis: A complex natural product with a plethora of biological activities that can be explored for drug development. Evid. Based Complement. Altern. Med. 2015, 2015, 206439. [Google Scholar] [CrossRef] [PubMed]
- Papachroni, D.; Graikou, K.; Kosalec, I.; Damianakos, H.; Ingram, V.; Chinou, I. Phytochemical analysis and biological evaluation of selected African propolis samples from Cameroon and Congo. Nat. Prod. Commun. 2015, 10, 6–70. [Google Scholar] [CrossRef] [Green Version]
- Farooqui, T.; Farooqui, A.A. Beneficial effects of propolis on human health and neurological diseases. Front. Biosci. 2012, 4, 779–793. [Google Scholar] [CrossRef]
- Nilesh, K.; Mueen, A.K.; Raman, D.; Ahmed, H. Antioxidant and antimicrobial activity of propolis from Tamilnadu zone. J. Med. Plant Res. 2008, 2, 361–364. [Google Scholar]
- Parolia, A.; Thomas, M.S.; Kundabala, M.; Mohan, M. Propolis and its potential uses in oral health. Int. J. Med. Med. Sci. 2010, 2, 210–215. [Google Scholar]
- Marcucci, M.C.; Rodriguez, J.; Ferreres, F.; Bankova, V.; Groto, R.; Popov, S. Chemical composition of Brazilian propolis from São Paulo state. Z. Naturforsch. C 1998, 53, 117–119. [Google Scholar] [CrossRef]
- Bankova, V.S.; De Castro, S.L.; Marcucci, M.C. Propolis: Recent advances in chemistry and plant origin. Apidologie 2000, 31, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Akbay, E.; Özenirler, Ç.; Çelemli, Ö.G.; Durukan, A.B.; Onur, M.A.; Sorkun, K. Effects of propolis on warfarin efficacy. Pol. J. Thor. Cardiovas. Surg. 2017, 14, 43–46. [Google Scholar] [CrossRef] [Green Version]
- Kakino, M.; Izuta, H.; Tsuruma, K.; Araki, Y.; Shimazawa, M.; Ichihara, K.; Hara, H. Laxative effects and mechanism of action of Brazilian green propolis. BMC Complement. Altern. Med. 2012, 12, 192. [Google Scholar] [CrossRef]
- De Figueiredo, S.M.; Binda, N.S.; Almeida, B.D.M.; Abreu, S.R.L.; De Abreu, J.A.S.; Pastore, G.M.; Sato, H.H.; Toreti, V.C.; Tapia, A.V.; Park, Y.K.; et al. Green propolis: Thirteen constituents of polar extract and total flavonoids evaluated during six years through RP-HPLC. Curr. Drug Discov. Technol. 2015, 12, 229–239. [Google Scholar] [CrossRef]
- Biluca, F.C.; Braghini, F.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Physicochemical profiles, minerals and bioactive compounds of stingless bee honey (Meliponinae). J. Food Compost. Anal. 2016, 50, 61–69. [Google Scholar] [CrossRef]
- Lim, D.C.C.; Bakar, M.A.; Majid, M. Nutritional composition of stingless bee honey from different botanical origins. IOP Conf. Ser. Earth Environ Sci. 2019, 269, 012025. [Google Scholar] [CrossRef] [Green Version]
- Popova, M.; Dimitrova, R.; Al-Lawati, H.T.; Tsvetkova, I.; Najdenski, H.; Bankova, V. Omani propolis: Chemical profiling, antibacterial activity and new propolis plant sources. Chem. Cent. J. 2013, 7, 158. [Google Scholar] [CrossRef] [Green Version]
- Velikova, M.; Bankova, V.; Tsvetkova, I.; Kujumgiev, A.; Marcucci, M.C. Antibacterial ent-kaurene from Brazilian propolis of native stingless bees. Fitoterapia 2000, 71, 693–696. [Google Scholar] [CrossRef]
- Barrientos, L.; Herrera, C.L.; Montenegro, G.; Ortega, X.; Veloz, J.; Alvear, M.; Cuevas, A.; Saavedra, N.; Salazar, L.A. Chemical and botanical characterization of Chilean propolis and biological activity on cariogenic bacteria Streptococcus mutans and Streptococcus sobrinus. Braz. J. Microbiol. 2013, 44, 577–585. [Google Scholar] [CrossRef] [Green Version]
- Sawaya, A.C.H.F.; Calado, J.C.P.; Santos, L.D.; Marcucci, M.C.; Akatsu, I.P.; Soares, A.E.E.; Abdelnur, P.V.; Cunha, I.B.D.S.; Eberlin, M.N. Composition and antioxidant activity of propolis from three species of Scaptotrigona stingless bees. J. ApiProd. ApiMed. Sci. 2009, 1, 37–42. [Google Scholar] [CrossRef]
- Guimarães, N.S.; Mello, J.C.; Paiva, J.S.; Bueno, P.C.; Berretta, A.A.; Torquato, R.J.; Nantes, I.L.; Rodrigues, T. Baccharisdracunculifolia, the main source of green propolis, exhibits potent antioxidant activity and prevents oxidative mitochondrial damage. Food Chem. Toxicol. 2012, 50, 1091–1097. [Google Scholar] [CrossRef] [Green Version]
- Campos, J.F.; Dos Santos, U.P.; Macorini, L.F.B.; De Melo, A.M.M.F.; Balestieri, J.B.P.; Paredes-Gamero, E.J.; Cardoso, C.A.L.; Souza, K.D.P.; Dos Santos, E.L. Antimicrobial, antioxidant and cytotoxic activities of propolis from Meliponaorbignyi (Hymenoptera, Apidae). Food Chem. Toxicol. 2014, 65, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Barbarić, M.; Mišković, K.; Bojić, M.; Lončar, M.B.; Smolčić-Bubalo, A.; Debeljak, Ž.; Medić-Šarić, M. Chemical composition of the ethanolicpropolis extracts and its effect on HeLa cells. J. Ethnopharmacol. 2011, 135, 772–778. [Google Scholar] [CrossRef]
- Cavendish, R.L.; De Souza Santos, J.; Neto, R.B.; Paixão, A.O.; Oliveira, J.V.; De Araujo, E.D.; Silva, A.E.B.E.; Thomazzi, S.M.; Cardoso, J.C.; Gomes, M.Z. Antinociceptive and anti-inflammatory effects of Brazilian red propolis extract and formononetin in rodents. J. Ethnopharmacol. 2015, 173, 127–133. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Pérez-Álvarez, J.A. Functional properties of honey, propolis, and royal jelly. J. Food Sci. 2008, 73, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Coneac, G.; Gafiţanu, E.; Hădărugă, D.I.; Hădărugă, N.G.; Pînzaru, I.A.; Bandur, G.; Ursica, L.; Paunescu, V.; Gruia, A. Flavonoid contents of propolis from the west side of Romania and correlation with the antioxidant activity. Chem. Bull. Politeh. Univ. 2008, 53, 56–60. [Google Scholar]
- Da SilveiraRegueira-Neto, M.; Tintino, S.R.; Da Silva, A.R.P.; Costa, M.D.S.; Oliveira-Tintino, C.D.D.M.; Boligon, A.A.; Menezes, I.R.A.; Balbino, V.D.Q.; Coitinho, D.D.M. Comparative analysis of the antibacterial activity and HPLC phytochemical screening of the Brazilian red Propolis and the resin of Dalbergiaecastaphyllum. Chem. Biodivers. 2019, 16, 1900344. [Google Scholar]
- Bogdanov, S. Propolis: Biological properties and medical applications. In The Propolis Book; Chapter 2; Publisher Bee Product Science: Bern, Switzerland, 2017; pp. 1–41. Available online: https://www.researchgate.net/publication/304012147_Propolis_biological_properties_and_medical_applications (accessed on 8 September 2022).
- Isidorov, V.A.; Szczepaniak, L.; Bakier, S. Rapid GC/MS determination of botanical precursors of Eurasian propolis. Food Chem. 2014, 142, 101–106. [Google Scholar] [CrossRef]
- Mirzoeva, O.K.; Grishanin, R.N.; Calder, P.C. Antimicrobial action of propolis and some of its components: The effects on growth, membrane potential and motility of bacteria. Microbiol. Res. 1997, 152, 239–246. [Google Scholar] [CrossRef]
- Qian, W.L.; Khan, Z.; Watson, D.G.; Fearnley, J. Analysis of sugars in bee pollen and propolis by ligand exchange chromatography in combination with pulsed amperometric detection and mass spectrometry. J. Food Compost. Anal. 2008, 21, 78–83. [Google Scholar] [CrossRef]
- Mulyati, A.H.; Sulaeman, A.; Marliyati, S.A.; Rafi, M.; Fikri, A.M. Phytochemical analysis and antioxidant activities of ethanol extract of stingless bee propolis from Indonesia. AIP Conf. Proc. 2020, 2243, 30014. [Google Scholar]
- Bankova, V.; Popova, M.; Trusheva, B. Propolis volatile compounds: Chemical diversity and biological activity: A review. Chem. Cent. J. 2014, 8, 28. [Google Scholar] [CrossRef] [Green Version]
- Šturm, L.; Ulrih, N.P. Advances in the propolis chemical composition between 2013 and 2018: A review. eFood 2020, 1, 24–37. [Google Scholar] [CrossRef] [Green Version]
- Krishnamoorthy, K.; Subramaniam, P. Phytochemical profiling of leaf, stem, and tuber parts of Solenaamplexicaulis (Lam.) Gandhi using GC-MS. Int. Sch. Res. Not. 2014, 2014, 567409. [Google Scholar]
- Marletto, F. Propolis Characteristics in Relation to the Floral Origin and the Bees’ Utilization of It; Apicoltore Moderno: Turin, Italy, 1983; pp. 187–191. [Google Scholar]
- Harborne, A.J. Phytochemical Methods a Guide to Modern Techniques of Plant Analysis, 3rd ed.; Chapman & Hall: London, UK, 1998; Volume XIV, 302p. [Google Scholar]
- Misra, C.S.; Pratyush, K.; Sagadevan, L.D.M.; James, J.; Veettil, A.K.T.; Thankamani, V. A comparative study on phytochemical screening and antibacterial activity of roots of Alstoniascholaris with the roots, leaves and stem bark. Int. J. Pharm. Pharm. Res. 2011, 1, 77–82. [Google Scholar]
- Vijayalakshmi, R.; Ravindhran, R. Preliminary comparative phytochemical screening of root extracts of Diospyrusferrea (Wild.) Bakh and Aervalanata (L.) Juss. Ex Schultes. Asian J. Plant Sci. Res. 2011, 2, 581–587. [Google Scholar]
- Gul, R.; Jan, S.U.; Faridullah, S.; Sherani, S.; Jahan, N. Preliminary phytochemical screening, quantitative analysis of alkaloids, and antioxidant activity of crude plant extracts from Ephedra intermedia indigenous to Balochistan. Sci. World J. 2017, 2017, 5873648. [Google Scholar] [CrossRef] [Green Version]
- Dhilna, C.R.; Gopinath, S.M.; Sajith, A.M.; Savitha, B.; Shruthi, S.D.; Joy, M.N. Some imidazolylbenzamides as potent antibacterial agents. AIP Conf. Proc. 2020, 2280, 030004. [Google Scholar]
- Miyataka, H.; Nishiki, M.; Matsumoto, H.; Fujimoto, T.; Matsuka, M.; Satoh, T. Evaluation of propolis. I. Evaluation of Brazilian and Chinese propolis by enzymatic and physico-chemical methods. Biol. Pharm. Bull. 1997, 20, 496–501. [Google Scholar] [CrossRef] [Green Version]
- Noori, A.L.; Al-Ghamdi, A.; Ansari, M.J.; Al-Attal, Y.; Salom, K. Synergistic effects of honey and propolis toward drug multi-resistant Staphylococcus aureus, Escherichia coli and Candida albicans isolates in single and polymicrobial cultures. Int. J. Med. Sci. 2012, 9, 793. [Google Scholar]
- Kasiotis, K.M.; Anastasiadou, P.; Papadopoulos, A.; Machera, K. Revisiting Greek propolis: Chromatographic analysis and antioxidant activity study. PLoS ONE 2017, 12, e0170077. [Google Scholar] [CrossRef]
- Mercan, N.; Kivrak, I.; Duru, M.E.; Katircioglu, H.; Gulcan, S.; Malci, S.; Acar, G.; Salih, B. Chemical composition effects onto antimicrobial and antioxidant activities of propolis collected from different regions of Turkey. Ann. Microbiol. 2006, 56, 373–378. [Google Scholar] [CrossRef]
- Gupta, A.; Naraniwal, M.; Kothari, V. Modern extraction methods for preparation of bioactive plant extracts. J. Appl. Nat. Sci. 2012, 1, 8–26. [Google Scholar]
- Ding, Q.; Sheikh, A.R.; Gu, X.; Li, J.; Xia, K.; Sun, N.; Wu, R.A.; Luo, L.; Zhang, Y.; Ma, H. Chinese Propolis: Ultrasound-assisted enhanced ethanolic extraction, volatile components analysis, antioxidant and antibacterial activity comparison. Food Sci. Nutr. 2021, 9, 313–330. [Google Scholar] [CrossRef] [PubMed]
- Allan, R. Antibacterial activity of propolis and honey against Staphylococcus aureus and Escherichia coli. Afr. J. Microbiol. Res. 2010, 4, 1872–1878. [Google Scholar]
- Silva, R.P.D.; Machado, B.A.S.; Barreto, G.D.A.; Costa, S.S.; Andrade, L.N.; Amaral, R.G.; Carvalho, A.A.; Padilha, F.F.; Barbosa, D.D.V.; Umsza-Guez, M.A. Antioxidant, antimicrobial, antiparasitic, and cytotoxic properties of various Brazilian propolis extracts. PLoS ONE 2017, 12, e0172585. [Google Scholar]
- Georgieva, K.; Popova, M.; Dimitrova, L.; Trusheva, B.; Thanh, L.N.; Phuong, D.T.L.; Lien, N.T.P.; Najdemski, H.; Bankova, V. Phytochemical analysis of Vietnamese propolis produced by the stingless bee Lisotrigonacacciae. PLoS ONE 2019, 14, e0216074. [Google Scholar] [CrossRef] [Green Version]
- Jug, M.; Karas, O.; Kosalec, I. The influence of extraction parameters on antimicrobial activity of propolis extracts. Nat. Prod. Commun. 2017, 12, 47–50. [Google Scholar] [CrossRef] [Green Version]
- Popova, M.; Trusheva, B.; Antonova, D.; Cutajar, S.; Mifsud, D.; Farrugia, C.; Tsvetkova, I.; Najdenski, H.; Bankova, V. The specific chemical profile of Mediterranean propolis from Malta. Food Chem. 2011, 126, 1431–1435. [Google Scholar] [CrossRef] [Green Version]
- Martinotti, S.; Ranzato, E. Propolis: A new frontier for wound healing? Burns Trauma 2015, 3, 9. [Google Scholar] [CrossRef]
Phytoconstituents | EEKP | MEKP | AqEKP |
---|---|---|---|
Alkaloids | ++ | ++ | + |
Tannins | ++ | + | + |
Saponins | ++ | ++ | + |
Terpenoids | + | + | - |
Flavonoids | ++ | ++ | + |
Phlobatanins | ++ | - | - |
Anthraquinones | + | + | + |
Carbohydrates | ++ | + | + |
Resins | ++ | + | - |
Coumarins | + | + | + |
Quinones | ++ | - | - |
Proteins | + | + | - |
S. N. | Phytocompounds | Molecular Formula | Molecular Weight (g/mol) | Retention Time (min) | CAS Number | Peak Area ± SD (%) |
---|---|---|---|---|---|---|
1 | 2-Azido-2,4,4,6,6-pentamethylheptane | C12H25N3 | 211.35 | 3.874 | 1000293-29-0 | 1.17 ± 0.01 |
2 | 2-Azido-2,4,4,6,6,8,8hepta methylnonane | C16H33N3 | 267.45 | 3.974 | 1000293-29-1 | 0.44 ± 0.00 |
3 | Methyl 9,10-octadecadienoate | C19H34O2 | 294.5 | 4.097 | 1000336-45-7 | 0.36 ± 0.00 |
4 | Methyl 8,9-octadecadienoate | C19H34O2 | 294.5 | 4.349 | 1000336-45-0 | 1.84 ± 0.02 |
5 | Cyclohexane, 1,3-butadienylidene | C10H14 | 134.22 | 4.620 | 53864-08-7 | 0.75 ± 0.01 |
6 | Methyl 10,11-octadecadienoate | C19H34O2 | 294.5 | 5.292 | 1000336-45-3 | 1.14 ± 0.01 |
7 | 1-Propanimine, N-(2-ethylcyclohexyl-, N-oxide | C11H21NO | 183.29 | 12.163 | 1000187-25-8 | 0.18 ± 0.00 |
8 | Tridecanoic acid, 12-methyl-, methyl ester | C15H30O2 | 242.4 | 14.146 | 5129-58-8 | 1.55 ± 0.01 |
9 | Decanoic acid, silver(1+) salt | C10H19AgO2 | 279.12 | 14.944 | 13126-67-5 | 0.98 ± 0.00 |
10 | Methyl 13, 14- octadecadienoate or 13,14-18:2 | C19H34O2 | 294.5 | 15.961 | 1000336-46-2 | 1.42 ± 0.01 |
11 | i-propyl 12-methyl-trideca | C17H34O2 | 270.5 | 16.136 | 1000336-60-4 | 0.45 ± 0.00 |
12 | 4-n-Hexylthiane, s,s- dioxide | C11H22O2S | 218.36 | 16.746 | 70928-52-8 | 0.83 ± 0.00 |
13 | Cyclopentyl-methyl-phosphinic acid,2-isopropyl-5-methyl-cyclohexyl ester | C16H31O2P | 286.39 | 17.079 | 1000194-56-2 | 0.97 ± 0.00 |
14 | 4(axial)-Ethenyl-1,2(equatorial)-dimethyl-trans-decahydroquinol-4-ol,N-oxide | C13H23NO2 | 225.33 | 17.734 | 62299-73-4 | 0.14 ± 0.00 |
15 | Hexadecanoic acid, methyl ester | C17H34O2 | 270.5 | 18.080 | 112-39-0 | 9.91 ± 0.12 |
16 | .alpha,-D-Mannopyranoside, methyl, cyclic 2,3:4,6-bis(ethyl boronate) | C11H20B2O6 | 269.9 | 18.900 | 61553-44-4 | 21.17 ± 0.20 |
17 | Cis-2-methyl-4-n-butylthiane, s,s-dioxide | C10H20O2S | 218.36 | 19.362 | 1000215-67-7 | 2.21 ± 0.02 |
18 | Borinic acid, diethyl-,1-cyclododecen-1-yl ester | C16H31BO | 250.2 | 20.467 | 61142-73-2 | 1.11 ± 0.01 |
19 | Trihexadecyl borate | C48H99BO3 | 735.1 | 20.751 | 2665-11-4 | 0.17 ± 0.00 |
20 | Nona-2,3-dienoic acid, ethyl ester | C11H18O2 | 182.26 | 21.323 | 1000187-19-2 | 4.75 ± 0.04 |
21 | Methyl 10,11-tetradecadienoate | C15H26O2 | 238.37 | 21.710 | 1000336-31-8 | 1.95 ± 0.01 |
22 | 1-Hexadecanaminium, N,N,N-trimethyl-,octadecanoate | C37H77NO2 | 568 | 21.775 | 124-23-2 | 0.70 ± 0.00 |
23 | Methyl 8-methyl-decanoate | C12H24O2 | 200.32 | 21.943 | 1000336-49-1 | 0.21 ± 0.00 |
24 | Tropine N-oxide | C8 H15NO2 | 157.21 | 23.019 | 35722-43-1 | 1.12 ± 0.01 |
25 | Ethyl trans-4-decenoate | C12H22O2 | 198.3 | 23.112 | 76649-16-6 | 1.15 ± 0.01 |
26 | 1,2-Oxathiane, 6-dodecyl-, 2,2-dioxide | C16H32O3S | 304.5 | 24.395 | 15224-88-1 | 0.10 ± 0.00 |
27 | Ethyl hydrogen dimethylamidophosphate, sodium salt | C7H20NO3PSi | 175.1 | 24.750 | 1000445-96-4 | 1.30 ± 0.01 |
28 | 9-Borabicyclo[3.3.1]nonane, 9(3-methoxycyclohexyl)oxy- | C15H27BO2 | 250.19 | 24.902 | 1000150-57-9 | 0.50 ± 0.00 |
29 | 1,2:5,6-Di-O-ethylborandiyl-D-glucohexodialdose | C10H16B2O6 | 253.9 | 25.545 | 74143-57-0 | 0.23 ± 0.00 |
30 | 11-Dodecen-1-ol, 2,4,6-trimethyl-, (R,R,R)- | C15H30O | 226.4 | 25.890 | 27829-54-5 | 0.11 ± 0.00 |
31 | 9-Tetradecenal, (Z)- | C14H26O | 210.36 | 26.840 | 53939-27-8 | 1.73 ± 0.01 |
32 | 10-Methyldodecan-4-olide | C13H24O2 | 212.33 | 26.937 | 1000370-40-6 | 3.89 ± 0.03 |
33 | Boroxin, tripropyl | C9 H21B3O3 | 209.7 | 27.535 | 7325-08-8 | 0.19 ± 0.00 |
34 | Methyl 3,4-tetradecadienoate | C15 H26O2 | 238.37 | 27.573 | 1000336-28-1 | 0.35 ± 0.00 |
35 | Cyclohexanecarboxylic acid, 2-hydroxy-, monoannhydride with 1-butaneboranic acid, cyclic ester, trans- | C11H19BO3 | 210.1 | 27.922 | 24372-06-3 | 1.16 ± 0.01 |
36 | 3,9-Dispiro[5,5]undecane, 3,9-diethyl-, 2,4,8,10-tetraoxa-3,9-dibora- | C9H18B2O4 | 211.9 | 27.987 | 58163-67-0 | 0.82 ± 0.00 |
37 | Methyl myristoleate | C15H28O2 | 240.38 | 28.132 | 56219-06-8 | 0.38 ± 0.00 |
38 | Bacteriochlorophyll-c-stearyl | C52H72MgN4O4 | 841.5 | 28.429 | 1000164-49-7 | 4.41 ± 0.06 |
39 | alpha,-D-Xylofuranose, cyclic 1,2,:3,5-bis(butylboronate) | C13H24B2O5 | 282 | 28.559 | 52572-01-7 | 0.16 ± 0.00 |
40 | Z-11-Tetradecenoic acid | C14H26O2 | 226.35 | 29.615 | 1000130-83-3 | 1.63 ± 0.01 |
41 | Chloroacetic acid, dodecyl ester | C14H27ClO2 | 262.81 | 30.061 | 6316-04-7 | 0.33 ± 0.00 |
42 | Ethyl 1-(8-amino-1-naphthyl)-1,2,3-triazole-4-carboxylate | C15H14N4O2 | 282.3 | 30.539 | 116114-01-3 | 1.78 ± 0.01 |
43 | Nickel, 2,6,10-dodecatriendi-1,12-diyl- | C12H18Ni | 220.97 | 30.901 | 39330-67-1 | 0.12 ± 0.00 |
44 | Iron, tricarbonyl-(1,4,5,6,-eta,-4,5-dimethyl-4-hexane-1,6-diyl-1-carboxylic acid, ethyl ester), (endo)- | C14H18FeO5 | 322.13 | 30.917 | 1000149-58-0 | 0.86 ± 0.00 |
45 | 7-Hexadecyn-1-ol | C16H30O | 238.41 | 31.179 | 822-21-9 | 1.59 ± 0.01 |
46 | Nickel, cyclopentadienyl-1,2,3-trimethylallyl- | C11H16Ni | 206.94 | 31.392 | 77932-64-0 | 3.12 ± 0.02 |
47 | 11,13-Dimethyl-12-tetradecen-1-ol acetate | C18H34O2 | 282.5 | 31.608 | 1000130-81-0 | 0.73 ± 0.00 |
48 | 3-Methylpyrazolobis(diethylboryl) hydroxide | C12H26B2N2O | 236.0 | 31.715 | 1000159-71-9 | 0.37 ± 0.00 |
49 | 1-[3-(2,6,6-trimethyl-cyclonex-2-enyl)-4,5-dihydro-3H-pyrazol-4-yl]-ethanone | C14H22N2O | 234.34 | 31.964 | 1000185-64-0 | 2.13 ± 0.02 |
50 | Pinane-2,3-diol, 2,3-o-ethaneboronate- | C12H21BO2 | 208.11 | 32.077 | 1000158-69-2 | 0.21 ± 0.00 |
51 | 1H-1,2,3,4-Tetrazole, 5-[(2-methoxyphenoxy)methyl]- | C9H10N4O2 | 206.2 | 32.102 | 1000337-41-2 | 1.24 ± 0.01 |
52 | 1,1-Bicyclohexyl, 4-propoxy-4-propyl- | C18H34O | 266.5 | 32.290 | 98321-58-5 | 1.60 ± 0.01 |
53 | Methyl 10,11-tetradecadienoate | C15H26O2 | 238.37 | 32.484 | 1000336-31-8 | 0.20 ± 0.00 |
54 | Tris(tert-butyldimethylsilyloxy)arsane | C18 H45AsO3Si3 | 468.7 | 33.414 | 1000366-57-5 | 1.00 ± 0.01 |
55 | 9-Borabicyclo[3.3.1]nonane, 9-[3-(dimethylamino)propyl]- | C13H26BN | 207.2 | 33.718 | 1000160-15-2 | 2.51 ± 0.03 |
56 | Methyl 12,13-tetradecadienoate | C15H26O2 | 238.37 | 33.792 | 1000336-33-7 | 0.27 ± 0.00 |
57 | Methyl 8,9-octadecadienoate | C19H34O2 | 294.5 | 34.063 | 1000336-45-0 | 0.98 ± 0.00 |
58 | Methyl 4,5-tetradecadienoate | C15H26O2 | 238.37 | 34.125 | 1000336-28-7 | 0.10 ± 0.00 |
59 | .beta,-D-Mannofuranoside, 2,3:5,6-di-ethylboranediyl-cis-nerolidyl | C25H42B2O6 | 460.2 | 34.528 | 1000155-68-3 | 0.93 ± 0.00 |
60 | Undec-10-ynoic acid,octyl ester | C19H34O2 | 294.5 | 34.599 | 1000406-16-1 | 1.88 ± 0.01 |
61 | Methyl 3-cis,9-cis,12-cis-octadecatrienoate | C19H32O2 | 292.5 | 35.019 | 1000336-38-4 | 0.28 ± 0.00 |
62 | Z,E-2-methyl-3,13-octadecadien-1-ol | C19H36O | 280.5 | 35.074 | 1000131-10-5 | 0.29 ± 0.00 |
63 | 2,2-Dimethyl-6-methylene-1-[3,5-dihydroxy-1-pentenyl]cyclohexan-1-perhydrol | C14H24O4 | 256.339 | 35.436 | 1000212-02-6 | 0.25 ± 0.00 |
64 | 9,12-octadecadienoyl chloride, (z,z)- | C18H31ClO | 298.9 | 35.633 | 7459-33-8 | 0.34 ± 0.00 |
65 | 1-(4-Amino-furazan-3-yl)-5-methoxymethyl-1H-[1,2,3]triazole-4-carboxylic acid hydrazide | C7H10N8O3 | 254.21 | 36.005 | 1000300-77-2 | 0.22 ± 0.00 |
66 | Iron, tris, (eta,3-2-propenyl)- | C9H15Fe | 179.06 | 37.255 | 94139-77-2 | 1.13 ± 0.01 |
67 | E,E,Z-1,3,12-Nonadecatriene-5,14-diol | C19H34O2 | 294.5 | 37.342 | 1000131-11-4 | 0.26 ± 0.00 |
68 | Phenylboronic acid, 2TMS derivative | C12H23BOSi2 | 266.29 | 39.981 | 7560-51-2 | 0.30 ± 0.00 |
Quantity of Extract (µg/mL) | Zone of Inhibition Diameter (mm) | ||||
---|---|---|---|---|---|
Bacterial Strains | |||||
S. aureus | P. aeruginosa | K. pneumonae | E. coli | C. acnes | |
EEKP | |||||
100 | 12.33 ± 0.33 | 11.00 ± 0.58 | 11.33 ± 0.33 | 09.33 ± 0.33 | 09.67 ± 0.67 |
200 | 14.67 ± 0.67 | 13.33 ± 0.33 | 13.67 ± 0.67 | 11.67 ± 0.33 | 11.67 ± 0.33 |
400 | 17.33 ± 0.67 | 16.33 ± 0.67 | 15.67 ± 0.33 | 13.67 ± 1.20 | 14.00 ± 0.58 |
MEKP | |||||
100 | 11.67 ± 0.88 | 10.33 ± 0.33 | 10.00 ± 0.58 | - | - |
200 | 14.00 ± 0.58 | 12.67 ± 0.33 | 12.00 ± 1.15 | 11.00 ± 0.58 | 10.67 ± 0.33 |
400 | 16.00 ± 0.58 | 15.00 ± 0.58 | 14.33 ± 0.33 | 13.00 ± 0.58 | 13.33 ± 0.33 |
AqEKP | |||||
100 | 10.67 ± 0.88 | 07.67 ± 3.84 | 07.00 ± 3.51 | - | - |
200 | 13.00 ± 0.58 | 11.67 ± 0.33 | 11.67 ± 0.33 | 6.33 ± 3.18 | 10.33 ± 0.33 |
400 | 14.67 ± 0.33 | 13.67 ± 0.67 | 13.33 ± 0.33 | 10.67 ± 0.88 | 12.33 ± 0.33 |
Streptomycin (10 µg/mL) | 19.33 ± 0.88 | 19.67 ± 0.33 | 21.00 ± 0.58 | 18.33 ± 0.33 | 19.33 ± 0.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohiuddin, I.; Kumar, T.R.; Zargar, M.I.; Wani, S.U.D.; Mahdi, W.A.; Alshehri, S.; Alam, P.; Shakeel, F. GC-MS Analysis, Phytochemical Screening, and Antibacterial Activity of Cerana indica Propolis from Kashmir Region. Separations 2022, 9, 363. https://doi.org/10.3390/separations9110363
Mohiuddin I, Kumar TR, Zargar MI, Wani SUD, Mahdi WA, Alshehri S, Alam P, Shakeel F. GC-MS Analysis, Phytochemical Screening, and Antibacterial Activity of Cerana indica Propolis from Kashmir Region. Separations. 2022; 9(11):363. https://doi.org/10.3390/separations9110363
Chicago/Turabian StyleMohiuddin, Ishfaq, T. Ramesh Kumar, Mohammed Iqbal Zargar, Shahid Ud Din Wani, Wael A. Mahdi, Sultan Alshehri, Prawez Alam, and Faiyaz Shakeel. 2022. "GC-MS Analysis, Phytochemical Screening, and Antibacterial Activity of Cerana indica Propolis from Kashmir Region" Separations 9, no. 11: 363. https://doi.org/10.3390/separations9110363
APA StyleMohiuddin, I., Kumar, T. R., Zargar, M. I., Wani, S. U. D., Mahdi, W. A., Alshehri, S., Alam, P., & Shakeel, F. (2022). GC-MS Analysis, Phytochemical Screening, and Antibacterial Activity of Cerana indica Propolis from Kashmir Region. Separations, 9(11), 363. https://doi.org/10.3390/separations9110363